首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2 d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3 was re-oxidized back to NO3 via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.  相似文献   

2.
Anaerobic ammonium-oxidizing (anammox) bacteria have been detected in many marine and freshwater ecosystems. However, little is known about the distribution, diversity, and abundance of anammox bacteria in terrestrial ecosystems. In this study, anammox bacteria were found to be present in various agricultural soils collected from 32 different locations in China. Phylogenetic analysis of the 16S rRNA genes showed “Candidatus Brocadia,” “Candidatus Kuenenia,” “Candidatus Anammoxoglobus,” and “Candidatus Jettenia” in the collected soils, with “Candidatus Brocadia” being the dominant genus. Quantitative PCR showed that the abundance of anammox bacteria ranged from 6.38 × 104 ± 0.42 × 104 to 3.69 × 106 ± 0.25 × 106 copies per gram of dry weight. Different levels of diversity, composition, and abundance of the anammox bacterial communities were observed, and redundancy analysis indicated that the soil organic content and the distribution of anammox communities were correlated in the soils examined. Furthermore, Pearson correlation analysis showed that the diversity of the anammox bacteria was positively correlated with the soil ammonium content and the organic content, while the anammox bacterial abundance was positively correlated with the soil ammonium content. These results demonstrate the broad distribution of diverse anammox bacteria and its correlation with the soil environmental conditions within an extensive range of Chinese agricultural soils.  相似文献   

3.
Recent studies have shown that the anaerobic oxidation of ammonium by anammox bacteria plays an important role in catalyzing the loss of nitrogen from marine oxygen minimum zones (OMZ). However, in situ oxygen concentrations of up to 25 microM and ammonium concentrations close to or below the detection limit in the layer of anammox activity are hard to reconcile with the current knowledge of the physiology of anammox bacteria. We therefore investigated samples from the Namibian OMZ by comparative 16S rRNA gene analysis and fluorescence in situ hybridization. Our results showed that "Candidatus Scalindua" spp., the typical marine anammox bacteria, colonized microscopic particles that were likely the remains of either macroscopic marine snow particles or resuspended particles. These particles were slightly but significantly (P < 0.01) enriched in Gammaproteobacteria (11.8% +/- 5.0%) compared to the free-water phase (8.1% +/- 1.8%). No preference for the attachment to particles could be observed for members of the Alphaproteobacteria and Bacteroidetes, which were abundant (12 to 17%) in both habitats. The alphaproteobacterial SAR11 clade, the Euryarchaeota, and group I Crenarchaeota, were all significantly depleted in particles compared to their presence in the free-water phase (16.5% +/- 3.5% versus 2.6% +/- 1.7%, 2.7% +/- 1.9% versus <1%, and 14.9% +/- 4.6% versus 2.2% +/- 1.8%, respectively, all P < 0.001). Sequence analysis of the crenarchaeotal 16S rRNA genes showed a 99% sequence identity to the nitrifying "Nitrosopumilus maritimus." Even though we could not observe conspicuous consortium-like structures of anammox bacteria with particle-enriched bacterioplankton groups, we hypothesize that members of Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes play a critical role in extending the anammox reaction to nutrient-depleted suboxic water layers in the Namibian upwelling system by creating anoxic, nutrient-enriched microniches.  相似文献   

4.
We analyzed the contributions of different heterotrophic bacterial groups to the uptake of several low-molecular weight compounds during a seasonal cycle on the northwestern Mediterranean coast (Blanes Bay Microbial Observatory). The bacterial assemblage structure had been shown to change substantially year-round for this site, but whether changes in the activities of the different bacterial groups also occurred on the seasonal scale was unknown. Microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization was used to analyze the patterns of glucose, amino acid, and ATP uptake by different bacterial groups. Gammaproteobacteria and Bacteroidetes were not very active in the uptake of glucose at any time of the year (<10% of cells were active) compared to Alphaproteobacteria (generally >20% of cells were active). Dissolved free amino acids were taken up considerably by Alphaproteobacteria and Gammaproteobacteria but not by Bacteroidetes. Relatively high percentages of cells of the three broad phylogenetic groups actively took up ATP, which could be related to the important phosphorous limitation of bacterial production during most of the year in Blanes Bay. The contribution of SAR11 to the uptake of the monomers was variable year-round, generally with fewer than 30% of the cells being active. By contrast, Roseobacter were highly overrepresented in the uptake of all the substrates throughout all the year, with more than 50% of cells being active in all the samples and for all substrates. Our results suggest that substantial changes in the activity of some phylogenetic groups of bacteria occur throughout the year.  相似文献   

5.
The acidification and warming of seawater have several impacts on marine organisms, including over microorganisms. The influence of acidification and warming of seawater on biofilms grown on API 5L steel surfaces was evaluated by sequencing the 16S ribosomal gene. For this, three microcosms were designed, the first simulating the natural marine environment (MCC), the second with a decrease in pH from 8.1 to 7.9, and an increase in temperature by 2 °C (MMS), and the third with pH in around 7.7 and an increase in temperature of 4 °C (MES). The results showed that MCC was dominated by the Gammaproteobacteria class, mainly members of the Alteromonadales Order. The second most abundant group was Alphaproteobacteria, with a predominance of Rhodobacterales and Oceanospirillales. In the MMS system there was a balance between representatives of the Gammaproteobacteria and Alphaproteobacteria classes. In MES there was an inversion in the representations of the most prevalent classes previously described in MCC. In this condition, there was a predominance of members of the Alphaproteobacteria Class, in contrast to the decrease in the abundance of Gammaproteobacteria members. These results suggest that possible future climate changes may influence the dynamics of the biofouling process in surface metals.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12088-021-00925-7.  相似文献   

6.
We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3 to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3 by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3 ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3 reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2 to consumed NH4+ (ΔNO2/ΔNH4+) and produced NO3 to consumed NH4+ (ΔNO3/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment.  相似文献   

7.
Previously available primer sets for detecting anaerobic ammonium-oxidizing (anammox) bacteria are inefficient, resulting in a very limited database of such sequences, which limits knowledge of their ecology. To overcome this limitation, we designed a new primer set that was 100% specific in the recovery of ~700-bp 16S rRNA gene sequences with >96% homology to the “Candidatus Scalindua” group of anammox bacteria, and we detected this group at all sites studied, including a variety of freshwater and marine sediments and permafrost soil. A second primer set was designed that exhibited greater efficiency than previous primers in recovering full-length (1,380-bp) sequences related to “Ca. Scalindua,” “Candidatus Brocadia,” and “Candidatus Kuenenia.” This study provides evidence for the widespread distribution of anammox bacteria in that it detected closely related anammox 16S rRNA gene sequences in 11 geographically and biogeochemically diverse freshwater and marine sediments.  相似文献   

8.
We investigated autotrophic anaerobic ammonium-oxidizing (anammox) biofilms for their spatial organization, community composition, and in situ activities by using molecular biological techniques combined with microelectrodes. Results of phylogenetic analysis and fluorescence in situ hybridization (FISH) revealed that “Brocadia”-like anammox bacteria that hybridized with the Amx820 probe dominated, with 60 to 92% of total bacteria in the upper part (<1,000 μm) of the biofilm, where high anammox activity was mainly detected with microelectrodes. The relative abundance of anammox bacteria decreased along the flow direction of the reactor. FISH results also indicated that Nitrosomonas-, Nitrosospira-, and Nitrosococcus-like aerobic ammonia-oxidizing bacteria (AOB) and Nitrospira-like nitrite-oxidizing bacteria (NOB) coexisted with anammox bacteria and accounted for 13 to 21% of total bacteria in the biofilms. Microelectrode measurements at three points along the anammox reactor revealed that the NH4+ and NO2 consumption rates decreased from 0.68 and 0.64 μmol cm−2 h−1 at P2 (the second port, 170 mm from the inlet port) to 0.30 and 0.35 μmol cm−2 h−1 at P3 (the third port, 205 mm from the inlet port), respectively. No anammox activity was detected at P4 (the fourth port, 240 mm from the inlet port), even though sufficient amounts of NH4+ and NO2 and a high abundance of anammox bacteria were still present. This result could be explained by the inhibitory effect of organic compounds derived from biomass decay and/or produced by anammox and coexisting bacteria in the upper parts of the biofilm and in the upstream part of the reactor. The anammox activities in the biofilm determined by microelectrodes reflected the overall reactor performance. The several groups of aerobic AOB lineages, Nitrospira-like NOB, and Betaproteobacteria coexisting in the anammox biofilm might consume a trace amount of O2 or organic compounds, which consequently established suitable microenvironments for anammox bacteria.  相似文献   

9.
The effects of three metabolic inhibitors (acetylene, methanol, and allylthiourea [ATU]) on the pathways of N2 production were investigated by using short anoxic incubations of marine sediment with a 15N isotope technique. Acetylene inhibited ammonium oxidation through the anammox pathway as the oxidation rate decreased exponentially with increasing acetylene concentration; the rate decay constant was 0.10 ± 0.02 μM−1, and there was 95% inhibition at ~30 μM. Nitrous oxide reduction, the final step of denitrification, was not sensitive to acetylene concentrations below 10 μM. However, nitrous oxide reduction was inhibited by higher concentrations, and the sensitivity was approximately one-half the sensitivity of anammox (decay constant, 0.049 ± 0.004 μM−1; 95% inhibition at ~70 μM). Methanol specifically inhibited anammox with a decay constant of 0.79 ± 0.12 mM−1, and thus 3 to 4 mM methanol was required for nearly complete inhibition. This level of methanol stimulated denitrification by ~50%. ATU did not have marked effects on the rates of anammox and denitrification. The profile of inhibitor effects on anammox agreed with the results of studies of the process in wastewater bioreactors, which confirmed the similarity between the anammox bacteria in bioreactors and natural environments. Acetylene and methanol can be used to separate anammox and denitrification, but the effects of these compounds on nitrification limits their use in studies of these processes in systems where nitrification is an important source of nitrate. The observed differential effects of acetylene and methanol on anammox and denitrification support our current understanding of the two main pathways of N2 production in marine sediments and the use of 15N isotope methods for their quantification.  相似文献   

10.
Samples from diverse upland soils that oxidize atmospheric methane were characterized with regard to methane oxidation activity and the community composition of methanotrophic bacteria (MB). MB were identified on the basis of the detection and comparative sequence analysis of the pmoA gene, which encodes a subunit of particulate methane monooxygenase. MB commonly detected in soils were closely related to Methylocaldum spp., Methylosinus spp., Methylocystis spp., or the “forest sequence cluster” (USC α), which has previously been detected in upland soils and is related to pmoA sequences of type II MB (Alphaproteobacteria). As well, a novel group of sequences distantly related (<75% derived amino acid identity) to those of known type I MB (Gammaproteobacteria) was often detected. This novel “upland soil cluster γ” (USC γ) was significantly more likely to be detected in soils with pH values of greater than 6.0 than in more acidic soils. To identify active MB, four selected soils were incubated with 13CH4 at low mixing ratios (<50 ppm of volume), and extracted methylated phospholipid fatty acids (PLFAs) were analyzed by gas chromatography-online combustion isotope ratio mass spectrometry. Incorporation of 13C into PLFAs characteristic for methanotrophic Gammaproteobacteria was observed in all soils in which USC γ sequences were detected, suggesting that the bacteria possessing these sequences were active methanotrophs. A pattern of labeled PLFAs typical for methanotrophic Alphaproteobacteria was obtained for a sample in which only USC α sequences were detected. The data indicate that different MB are present and active in different soils that oxidize atmospheric methane.  相似文献   

11.
The anaerobic oxidation of ammonium (anammox) process has been observed in diverse terrestrial ecosystems, while the contribution of anammox to N2 production in paddy soils is not well documented. In this study, the anammox activity and the abundance and diversity of anammox bacteria were investigated to assess the anammox potential of 12 typical paddy soils collected in southern China. Anammox bacteria related to “Candidatus Brocadia” and “Candidatus Kuenenia” and two novel unidentified clusters were detected, with “Candidatus Brocadia” comprising 50% of the anammox population. The prevalence of the anammox was confirmed by the quantitative PCR results based on hydrazine synthase (hzsB) genes, which showed that the abundance ranged from 1.16 × 104 to 9.65 × 104 copies per gram of dry weight. The anammox rates measured by the isotope-pairing technique ranged from 0.27 to 5.25 nmol N per gram of soil per hour in these paddy soils, which contributed 0.6 to 15% to soil N2 production. It is estimated that a total loss of 2.50 × 106 Mg N per year is linked to anammox in the paddy fields in southern China, which implied that ca. 10% of the applied ammonia fertilizers is lost via the anammox process. Anammox activity was significantly correlated with the abundance of hzsB genes, soil nitrate concentration, and C/N ratio. Additionally, ammonia concentration and pH were found to be significantly correlated with the anammox bacterial structure.  相似文献   

12.
Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two of the most recent discoveries in the microbial nitrogen cycle. In the present study, we provide direct evidence for the cooccurrence of the anammox and n-damo processes in a flooded paddy field in southeastern China. Stable isotope experiments showed that the potential anammox rates ranged from 5.6 to 22.7 nmol N2 g−1 (dry weight) day−1 and the potential n-damo rates varied from 0.2 to 2.1 nmol CO2 g−1 (dry weight) day−1 in different layers of soil cores. Quantitative PCR showed that the abundance of anammox bacteria ranged from 1.0 × 105 to 2.0 × 106 copies g−1 (dry weight) in different layers of soil cores and the abundance of n-damo bacteria varied from 3.8 × 105 to 6.1 × 106 copies g−1 (dry weight). Phylogenetic analyses of the recovered 16S rRNA gene sequences showed that anammox bacteria affiliated with “Candidatus Brocadia” and “Candidatus Kuenenia” and n-damo bacteria related to “Candidatus Methylomirabilis oxyfera” were present in the soil cores. It is estimated that a total loss of 50.7 g N m−2 per year could be linked to the anammox process, which is at intermediate levels for the nitrogen flux ranges of aerobic ammonium oxidation and denitrification reported in wetland soils. In addition, it is estimated that a total of 0.14 g CH4 m−2 per year could be oxidized via the n-damo process, while this rate is at the lower end of the aerobic methane oxidation rates reported in wetland soils.  相似文献   

13.
Recurring seasonal patterns of microbial distribution and abundance in three third-order temperate streams within the southeast Pennsylvania Piedmont were observed over 4 years. Populations associated with streambed sediments and rocks (epilithon) were identified using terminal restriction length polymorphism (tRFLP) and sequencing of 16S rRNA genes selectively amplified with primers for the bacterial domain. Analyses of the relative magnitudes of tRFLP peak areas by using nonmetric multidimensional scaling resolved clear seasonal trends in epilithic and sediment populations. Oscillations between two dominant groups of epilithic genotypes, explaining 86% of the seasonal variation in the data set, were correlated with temperature and dissolved organic carbon. Sequences affiliated with epilithic phototrophs (cyanobacteria and diatom chloroplasts), a Rhodoferax sp., and a Bacillus species clustered in the summer, whereas sequences most closely related to “Betaproteobacteria” (putative Burkholderia sp.), and a putative cyanobacterium clustered in the fall/spring. The sediment genotypes also clustered into two groups, and these explained 85% of seasonal variation but correlated only with temperature. A summer tRFLP pattern was characterized by prevalence of “Betaproteobacteria,” “Gammaproteobacteria,” and a Bacillus sp., whereas the winter/spring pattern was characterized by phylotypes most closely related to “Firmicutes,” “Gammaproteobacteria,” and “Nitrospirae.” A close association between these headwater streams and their watersheds was suggested by the recovery of sequences related to microbial populations provisionally attributed to not only freshwaters but also terrestrial habitats.  相似文献   

14.
Microbial isolates are useful models for physiological and ecological studies and can also be used to reassemble genomes from metagenomic analyses. However, the phylogenetic diversity that can be found among cultured marine bacteria may vary significantly depending on the isolation. Therefore, this study describes a set of 136 bacterial isolates obtained by traditional isolation techniques from the Blanes Bay Microbial Observatory, of which seven strains have had the whole genome sequenced. The complete set was compared to a series of environmental sequences obtained by culture-independent techniques (60 DGGE sequences and 303 clone library sequences) previously obtained by molecular methods. In this way, each isolate was placed in both its “ecological” (time of year, nutrient limitation, chlorophyll and temperature values) context or setting, and its “phylogenetic” landscape (i.e. similar organisms that were found by culture-independent techniques, when they were relevant, and when they appeared). Nearly all isolates belonged to the Gammaproteobacteria, Alphaproteobacteria, or the Bacteroidetes (70, 40 and 20 isolates, respectively). Rarefaction analyses showed similar diversity patterns for sequences from isolates and molecular approaches, except for Alphaproteobacteria where cultivation retrieved a higher diversity per unit effort. Approximately 30% of the environmental clones and isolates formed microdiversity clusters constrained at 99% 16S rRNA gene sequence identity, but the pattern was different in Bacteroidetes (less microdiversity) than in the other main groups. Seventeen cases (12.5%) of nearly complete (98–100%) rRNA sequence identity between isolates and environmental sequences were found: nine in the Alphaproteobacteria, five in the Gammaproteobacteria, and three in the Bacteroidetes, indicating that cultivation could be used to obtain at least some organisms representative of the various taxa detected by molecular methods. Collectively, these results illustrated the largely unexplored potential of culturing on standard media for complementing the study of microbial diversity by culture-independent techniques and for obtaining phylogenetically distinct model organisms from natural seawater.  相似文献   

15.
Hydrostatic pressure is an important parameter influencing the distribution of microbial life in the ocean. In this study, the response of marine bacterial populations from surface waters to pressures representative of those under deep-sea conditions was examined. Southern California coastal seawater collected 5 m below the sea surface was incubated in microcosms, using a range of temperatures (16 to 3°C) and hydrostatic pressure conditions (0.1 to 80 MPa). Cell abundance decreased in response to pressure, while diversity increased. The morphology of the community also changed with pressurization to a predominant morphotype of small cocci. The pressure-induced community changes included an increase in the relative abundance of Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Flavobacteria largely at the expense of Epsilonproteobacteria. Culturable high-pressure-surviving bacteria were obtained and found to be phylogenetically similar to isolates from cold and/or deep-sea environments. These results provide novel insights into the response of surface water bacteria to changes in hydrostatic pressure.  相似文献   

16.
Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists; however, their distributions are rarely determined in tandem. Here we have examined the vertical distribution of AOA and anammox bacteria through the Arabian Sea oxygen minimum zone (OMZ), one of the most intense and vertically exaggerated OMZs in the global ocean, using a unique combination of intact polar lipid (IPL) and gene-based analyses, at both DNA and RNA levels. To screen for AOA-specific IPLs, we developed a high-performance liquid chromatography/mass spectrometry/mass spectrometry method targeting hexose-phosphohexose (HPH) crenarchaeol, a common IPL of cultivated AOA. HPH-crenarchaeol showed highest abundances in the upper OMZ transition zone at oxygen concentrations of ca. 5 μ, coincident with peaks in both thaumarchaeotal 16S rDNA and amoA gene abundances and gene expression. In contrast, concentrations of anammox-specific IPLs peaked within the core of the OMZ at 600 m, where oxygen reached the lowest concentrations, and coincided with peak anammox 16S rDNA and the hydrazine oxidoreductase (hzo) gene abundances and their expression. Taken together, the data reveal a unique depth distribution of abundant AOA and anammox bacteria and the segregation of their respective niches by >400 m, suggesting no direct coupling of their metabolisms at the time and site of sampling in the Arabian Sea OMZ.  相似文献   

17.
Chemolithoautotrophic nitrite-oxidizing bacteria (NOB) are key players in global nitrogen and carbon cycling. Members of the phylum Nitrospinae are the most abundant, known NOB in the oceans. To date, only two closely affiliated Nitrospinae species have been isolated, which are only distantly related to the environmentally abundant uncultured Nitrospinae clades. Here, we applied live cell sorting, activity screening, and subcultivation on marine nitrite-oxidizing enrichments to obtain novel marine Nitrospinae. Two binary cultures were obtained, each containing one Nitrospinae strain and one alphaproteobacterial heterotroph. The Nitrospinae strains represent two new genera, and one strain is more closely related to environmentally abundant Nitrospinae than previously cultured NOB. With an apparent half-saturation constant of 8.7 ± 2.5 µM, this strain has the highest affinity for nitrite among characterized marine NOB, while the other strain (16.2 ± 1.6 µM) and Nitrospina gracilis (20.1 ± 2.1 µM) displayed slightly lower nitrite affinities. The new strains and N. gracilis share core metabolic pathways for nitrite oxidation and CO2 fixation but differ remarkably in their genomic repertoires of terminal oxidases, use of organic N sources, alternative energy metabolisms, osmotic stress and phage defense. The new strains, tentatively named “Candidatus Nitrohelix vancouverensis” and “Candidatus Nitronauta litoralis”, shed light on the niche differentiation and potential ecological roles of Nitrospinae.Subject terms: Water microbiology, Microbial ecology, Biogeochemistry  相似文献   

18.
The bacterial community associated with skin lesions of the sea urchin Tripneustes gratilla was investigated using 16S ribosomal RNA gene cloning and fluorescent in situ hybridization (FISH). All clones were classified in the Alphaproteobacteria, Gammaproteobacteria and Cytophaga-Flexibacter-Bacteroides (CFB) bacteria. Most of the Alphaproteobacteria were related to the Roseobacter lineage and to bacteria implicated in marine diseases. The majority of the Gammaproteobacteria were identified as Vibrio while CFB represented only 9% of the total clones. FISH analyses showed that Alphaproteobacteria, CFB bacteria and Gammaproteobacteria accounted respectively for 43%, 38% and 19% of the DAPI counts. The importance of the methods used is emphasized.  相似文献   

19.
Anaerobic ammonium-oxidizing (anammox) bacteria have the unique ability to synthesize fatty acids containing linearly concatenated cyclobutane rings, termed “ladderane lipids.” In this study we investigated the effect of temperature on the ladderane lipid composition and distribution in anammox enrichment cultures, marine particulate organic matter, and surface sediments. Under controlled laboratory conditions we observed an increase in the amount of C20 [5]-ladderane fatty acids compared with the amount of C18 [5]-ladderane fatty acids with increasing temperature and also an increase in the amount of C18 [5]-ladderane fatty acids compared with the amount of C20 [5]-ladderane fatty acids with decreasing temperature. Combining these data with results from the natural environment showed a significant (R2 = 0.85, P = <0.0001, n = 121) positive sigmoidal relationship between the amounts of C18 and C20 [5]-ladderane fatty acids and the in situ temperature; i.e., there is an increase in the relative abundance of C18 [5]-ladderane fatty acids at lower temperatures and vice versa, particularly at temperatures between 12°C and 20°C. Novel shorter (C16) and longer (C22 to C24) ladderane fatty acids were also identified, but their relative amounts were small and did not change with temperature. The adaptation of ladderane fatty acid chain length to temperature changes is similar to the regulation of common fatty acid composition in other bacteria and may be the result of maintaining constant membrane fluidity under different temperature regimens (homeoviscous adaptation). Our results can potentially be used to discriminate between the origins of ladderane lipids in marine sediments, i.e., to determine if ladderanes are produced in situ in relatively cold surface sediments or if they are fossil remnants originating from the warmer upper water column.Anaerobic ammonium-oxidizing (anammox) bacteria possess the unique ability to oxidize NH4+ with NO2 to N2 under anoxic conditions (42). Since the discovery of the anammox process in a wastewater treatment plant in the Netherlands (21), studies have indicated that anammox bacteria are omnipresent in low-oxygen environments around the world. Anammox therefore forms an important link in both the oceanic (4, 7, 17, 18, 31) and freshwater (14, 33) nitrogen cycles. Unlike other Planctomycetes, anammox bacteria contain a unique “organelle” called the anammoxosome (19, 37, 44-46). The membrane of this compartment contains unusual “ladderane” lipids (37). The core ladderane lipids consist of C18 and C20 fatty acids containing either 3 or 5 linearly concatenated cyclobutane rings, which are ester bound to a glycerol backbone or ether bound as alkyl chains (35). In addition, the intact polar lipids containing the core lipid structures may have different types of polar head groups, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), or phosphatidylglycerol (PG) (1, 22). In silico density simulation modeling experiments with a ladderane lipid-containing membrane (glycerol-bound mixed ether-ester containing both ladderane moieties) have indicated that ladderane lipids could provide a denser cell membrane than conventional membrane lipids (37). Since the anammoxosome appears to be impenetrable to fluorophores, the ladderane membrane could function in cell energy conservation (37, 44).Experimental evidence has shown that anammox bacteria isolated from wastewater treatment reactors grow over a wide range of temperatures (20 to 43°C) and have an optimum temperature of about 35°C (39). In the natural environment the anammox process has been reported to occur at temperatures as low as −2.5°C in sea ice (5, 26) and as high as 70°C in hot springs and hydrothermal vent areas (3, 12). Furthermore, “Candidatus Scalindua spp.” has been successfully enriched from marine sediment (Gullmarsfjord, Sweden) in sequencing batch reactors at temperatures of 15 and 20°C (43). In other bacteria containing common fatty acids temperature adaptation can be achieved by (among other things) modifying the composition of the membrane bilayers to deal with alterations in membrane viscosity due to changes in temperature. This process has been well documented and is termed “homeoviscous adaptation”; i.e., the fatty acid composition is changed to maintain membrane fluidity (23, 27, 34, 40). Currently, it is not known how anammox bacteria, with their highly unusual ladderane lipids, react to temperature. To investigate this, we analyzed the ladderane lipid composition of anammox bacteria grown at different temperatures in sequencing batch reactors and in samples from different natural environments covering a wide range of temperatures.  相似文献   

20.
Fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization with 16S rRNA-targeted oligonucleotide probes were used to investigate the phylogenetic composition of a marine Arctic sediment (Svalbard). FISH resulted in the detection of a large fraction of microbes living in the top 5 cm of the sediment. Up to 65.4% ± 7.5% of total DAPI (4′,6′-diamidino-2-phenylindole) cell counts hybridized to the bacterial probe EUB338, and up to 4.9% ± 1.5% hybridized to the archaeal probe ARCH915. Besides δ-proteobacterial sulfate-reducing bacteria (up to 16% 52) members of the Cytophaga-Flavobacterium cluster were the most abundant group detected in this sediment, accounting for up to 12.8% of total DAPI cell counts and up to 6.1% of prokaryotic rRNA. Furthermore, members of the order Planctomycetales accounted for up to 3.9% of total cell counts. In accordance with previous studies, these findings support the hypothesis that these bacterial groups are not simply settling with organic matter from the pelagic zone but are indigenous to the anoxic zones of marine sediments. Members of the γ-proteobacteria also constituted a significant fraction in this sediment (6.1% ± 2.5% of total cell counts, 14.4% ± 3.6% of prokaryotic rRNA). A new probe (GAM660) specific for sequences affiliated with free-living or endosymbiotic sulfur-oxidizing bacteria was developed. A significant number of cells was detected by this probe (2.1% ± 0.7% of total DAPI cell counts, 13.2% ± 4.6% of prokaryotic rRNA), showing no clear zonation along the vertical profile. Gram-positive bacteria and the β-proteobacteria were near the detection limit in all sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号