首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of sulfur to iron-grown Thiobacillus ferrooxidans resulted in a rapid inhibition in the rates of protein synthesis and RNA synthesis. The inhibition of both functions was measured within 15 to 30 min and was maximal between 70 and 90% compared to the iron-grown controls. DNA synthesis, carbon dioxide fixation, and short-term ferrous oxidation rates of the bacteria growing on ferrous ions were not effected by sulfur addition, indicating that the sulfur addition was not perturbing general cellular energy metabolism. The inhibition caused by sulfur mimicked the effect of the RNA synthesis inhibitor, rifampicin, which inhibited both RNA and protein synthesis, but did not correspond with the translational inhibitor, chloramphenicol, which inhibited only protein synthesis in the first hour. Since chloramphenicol pretreatment did not block the sulfur effect, the inhibition of RNA synthesis following sulfur addition was not mediated through protein synthesis.  相似文献   

2.
1. The antibiotic lomofungin was found to be a potent inhibitor of both DNA and RNA synthesis in Saccharomyces cerevisiae. Under selected growth conditions inhibition of DNA synthesis by the drug preceded inhibition of RNA synthesis. 2. Although in general lomofungin inhibited synthesis of ribosomal RNA and polydisperse RNA more effectively than that of low-molecular-weight RNA, under certain conditions the drug inhibited almost completely synthesis of both 4S and 5S RNA. 3. Inhibition of both RNA and DNA synthesis may be explained if RNA synthesis is required for DNA synthesis in yeast. Alternatively, lomofungin, in addition to interacting with DNA-dependent RNA polymerase, might interfere with a component(s) of the DNA-synthetic apparatus. The drug may thus prove to be of considerable value in studies of DNA synthesis in eukaryotes.  相似文献   

3.
4.
Bolognesi, D. P. (Rensselaer Polytechnic Institute, Troy, N.Y.), and D. E. Wilson. Inhibitory proteins in the Newcastle disease virus-induced suppression of cell protein synthesis. J. Bacteriol. 91:1896-1901. 1966.-Infection by Newcastle disease virus brings about a rapid and marked inhibition of cell protein synthesis (CPS) in chick embryo fibroblast monolayers. The block to CPS is initiated about 5 hr after infection, and by 9 hr about 85% of the host protein synthesis is shut off. Azauridine (3 mg/ml), a ribonucleic acid (RNA) synthesis inhibitor, prevents the virus-induced inhibition of CPS when added at the time of infection; but it does not prevent the inhibition when added at 3 hr after infection. When puromycin (60 mug/ml), a protein synthesis inhibitor, was added at 3.5 hr after infection, viral RNA was synthesized in normal amounts, but the virus-induced inhibition of CPS was prevented. Actinomycin D added at the time of infection does not, however, prevent the virus-induced inhibition of CPS. The results of these experiments indicate that proteins synthesized during Newcastle disease virus replication are responsible for the inhibition of host-cell protein synthesis. The synthesis of these inhibitory proteins depends on the prior synthesis of viral RNA.  相似文献   

5.
《FEBS letters》1985,190(1):109-114
When rat liver nuclear chromatin was sonicated in buffer containing 0.35 M (NH4)SO4 to release the engaged RNA polymerases, a potent inhibitor was also released. This inhibitor elicited dramatic inhibition of RNA synthesis regardless of whether the free or engaged RNA polymerase was used. On further analysis, it became apparent that the site of inhibition was on the DNA template, not on the enzyme. This inhibitor could be extracted into 0.25 N HCl by the standard procedure for the isolation of histones. This acid-soluble inhibitor, showing typical histone band on gel, was RNase A and DNase I resistant, but was sensitive to both pronase and snake venom phosphodiesterase digestion, as well as to 0.1 N KOH hydrolysis. Furthermore, when [14C]adenine labeled poly-ADP-ribosylated histones were digested by snake venom phosphodiesterase, the release of radioactivity was in parallel to the loss of inhibitor activity. We conclude that the inhibitor substances are poly-ADP-ribosylated histones and propose that the poly-ADP-ribosylated histones rather than the histones are the natural suppressors of the gene.  相似文献   

6.
Pyran copolymer, a potent inhibitor of DNA-dependent RNA polymerase from Escherichia coli, prevented polyribonucleotide synthesis by blocking both the initiation and elongation steps. The inhibition was noncompetitive with respect to template and nucleotide triphosphate substrates. Template binding and the stability of the nascent RNA chain were not affected by the inhibitor.  相似文献   

7.
The inhibition of the RNA polymerase-catalyzed synthesis of RNA by daunomycin was examined. Saturation binding of daunomycin to the template leads, as expected, to complete inhibition of RNA synthesis as a result of daunomycin interference with enzyme-template interactions. However at concentrations of the inhibitor below saturation formation of the enzyme-template complex remains remarkably undisturbed, while both the transformation of this complex to an elongating complex and the elongation of the nacsent RNA chains are substantially inhibited. Clearly, daunomycin interferes with a number of different substeps of RNA synthesis and inhibits the synthesis by different mechanisms depending on the amount of inhibitor bound to the template. Elucidation of the mechanism of inhibition at low daunomycin concentrations may be a prerequisite for a better understanding of the mechanism of the pharmacological action of the drug.  相似文献   

8.
Dipyridamole is an effective inhibitor of cardiovirus growth in cell culture. The effects of dipyridamole on mengovirus replication in vivo and in vitro were examined in the hope the drug could be used as an experimental analog of the poliovirus inhibitor guanidine. Guanidine selectively inhibits poliovirus RNA synthesis but not RNA translation, and as such, has been a valuable research tool. Although guanidine does not inhibit cardiovirus infection, a compound with similar discriminatory characteristics would be experimentally useful for parallel work with these viruses. We found that mengovirus plaque formation in HeLa or L cells was inhibited nearly 100% by the presence of 80 muM dipyridamole. The inhibitory effect was reversible and targeted an early step in the replication cycle. Studies with luciferase-expressing mengovirus replicons showed that viral protein synthesis was unaffected by dipyridamole, and rather, RNA synthesis was the step targeted by the drug. This assessment was confirmed by direct analyses of viral translation and RNA synthesis activities in a Krebs-2-derived in vitro system that supported complete, infectious cardiovirus replication. In Krebs extracts, dipyridamole specifically inhibited viral RNA synthesis to more than 95%, with no concomitant effect on viral protein translation or polyprotein processing. The observed inhibition reversibly affected an early step in both minus-strand and plus-strand RNA synthesis, although inhibition of plus-strand synthesis was more profound than that of minus-strand synthesis. We conclude that dipyridamole is a potent experimental tool that readily distinguishes between cardiovirus translation and RNA replication functions.  相似文献   

9.
The effect of ethionine on ribonucleic acid synthesis in rat liver.   总被引:2,自引:0,他引:2       下载免费PDF全文
1. By 1h after administration of ethionine to the female rat the appearance of newly synthesized 18SrRNA in the cytoplasm is completely inhibited. This is not caused by inhibition of RNA synthesis, for the synthesis of the large ribosomal precursor RNA (45S) and of tRNA continues. Cleavage of 45S RNA to 32S RNA also occurs, but there was no evidence for the accumulation of mature or immature rRNA in the nucleus. 2. The effect of ethionine on the maturation of rRNA was not mimicked by an inhibitor of protein synthesis (cycloheximide) or an inhibitor of polyamine synthesis [methylglyoxal bis(guanylhydrazone)]. 3. Unlike the ethionine-induced inhibition of protein synthesis, this effect was not prevented by concurrent administration of inosine. A similar effect could be induced in HeLa cells by incubation for 1h in a medium lacking methionine. The ATP concentration in these cells was normal. From these two observations it was concluded that the effect of etionine on rRNA maturation is not caused by an ethionine-induced lack of ATP. It is suggested that ethionine, by lowering the hepatic concentration of S-adenosylmethionine, prevents methylation of the ribosomal precursor. The methylation is essential for the correct maturation of the molecule; without methylation complete degradation occurs.  相似文献   

10.
11.
A heat-stable, low-molecular-weight inhibitor of protein synthesis is formed on incubation of haemin-supplemented rabbit reticulocyte lysates with ATP and double-stranded RNA (dsRNA). It inhibits the translation of both added encephalomyocarditis virus RNA (EMC RNA) and endogeneous messenger RNA in reticulocyte lysates and mouse L-cell extracts. The enzyme responsible for the synthesis of the inhibitor binds to dsRNA and can be purified on a column of poly(I).poly (C) bound to an inert support. The highly purified enzyme in its stable column-bound state can be conveniently employed to synthesise the inhibitor and to label it with [3H]ATP, or [alpha-32P]ATP or [gamma-32P]ATP as substrate. The radioactive inhibitor synthesised in this way with material from rabbit reticulocyte lysates shows the same spectrum of resistance and sensitivity to alkali and a variety of enzymes as corresponding material similarly synthesised with extracts from interferon-treated mouse L-cells. The inhibitors from the two systems have comparable absorbance spectra, are chromatographically and electrophoretically indistinguishable and are apparently identical in specific activity in the inhibition of protein synthesis in the cell-free system. The inhibitor is also formed on inhibition of protein synthesis by dsRNA in reticulocyte lysates. On comparison of the spectrum of polypeptide products synthesised in response to EMC RNA in the reticulocyte lysate, the effects of the inhibitor or dsRNA were similar: a distinctly different effect was obtained with the haemin-controlled repressor, a known inhibitor of initiation. The significance of these results with respect to the mechanism of action of the inhibitor and its role in the inhibition observed in response to dsRNA is discussed.  相似文献   

12.
Aminonucleoside (AMS) inhibited the cell cycle of human lung fibroblasts at a point in G1 phase and at another point in G2 phase. Even when this inhibition was fully established, DNA synthesis and mitosis which were in progress proceeded normally. Inhibition of RNA synthesis in the cultures preceded the effects on DNA synthesis and mitosis, but inhibition of protein synthesis could not be detected. These points of potential inhibition do not exist in the cell cycle of HeLa cell, or are not affected by aminonucleoside. Here inhibition of cell proliferation by AMS was less marked, and when inhibition eventually occurred it was not specific for any point of the cell cycle. The rate of entry of the inhibitor was similar in both types of cell.  相似文献   

13.
14.
Poxvirus replication is inhibited by streptovaricin. The most readily observed effect is the inhibition of incorporation of [3H]uridine into viral mRNA, suggesting an inhibition of RNA synthesis. Streptovaricin also inhibits the incorporation of [3H]uridine into cellular RNA but not as severely as viral RNA. On the other hand, [3H]uridine incorporation into the RNA of Semliki Forest virus (SFV), which contains a positive strand RNA genome, does not seem to be inhibited by streptovaricin. The inhibitory effect of streptovaricin is completely reversible after removal of the inhibitor. In addition to inhibiting RNA synthesis, streptovaricin also may inhibit the methylation of cellular RNA. Viral RNA is stable in the presence of streptovaricin.  相似文献   

15.
5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) inhibits RNA synthesis in L-929 cells (mouse fibroblast line) and HeLa cells (human epitheloid carcinoma line) within 2 min of addition of the compound to the medium. By removing DRB from the medium, the inhibition is promptly and completely reversed after treatment of cells for as long as 1 h or even longer. The inhibitory effect of DRB on the overall rate of RNA synthesis is similar in L and HeLa cells and is markedly concentration-dependent in the low dose range (5-20 muM or 1.6-6.4 mug/ml), but not as higher concentrations of DRB. At a concentration of 12 muM, DRB has a highly selective inhibitory effect on the synthesis of nuclear heterogenous RNA in L cells. At higher concentrations, there is also inhibition of 45 S ribosomal precursor RNA synthesis, but at all concentrations the effect on heterogeneous RNA synthesis in L cells in considerably greater than that on preribosomal RNA synthesis. In HeLa cells, too, DRB has a selective effect on heterogeneous RNA synthesis, but quantitatively the selectivity of action is somewhat less pronounced. In both L and HeLa cells, the inhibition of synthesis of nuclear heterogeneous RNA is incomplete even at very high concentrations of DRB (150 muM). Thus, while DRB is a selective inhibitor of nuclear heterogeneous RNA synthesis, not all such RNA synthesis is sensitive to inhibition. It is proposed that messenger precursor RNA synthesis may largely be sensitive to inhibition by DRB. In short-term experiments, DRB has no effect on protein synthesis in L or HeLa cells. DRB has a slight to moderate inhibitory effect on uridine uptake into L cells and a moderate to marked effect on uptake of uridine into HeLa cells.  相似文献   

16.
A ribonucleoprotein complex isolated from rabbit thymus nuclear lysates was found to be an inhibitor of DNA-dependent RNA polymerase II. The inhibition appeared to be of a competitive type and was completely reversed by high concentration of DNA. Highest inhibition was observed when enzyme and complex were preincubated before addition of DNA while there was little inhibition after enzyme had started synthesis on the DNA template. The RNA isolated from the complex was equally inhibitory and was a more effective inhibitor than either tRNA or rRNA.  相似文献   

17.
18.
The mode of action of the antibiotic pseudomonic acid has been studied in Escherichia coli. Pseudomonic acid strongly inhibits protein and RNA synthesis in vivo. The antibiotic had no effect on highly purified DNA-dependent RNA polymerase and showed only a weak inhibitory effect on a poly(U)-directed polyphenylalanine-forming ribosomal preparation. Chloramphenicol reversed inhibition of RNA synthesis in vivo. Pseudomonic acid had little effect on RNA synthesis in a regulatory mutant, E. coli B AS19 RC(rel), whereas protein synthesis was strongly inhibited. In pseudomonic acid-treated cells, increased concentrations of ppGpp, pppGpp and ATP were observed, but the GTP pool size decreased, suggesting that inhibition of RNA synthesis is a consequence of the stringent control mechanism imposed by pseudomonic acid-induced deprivation of an amino acid. Of the 20 common amino acids, only isoleucine reversed the inhibitory effect in vivo. The antibiotic was found to be a powerful inhibitor of isoleucyl-tRNA synthetase both in vivo and in vitro. Of seven other tRNA synthetases assayed, only a weak inhibitory effect on phenylalanyl-tRNA synthetase was observed; this presumably accounted for the weak effect on polyphenylalanine formation in a ribosomal preparation. Pseudomonic acid also significantly de-repressed threonine deaminase and transaminase B activity, but not dihydroxyacid dehydratase (isoleucine-biosynthetic enzymes) by decreasing the supply of aminoacylated tRNA(Ile). Pseudomonic acid is the second naturally occurring inhibitor of bacterial isoleucyl-tRNA synthetase to be discovered, furanomycin being the first.  相似文献   

19.
Hepatitis C virus (HCV) polymerase activity is essential for HCV replication. Targeted screening of nucleoside analogs identified R1479 (4'-azidocytidine) as a specific inhibitor of HCV replication in the HCV subgenomic replicon system (IC(50) = 1.28 microM) with similar potency compared with 2'-C-methylcytidine (IC(50) = 1.13 microM). R1479 showed no effect on cell viability or proliferation of HCV replicon or Huh-7 cells at concentrations up to 2 mM. HCV replicon RNA could be fully cleared from replicon cells after prolonged incubation with R1479. The corresponding 5'-triphosphate derivative (R1479-TP) is a potent inhibitor of native HCV replicase isolated from replicon cells and of recombinant HCV polymerase (NS5B)-mediated RNA synthesis activity. R1479-TP inhibited RNA synthesis as a CTP-competitive inhibitor with a K(i) of 40 nM. On an HCV RNA-derived template substrate (complementary internal ribosome entry site), R1479-TP showed similar potency of NS5B inhibition compared with 3'-dCTP. R1479-TP was incorporated into nascent RNA by HCV polymerase and reduced further elongation with similar efficiency compared with 3'-dCTP under the reaction conditions. The S282T point mutation in the coding sequence of NS5B confers resistance to inhibition by 2'-C-MeATP and other 2'-methyl-nucleotides. In contrast, the S282T mutation did not confer cross-resistance to R1479.  相似文献   

20.
The effects of 3-deazaaristeromycin and 3-deazaadenosine on RNA methylation and synthesis were examined in the mouse macrophage cell line, RAW264. S-Adenosylhomocysteine accumulated in cells incubated with 3-deazaaristeromycin while S-3-deazaadenosylhomocysteine was the major product in cells incubated with 3-deazaadenosine and homocysteine thiolactone. RNA methylation was inhibited to a similar extent by the accumulation of either S-adenosylhomocysteine or S-3-deazaadenosylhomocysteine, with S-adenosylhomocysteine being a slightly better inhibitor. In mRNA, the synthesis of N6-methyladenosine and N6-methyl-2'-O-methyladenosine were inhibited to the greatest extent, while the synthesis of 7-methylguanosine and 2'-O-methyl nucleosides were inhibited to a lesser extent. Incubation of cells with 100 microM 3-deazaaristeromycin or with 10 microM 3-deazaadenosine and 50 microM homocysteine thiolactone produced little inhibition of mRNA synthesis, even though mRNA methylation was inhibited. In contrast, mRNA synthesis was greatly inhibited by treatment of cells with 100 microM 3-deazaadenosine and the inhibition of synthesis was not correlated with an inhibition of methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号