首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The finite difference linearized Poisson-Boltzmann equation was solved for a segment of bilayer for two lipids (phosphatidylcholine dihydrate and phosphatidylethanolamine-acetic acid) in order to obtain the transbilayer electrostatic potential. Atomic coordinates derived from the crystal structures of these lipids were used, and partial changes were assigned to all atoms in the polar parts of the molecules. These calculations confirmed that a dipole potential exists in the uncharged hydrophobic interior of a bilayer. The phosphocholine and phosphoethanolamine groups make negative contributions to the internal potential, and the glycerol acyl esters make positive contributions, but the sum of these terms is negative. The water of hydration in phosphatidylcholine, and the acetic acid which is present in the phosphatidylethanolamine crystal structure, make positive contributions to the internal potential. It is concluded that the water of hydration in fully hydrated lipid bilayers is mainly responsible for the experimentally inferred positive sign of the internal potential.  相似文献   

2.
Making synaptic vesicles fuse with lipid bilayers.   总被引:3,自引:3,他引:0       下载免费PDF全文
  相似文献   

3.
Membrane stability is of central concern in many biology and biotechnology processes. It has been suggested that intramembrane electrostatic interactions play a key role in membrane stability. However, due primarily to a lack of supporting experimental evidence, they are not commonly considered in mechanical analyses of lipid membranes. In this paper, we use the micropipette aspiration technique to characterize the elastic moduli and critical tensions of lipid vesicles with varying surface charge. Charge was induced by doping neutral phosphatidylcholine vesicles with anionic lipids phosphatidylglycerol and phosphatidic acid. Measurements were taken in potassium chloride (moderate ion-lipid binding) and tetramethylammonium chloride (low ion-lipid binding) solutions. We show that inclusion of anionic lipid does not appreciably alter the areal dilation elasticity of lipid vesicles. However, the tension required for vesicle rupture decreases with increasing anionic lipid fraction and is a function of electrolyte composition. Using vesicles with 30% charged (i.e., unbound) anionic lipid, we measured critical tension reductions of 75%, demonstrating the important role of electrostatic interactions in membrane stability.  相似文献   

4.
A simple theory is developed that explains the formation of bilayers and vesicles and accounts quantitatively for many of their physical properties: Properties including vesicle size distributions and bilayer elasticity emerge from a unified theory that links thermodynamics, interaction free energy, and molelcular geometry. The theory may be applied to the analysis of more complicated membrane structures and mechanisms.  相似文献   

5.
6.
Maintenance of electrochemical potential gradients across lipid membranes is critical for signal transduction and energy generation in biological systems. However, because ions with widely varying membrane permeabilities all contribute to the electrostatic potential, it can be difficult to measure the influence of diffusion of a single ion type across the bilayer. To understand the electrodiffusion of H+ across lipid bilayers, we used a pH-sensitive fluorophore to monitor the lumenal pH in vesicles after a stepwise change in the bulk pH. In vesicles containing the ion channel gramicidin, the lumenal pH rapidly approached the external pH. In contrast, the lumen of intact vesicles showed a two stage pH response: an initial rapid change occurred over ~ 1 min, followed by a much slower change over ~ 24 h. We provide a quantitative interpretation of these results based on the Goldman–Hodgkin–Katz ion fluxes discharging the electrical capacitance of the bilayer membrane. This interpretation provides an estimate of the permeability of the membranes to Na+ and Cl ions of ~ 10− 8 cm/s, which is ~ 3 orders of magnitude faster than previous reports. We discuss possible mechanisms to account for this considerably higher permeability in vesicle membranes.  相似文献   

7.
Summary Typical channel-like current fluctuations were observed in planar lipid bilayers following brief exposure to large concentrations of lipid vesiclesdevoid of protein. Vesicles, formed by sonication of pure lipids suspended in 150mm salt solutions, were ejected 0.5 mm from a planar bilayer with a pipette. Over the next several minutes the bilayer conductance changed in ways usually considered to be indicative of reconstituted protein channels including step conductance changes (both up and down), flickering, ion selectivity, and inactivation. This observation demonstrates the need for caution in interpreting conductance changes which occur following ejection of channel-containing vesicles near a membrane.  相似文献   

8.
Biofunctional surfaces require advanced design and preparation to match the (bio)recognition ability of biological systems [1]. This requires combined topographic, chemical and visco-elastic surface patterns to match proteins at the nm scale and cells at the micrometer scale. One example of biochemical functionalization, presented here, and which is of both fundamental and application interest, is supported biomimectic (cell)membranes. Specifically we describe preparation and applications of supported phospholipid membranes, which can be made on certain surfaces from unilamellar, 25–200 nm vesicles. On SiO2 at normal pH and with neutral lipids, the vesicles first adsorb intact, and then undergo a phase transformation to a supported bilayer. We have studied the coverage-, vesicle size-, and T-dependence of this process [2], using QCM-D [3], AFM, and SPR. When SiO2 is replaced by TiO2, vesicles adsorb intact. A surface pre-covered with intact vesicles, can be AFM patterned into areas with bilayer, vesicles, and empty surface patches [4]. The results depend critically on AFM tip interaction with vesicle and bilayer, which has been modeled by Monte Carlo simulations [5]. These biomembranes are inert towards protein adsorption [6] and cell attachement [7], which opens up for various applications. Addition of functional molecules, allows sensor functions [8]. Another application is functionalized membranes for surface-specific (stem) cell interactions [9].  相似文献   

9.
10.
Molecular dynamics (MD) simulations complement experimental methods in studies of the structure and dynamics of lipid bilayers. The choice of algorithms employed in this computational method represents a trade-off between the accuracy and real calculation time. The largest portion of the simulation time is devoted to calculation of long-range electrostatic interactions. To speed-up evaluation of these interactions, various approximations have been used. The most common ones are the truncation of long-range interactions with the use of cut-offs, and the particle-mesh Ewald (PME) method. In this study, several multi-nanosecond cut-off and PME simulations were performed to establish the influence of the simulation protocol on the bilayer properties. Two bilayers were used. One consisted of neutral phosphatidylcholine molecules. The other was a mixed lipid bilayer consisting of neutral phosphatidylethanolamine and negatively charged phosphatidylglycerol molecules. The study shows that the cut-off simulation of a bilayer containing charge molecules generates artefacts; in particular the mobility and order of the charged molecules are vastly different from those determined experimentally. In the PME simulation, the bilayer properties are in general agreement with experimental data. The cut-off simulation of bilayers containing only uncharged molecules does not generate artefacts, nevertheless, the PME simulation gives generally better agreement with experimental data.  相似文献   

11.
Matrix vesicles (MVs), structures that accumulate Ca2+ during the initiation of mineral formation in growing bone, are rich in annexin V. When MVs are fused with planar phospholipid bilayers, a multiconductance Ca2+ channel is formed, with activity essentially identical to that observed when annexin V is delivered to the bilayer with phosphatidylserine liposomes. Ca2+ currents through this channel, from either MV or annexin V liposomes, are blocked by Zn2+, as is Ca2+ uptake by MV incubated in synthetic cartilage lymph. Blockage by Zn2+ was most effective when applied to the side containing the MV or liposomes. ATP and GTP differentially modulated the activity of this channel: ATP increased the amplitude of the current and the number of conductance states; GTP dramatically reduced the number of events and conductance states, leading to well-defined Ca2+ channel activity from either MV or the annexin V liposomes. In the distinctive effects of ATP, GTP, and Zn2+ on the Ca2+ channel activity observed in both the MV and the liposome systems, the common factor was the presence of annexin V. From this we conclude that Ca2+ entry into MV results from the presence of annexin V in these membrane-enclosed structures.  相似文献   

12.
Cholesteryl-phosphoryl-choline (CPC), a hybrid between cholesterol and lecithin, is incorporated into sonicated liposomes and erythrocyte membranes similarly to cholesterol. The effect of CPC on lipid microviscosity and degree of order is smaller, but not significantly than that of cholesterol. It is proposed that CPC may be employed as an efficient modulator of lipid dynamics.  相似文献   

13.
The excimer/monomer ratio of emission intensities (IE/IM) and the enhancement of the 0-0 vibronic transition in the fluorescence spectra of pyrene (PY) and 16-(1-pyrenyl)hexadecanoic acid (C16PY) were used to investigate the localization of PY in the bilayers of small unilamellar vesicles constituted of phosphatidylcholine (SUV-PC). First, from comparison of the fluorescence characteristics of PY in water with those of PY incorporated into the SUV-PC membranes, we concluded that the probe is incorporated preferentially in the lipid phase of the vesicles and not in the bulk aqueous phase. In addition, we found that, contrary to what happens with the pyrenyl moiety of C16PY the location of PY varies with its relative concentration in the membrane space. The critical concentration was observed to be around 1.0 mol% of incorporated PY. At concentrations below this value, PY is located in the hydrocarbon core of the lipid bilayers. Above 1.0 mol%, the PY molecules reside preferentially in the neighbourhood of the glyceryl moiety region of the PC vesicles.  相似文献   

14.
The intracellular deposition of fibrillar aggregates of alpha-synuclein is a characteristic feature of Parkinson disease. Alternatively, as a result of its unusual conformational plasticity, alpha-synuclein may fold into an amphipathic helix upon contact with a lipid-water interface. Using spin label ESR and fluorescence spectroscopy, we show here that alpha-synuclein affects the lipid packing in small unilamellar vesicles. The ESR hyperfine splittings of spin-labeled phospholipid probes revealed that alpha-synuclein induces chain ordering at carbon 14 of the acyl chains below the chain melting phase transition temperature but not in the liquid crystalline state of electroneutral vesicle membranes. Binding of alpha-synuclein leads to an increase in the temperature and cooperativity of the phase transition according to the fluorescence anisotropy of the hydrophobic polyene 1,6-diphenylhexatriene and of the fluorescence emission maxima of the amphiphilic probe 6-dodecanoyl-2-dimethylaminonaphthalene. Binding parameters were obtained from the fluorescence anisotropy measurements in combination with our previous determinations by titration calorimetry (Nuscher, B., Kamp, F., Mehnert, T., Odoy, S., Haass, C., Kahle, P. J., and Beyer, K. (2004) J. Biol. Chem. 279, 21966-21975). We also show that alpha-synuclein interacts with vesicle membranes containing sphingomyelin and cholesterol. We propose that the protein is capable of annealing defects in curved vesicle membranes, which may prevent synaptic vesicles from premature fusion.  相似文献   

15.
We describe a puffing method for changing solutions near one surface of lipid bilayers that allows simultaneous measurement of channel activity and extent of solution change at the bilayer surface. Ion adsorption to the lipid headgroups and screening of the bilayer surface charge by mobile ions provided a convenient probe for the ionic composition of the solution at the bilayer surface. Rapid ionic changes induced a shift in bilayer surface potential that generated a capacitive transient current under voltage-clamp conditions. This depended on the ion species and bilayer composition and was accurately described by the Stern-Gouy-Chapman theory. The time course of solute concentrations during solution changes could also be modeled by an exponential exchange of bath and puffing solutions with time constants ranging from 20 to 110 ms depending on the flow pressure. During changes in [Cs+] and [Ca2+] (applied separately or together) both the mixing model and capacitive currents predicted [Cs+] and [Ca2+] transients consistent with those determined experimentally from: 1) the known Cs(+)-dependent conductance of open ryanodine receptor channels and 2) the Ca(2+)-dependent gating of ryanodine receptor Ca2+ channels from cardiac and skeletal muscle.  相似文献   

16.
We study the influence of truncating the electrostatic interactions in a fully hydrated pure dipalmitoylphosphatidylcholine (DPPC) bilayer through 20 ns molecular dynamics simulations. The computations in which the electrostatic interactions were truncated are compared to similar simulations using the particle-mesh Ewald (PME) technique. All examined truncation distances (1.8-2.5 nm) lead to major effects on the bilayer properties, such as enhanced order of acyl chains together with decreased areas per lipid. The results obtained using PME, on the other hand, are consistent with experiments. These artifacts are interpreted in terms of radial distribution functions g(r) of molecules and molecular groups in the bilayer plane. Pronounced maxima or minima in g(r) appear exactly at the cutoff distance indicating that the truncation gives rise to artificial ordering between the polar phosphatidyl and choline groups of the DPPC molecules. In systems described using PME, such artificial ordering is not present.  相似文献   

17.
Fusion of phospholipid vesicles with planar bilayer membranes occurs provided there is an intermembrane contact, which can be mediated by phospholipid-binding proteins, even in the absence of calcium. The firm attachment phase is then followed by the osmotically-driven fusion. These results show that hydrophobic proteins (not necessarily Ca2+-binding proteins) may enhance fusion by promoting contact of membranes. Such proteins may operate synergistically with Ca2+ to reduce the threshold concentration of Ca2+ needed for fusion of biological membranes. Protein-mediated intermembrane contact resulting in fusion may play a crucial role in the regulation and catalysis of biological fusion events.  相似文献   

18.
The water activity in dimyristoylphosphatidylcholine (DMPC) decreases by 60% when the lipid is dehydrated in the presence of trehalose concentrations higher than 0.02 M. In contrast, sucrose in concentrations 10 times higher produced only a 20% decrease in the water activity in the sample. Titrations of a DMPC solution in chloroform yielded 14 water molecules per lipid when pure water was added and seven water molecules per lipid when the titration was done with 0.025 M trehalose. The same concentrations of sucrose produced a turbid solution, which made it impossible to quantify the number of water molecules per lipid. Lipid monolayers spread on an air/water interface showed a decrease from 480 mV in pure water to 425 mV in 0.1 M trehalose. However, the same concentrations of sucrose produced an increase of less than 100 mV. Results obtained with Fourier transform infrared spectroscopy (FTIR) under the same conditions denoted that trehalose binds to the carbonyl groups, while sucrose showed no specific binding. It is concluded that per lipid molecule, 11 of 14 water molecules can be replaced by three trehalose molecules. About four are displaced by changes in the water activity of the bulk solution, and seven by specific interactions with the phospholipids. In this last case, at least two of them are linked to the carbonyls, and this appears to be the cause of the decrease in the dipole potential of the membrane. In contrast, four sucrose molecules displace only three water molecules per lipid, with no effect on the dipole potential or the carbonyl groups.  相似文献   

19.
20.
The quenching of fluorescence due to energy transfer between a dilute, random array of donor and acceptor chromophores in lipid bilayer was measured and compared to theoretical expressions developed to predict the decrease in emission intensity under these circumstances. The observed intensity was found to be the same function of quencher concentration in both planar, multilamellar dispersions and small, spherical vesicles. The degree of quenching was accurately predicted by a simple relation derived in this paper, as well as a more complex equation previously developed by Tweet, et al. The results suggest that significant quenching may be observed even when the average donor-acceptor separation exceeds the F?rster critical distance by severalfold. Application of these results to problems of current interest in membrane research are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号