首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Richard Hooley 《Planta》1982,154(1):29-40
Viable, long-lived, gibberellic acid (GA3)-responsive protoplasts have, for the first time, been isolated from aleurone layers of mature wild oat (Avena fatua L.) grain. More than 90% of the cells of aleurone layers are recovered as protoplasts, and these respond to treatment with GA3 in essentially the same manner as the tissue from which they were derived. Protoplasts become vacuolate during incubation in vitro and, although not dependent upon GA3, vacuolation is markedly stimulated by the hormone. Amylase and ribonuclease (RNase) are produced and secreted only in the presence of GA3 and only after lag periods of 3 d and 4 d respectively. The amounts of amylase produced and secreted are proportional to GA3 concentrations as low as 1.61·10-13 M. With increasing concentrations of mannitol in the culture medium both vacuolation and the GA3-induced production and secretion of enzymes are inhibited progressively, the latter being precluded by 0.6 M to 0.7 M mannitol.Abbreviations GA3 gibberellic acid3 - RNase ribonuclease  相似文献   

3.
The cell walls of barley (Hordeum vulgare var. Himalaya) aleurone layers undergo extensive degradation during the tissue's response to gibberellic acid. Previous work had shown that these cell walls consist almost entirely of arabinoxylan. In this study we show that gibberellic acid stimulates endo-β-1,4-xylanase activity in isolated aleurone layers. In addition, gibberellic acid enhances the activity of two glycosidases: β-xylopyranosidase and α-arabinofuranosidase. No gibberellic acid-stimulated cellulase activity was detected. Germination studies showed a similar pattern of enzyme development in intact seeds.  相似文献   

4.
Lin PP 《Plant physiology》1984,74(4):975-983
Polyamine metabolism and its relation to the induction of α-amylase formation in the aleurone layers of barley seeds (Hordeum vulgare cv Himalaya) in response to gibberellic acid (GA3) has been investigated. A high-performance liquid chromatographic system has been employed for qualitative and quantitative analyses of putrescine (Put), cadaverine (Cad), spermidine (Spd), spermine (Spm), and agmatine (Agm).

Active polyamine metabolism occurs in the aleurone cells of deembryonate barley half seeds during imbibition. The aleurone layers isolated from fully imbibed half seeds contain about 880 nanomoles of Put, 920 nanomoles of Spd, and 610 nanomoles of Spm as free form per gram tissue dry weight while the levels of Cad and Agm are relatively low. The polyamine levels do not change significantly in the aleurone layers in response to added GA3 (1.5 micromolar) during the 8-hour lag period of the growth substance-induced formation of α-amylase. Also, the polyamine levels are not altered by the presence of abscisic acid (3 micromolar) which inhibits the enzyme induction by GA3. Kinetic studies show that both applied [U-14C]ornithine and [U-14C]arginine are primarily incorporated into Put during 2 hours of incubation, but the incorporation is not significantly affected by added GA3. Additionally, added GA3 does not affect the uptake and turnover of [1,4-14C]Put, nor does it affect the conversion of Put → Spd or Spd → Spm. Treatment of the aleurone layers with GA3 for 2 hours results in no significant changes in the total activities or the specific activities of ornithine decarboxylase and arginine decarboxylase.

Experiments with polyamine synthesis inhibitors demonstrate that the level of Spd in the aleurone layers could be substantially reduced by the presence of methylglyoxal-bis(guanylhydrazone) (MGBG) during imbibition. MGBG treatment does not affect in vivo incorporation of [8-14C] adenosine into ATP. The lower the level of Spd the less α-amylase formation is induced by added GA3. The reduction of GA3-induced α-amylase formation by MGBG treatment can be either completely or partially overcome by added Spd, depending upon the concentration of MGBG used in the imbibition medium. The results indicate that the early action of GA3, with respect to induction of α-amylase formation in barley aleurone layers, appears to be not on polyamine metabolism. However, polyamines, particularly Spd, may be involved in regulation of the growth substance-dependent enzyme induction.

  相似文献   

5.
T J Mozer 《Cell》1980,20(2):479-485
The patterns of protein synthesis in barley aleurone layers treated with gibberellic acid (GA3) and abscisic acid (ABA) are compared with the patterns observed in wheat germ in vitro translation assays directed by RNA isolated from similarly treated layers. When used alone, GA3 and ABA both induce the formation of new translatable mRNAs and cause new proteins to be synthesized. The effects of GA3 are more dramatic than those of ABA. In GA3-treated tissues, overall protein synthesis is redirected to produce large quantities of α-amylase and a few other GA3-induced proteins, while other protein synthesis is reduced or stopped. Large amounts of new translatable mRNA for α-amylase are also induced such that the dominant in vitro translation product is α-amylase. These changes are blocked by the simultaneous addition of ABA to the tissue. In GA3 plus ABA-treated layers, few changes in protein synthesis in vivo are observed when compared to protein synthesis in untreated tissue, although the induction of mRNA for α-amylase and the other GA3-induced mRNAs does occur. This indicates that ABA does not interfere with GA3 induction of translatable mRNAs but prevents the translation of these mRNAs in vivo. Thus ABA and potentially GA3 regulate the translation of proteins in vivo in barley aleurone layers.  相似文献   

6.
A lysophospholipase (LPL) activity appears in the aleurone of barley (Hordeum vulgare L. cv Himalaya) half seeds during imbibition on moist agar. Secretion of LPL by half seeds is promoted by GA3; the increase in secretory rate is almost linear from 10−10 to 10−6 molar GA3. LPL activity is likewise promoted in isolated aleurone layers by GA3. Its secretion into the incubation medium requires the continued presence of GA3 and commences after a 10 to 14 hour lag period when 10 millimolar Ca2+ is present. In the absence of Ca2+, the lag period remains unchanged but attainment of the maximum secretory rate is delayed. Ca2+ alone has very little effect either on LPL activity accumulated in the aleurone layer or in the surrounding medium. However, 50 millimolar Ca2+ together with GA3 dramatically increase the level of secreted activity and of total (accumulated and secreted) activity.

The metabolic inhibitors cycloheximide and actinomycin D inhibit the accumulation of LPL activity in the aleurone and also the secreted activity. Actinomycin D added after the lag period results in a much lower inhibition. The increase in LPL activity in response to GA3 occurs as a result of de novo synthesis; LPL activity from barley half seeds incubated in 80% D2O in the presence of GA3 undergoes a shift to higher density compared with the activity from similar controls incubated in H2O. The characteristics of the GA3 enhancement of LPL activity are compared specifically with α-amylase and generally with other GA3-controlled hydrolases.

  相似文献   

7.
8.
Dormant and nondormant isogenic barley grains were obtained by maturing grains under short day (SD) or long day (LD) growth conditions, respectively. Hormonal responses of isolated embryos and aleurone layers from these grains were studied. Addition of abscisic acid (ABA) reduced germination rate and percentage of embryos, and induced Rab (ABA-responsive) mRNA in aleurone layers from both types of grain. Embryos and aleurone layers from dormant grains responded stronger to ABA than those from nondormant grains. Gibberellic acid (GA3) increased the germination rate and percentage of embryos from dormant grains and counteracted the ABA-induced inhibition of embryo germination. GA3 did not affect the amount of Rab mRNA in aleurone layers, suggesting that expression of the Rab gene has no direct correlation with germination. The stronger response of embryos and aleurone layers from dormant grains to ABA may not be explained by higher endogenous ABA levels, but might be due to differences in hormone signal transduction. Aleurone protoplasts from dormant grains had a higher cytosolic pH than those from nondormant grains. To inhibit the ABA-induced Rab mRNA, a much higher concentration of weak acid was required for aleurone layers from dormant grains than for those from nondormant grains. A possible difference in ABA signal transduction between dormant and nondormant grains is discussed.  相似文献   

9.
Methods were developed and extended to enable the incubation of isolated barley (Hordeum vulgare cv. Himalaya) aleurone layers under carefully controlled conditions for studies on effects of ethylene on amylase synthesis and release. When layers in medium containing gibberellic acid were exposed to ethylene, the synthesis and release of amylase were altered relative to layers maintained in an ethylene-free environment. These ethylene effects were detected at the smallest concentration used, 0.041 nl/ml, indicating a very low threshold value. During the initial 24 h, ethylene accelerated both the appearance of total amylase activity, and the release of this activity from the aleurone layers. On the other hand, ethylene reduced the total amount of amylase activity that was recovered from samples after 48 and 72 h.  相似文献   

10.
11.
Firn RD  Kende H 《Plant physiology》1974,54(6):911-915
An analysis of the lipids in isolated barley (Hordeum vulgare L.) aleurone layers after 12 hours incubation in the presence or absence of gibberellic acid showed no quantitative or qualitative changes. Longer incubation periods resulted in some lipid degradation which was greater in the presence of 1 μm gibberellic acid.  相似文献   

12.
13.
14.
15.
Summary Aleurone layers of barley contain large amounts of a soluble oligosaccharide which was identified as sucrose (30–40 g/mg fresh weight). Treatment of the layers with gibberellic acid (GA3) causes the release of sucrose from the cells. This release requires the participation of metabolic processes, including protein synthesis. When embryoless half-seeds are incubated sucrose accumulates in the aleurone layers, but when seeds are germinated the sucrose content of the aleurone layers declines. Labeling experiments with radioactive glucose and fructose show that aleurone layers continuously synthesize sucrose and that the release, but not the synthesis of sucrose is enhanced by GA3.  相似文献   

16.
Gibberellins are growth hormones produced in the embryo of grain released during germination. They promote growth through the production of enzymes in the aleurone layer surrounding the endosperm. These enzymes then diffuse into the endosperm and produce the sugars required by the growing acrospire. Here we model the transport of gibberellins into and along the aleurone layer, the consequent production of enzymes, and their transport into the endosperm. Simple approximate solutions of the governing equations are obtained which suggest that the enzymes are released immediately behind a gibberellin front which travels with almost constant speed along the aleurone layer. The model also suggests that this propagation speed is determined primarily by conditions near the scutellum-aleurone junction, which may enable the embryo to actively control the germination process.  相似文献   

17.
The localization of acid phosphatase (EC 3.1.3.2) in aleurone layers of barley (Hordeum vulgare L. cv. Himalaya) grains was studied. Phosphatase (EC 3.1.3.26) activity, assayed with phytic acid as the substrate, is present in the dry grain at low leveis and increases during incubation in H2O at 25°C for three days. When aleurone layers are isolated from imbibed grain and incubated for 18 h in buffer with or without 50 μM gibberellic acid (GA3), the level of extractable phosphatase activity increases two- to threefold, and phosphatase is released into the medium. GA, promotes the release of phosphatase activity: aleurone layers incubated in GA, release twice as much phosphatase as layers incubated in buffer. Nine isoenzymes of phosphatase are found in aleurone layers of barley by non-denaturing polyacrvlamide gel electropho-resis. Six of these forms, isoenzymes 1,2,3,5,6 and 8, can be extracted from dry tissue, and after three days of imbibition in H2O an additional isoenzyme, isoenzyme 9, is found in aleurone extracts. When isolated aleurone layers are incubated for a further 22 h in buffer with or without GA3, isoenzyme 7 is found and yet another form, isoenzyme 4, is found in layers incubated in GA3. Eight isoenzymes are released from aleurone layers into the incubation medium. Isoenzymes 5 and 6 are released in buffer both with and without GA3, even when cycloheximide is present; cycloheximide inhibits the release of the other isoenzymes. Isoenzymes 1-4, 7 and 8, on the other hand, are secreted into the incubation medium only when GA3, is present. Isoenzyme 9 is not released into the incubation medium. Acid phosphatase activity was localized in aleurone tissue using cytochemical, cell fractionation, and enzymatic methods. Cytochemical localization of ATPase (EC 3.6.1.8) in aleurone tissue showed the presence of enzyme activity in cell wall, protein bodies, endoplasmic reticulum, Golgi apparatus, and mitochondria. Analysis of organelle fractions isolated by density gradient centrifugation showed that the activity of acid phosphatase isoenzymes 1, 2 and 3 was prominently associated with the phytin globoid of protein bodies, and analysis of the activity released from the cell wall by enzymatic digestion showed that it was almost exclusively isoenzymes 5 and 6.  相似文献   

18.
The sensitivity to gibberellic acid (GA3) of aleurone protoplasts isolated from a single harvest of an inbred line of Avena fatua seed that had been after-ripened over anhydrous CaCl2 at 25±2°C and 4±2°C for three years was assessed. Protoplasts isolated from aleurones of seed stored at 25°C produced substantially more -amylase in response to 10–7 M GA3 than those isolated from aleurones of seed stored at 4°C. The apparent difference in responsiveness does not appear to be due to a change in the duration of the lag phase between addition of GA3 and the production of -amylase. The dose response of aleurone protoplasts to GA3, measured as -amylase production, is complex and appears to have three phases. Protoplasts from seed stored at both temperatures respond appreciably to 10–14 M GA3. With increasing concentrations of GA3, up to 10–9 M, -amylase production increases similarly in protoplasts from both lots of seed, reaching a level approximately 2.7–3.8 times greater than when no GA3 is applied. GA3-induced -amylase production increases markedly as the concentration is raised from 10–9 M to 10–6 M, and the response then appears to be saturated. Over this part of the response curve protoplasts from the two seed lots differ markedly in their responsiveness to GA3. Those from seed stored at 25°C produce considerably more -amylase, >130-fold higher than the minus GA3 control, than those from seed stored at 4°C, <35-fold higher than the minus GA3 control. This apparent difference in the responsiveness of aleurone protoplasts to GA3 could be correlated with the loss of embryo dormancy in seed stored at 25°C. Seed stored at 4°C retained the dormancy characteristics present immediately after harvesting.  相似文献   

19.
Gibberellic acid (GA) enhances the synthesis of α-amylase and ribonuclease in isolated aleurone layers and this process is inhibited by abscisin. Removal of gibberellic acid in mid-course of α-amylase production results in a slowing down of α-amylase synthesis, suggesting a continued requirement of GA for enzyme synthesis. This is paralleled by a continuous requirement for RNA synthesis. Addition of 6-methylpurine or 8-azaguanine in mid-course results in an inhibition of α-amylase synthesis within 3 to 4 hours. However, actinomycin D added in mid-course is almost without effect. This is not due to its failure to enter the cells, because it does inhibit 14C-uridine incorporation at this stage. Addition of abscisin to aleurone layers which are synthesizing α-amylase results in an inhibition of this synthesis within 2 to 3 hours. Cycloheximide on the other hand inhibits enzyme synthesis immediately upon its addition. These data are consistent with the hypothesis that the expression of the GA effect requires the synthesis of enzyme-specific RNA molecules. The similarity in the kinetics of inhibition between abscisin on the one hand and 8-azaguanine or 6-methylpurine on the other suggests that abscisin may exert its action by inhibiting the synthesis of these enzyme-specific RNA molecules or by preventing their incorporation into an active enzyme-synthesising unit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号