首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. BTBR mouse is currently used as a model for understanding mechanisms that may be responsible for the pathogenesis of autism. Growing evidence suggests that Ras/Raf/ERK1/2 signaling plays death-promoting apoptotic roles in neural cells. Recent studies showed a possible association between neural cell death and autism. In addition, two studies reported that a deletion of a locus on chromosome 16, which includes the MAPK3 gene that encodes ERK1, is associated with autism. We thus hypothesized that Ras/Raf/ERK1/2 signaling could be abnormally regulated in the brain of BTBR mice that models autism. In this study, we show that expression of Ras protein was significantly elevated in frontal cortex and cerebellum of BTBR mice as compared with B6 mice. The phosphorylations of A-Raf, B-Raf and C-Raf were all significantly increased in frontal cortex of BTBR mice. However, only C-Raf phosphorylation was increased in the cerebellum of BTBR mice. In addition, we further detected that the activities of both MEK1/2 and ERK1/2, which are the downstream kinases of Ras/Raf signaling, were significantly enhanced in the frontal cortex. We also detected that ERK1/2 is significantly over-expressed in frontal cortex of autistic subjects. Our results indicate that Ras/Raf/ERK1/2 signaling is upregulated in the frontal cortex of BTBR mice that model autism. These findings, together with the enhanced ERK1/2 expression in autistic frontal cortex, imply that Ras/Raf/ERK1/2 signaling activities could be increased in autistic brain and involved in the pathogenesis of autism.  相似文献   

2.
In the dopamine-depleted striatum, extracellular signal-regulated kinase (ERK) signaling is implicated in the development of l -DOPA-induced dyskinesia. To gain insights on its role in this disorder, we examined the effects of l -DOPA on the state of phosphorylation of ERK and downstream target proteins in striatopallidal and striatonigral medium spiny neurons (MSNs). For this purpose, we employed mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoters for the dopamine D2 receptor ( Drd2 -EGFP mice) or the dopamine D1 receptor ( Drd1a -EGFP mice), which are expressed in striatopallidal and striatonigral MSNs, respectively. In 6-hydroxydopamine-lesioned Drd2 -EGFP mice, l -DOPA increased the phosphorylation of ERK, mitogen- and stress-activated kinase 1 and histone H3, selectively in EGFP-negative MSNs. Conversely, a complete co-localization between EGFP and these phosphoproteins was observed in Drd1a -EGFP mice. The effect of l -DOPA was prevented by blockade of dopamine D1 receptors. The same pattern of activation of ERK signaling was observed in dyskinetic mice, after repeated administration of l -DOPA. Our results demonstrate that in the dopamine-depleted striatum, l -DOPA activates ERK signaling specifically in striatonigral MSNs. This regulation may result in ERK-dependent changes in striatal plasticity leading to dyskinesia.  相似文献   

3.
Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by the lack of fragile X mental retardation protein (FMRP). The animal model of FXS, Fmr1 knockout mice, have deficits in the Morris water maze and trace fear memory tests, showing impairment in hippocampus-dependent learning and memory. However, results for synaptic long-term potentiation (LTP), a key cellular model for learning and memory, remain inconclusive in the hippocampus of Fmr1 knockout mice. Here, we demonstrate that FMRP is required for glycine induced LTP (Gly-LTP) in the CA1 of hippocampus. This form of LTP requires activation of post-synaptic NMDA receptors and metabotropic glutamateric receptors, as well as the subsequent activation of extracellular signal-regulated kinase (ERK) 1/2. However, paired-pulse facilitation was not affected by glycine treatment. Genetic deletion of FMRP interrupted the phosphorylation of ERK1/2, suggesting the possible role of FMRP in the regulation of the activity of ERK1/2. Our study provide strong evidences that FMRP participates in Gly-LTP in the hippocampus by regulating the phosphorylation of ERK1/2, and that improper regulation of these signaling pathways may contribute to the learning and memory deficits observed in FXS.  相似文献   

4.
The strength and duration of mitogen-activated protein kinase signaling is regulated through phosphorylation and dephosphorylation by dedicated dual-specificity kinases and phosphatases, respectively. Here we investigated the physiological role that extracellular signal-regulated kinases 1/2 (ERK1/2) dephosphorylation plays in vivo through targeted disruption of the gene encoding dual-specificity phosphatase 6 (Dusp6) in the mouse. Dusp6(-/-) mice, which were viable, fertile, and otherwise overtly normal, showed an increase in basal ERK1/2 phosphorylation in the heart, spleen, kidney, brain, and fibroblasts, but no change in ERK5, p38, or c-Jun N-terminal kinases activation. However, loss of Dusp6 did not increase or prolong ERK1/2 activation after stimulation, suggesting that its function is more dedicated to basal ERK1/2 signaling tone. In-depth analysis of the physiological effect associated with increased baseline ERK1/2 signaling was performed in cultured mouse embryonic fibroblasts (MEFs) and the heart. Interestingly, mice lacking Dusp6 had larger hearts at every age examined, which was associated with greater rates of myocyte proliferation during embryonic development and in the early postnatal period, resulting in cardiac hypercellularity. This increase in myocyte content in the heart was protective against decompensation and hypertrophic cardiomyopathy following long term pressure overload and myocardial infarction injury in adult mice. Dusp6(-/-) MEFs also showed reduced apoptosis rates compared with wild-type MEFs. These results demonstrate that ERK1/2 signaling is physiologically restrained by DUSP6 in coordinating cellular development and survival characteristics, directly impacting disease-responsiveness in adulthood.  相似文献   

5.
T cell activation engages multiple intracellular signaling cascades, including the ERK1/2 (p44/p42) pathway. It has been suggested that ERKs integrate TCR signal strength, and are important for thymocyte development and positive selection. However, the requirement of ERKs for the effector functions of peripheral mature T cells and, specifically, for T cell-mediated autoimmunity has not been established. Moreover, the specific requirements for ERK1 vs ERK2 in T cells have not been resolved. Therefore, we investigated the role of ERK1 in T cell immunity to foreign and self Ags and in the induction of experimental autoimmune encephalomyelitis. The results show that in ERK1-deficient (ERK1-/-) mice, the priming, proliferation, and cytokine secretion of T cells to the self Ag myelin oligodendrocyte glycoprotein peptide 35-55 and to the prototypic foreign Ag OVA are not impaired as compared with wild-type mice. Furthermore, ERK1-/- mice are highly susceptible to experimental autoimmune encephalomyelitis induced with myelin oligodendrocyte glycoprotein peptide 35-55. Finally, thymocyte development and mitogen-induced proliferation were not impaired in ERK1-/- mice on the inbred 129 Sv and C57BL/6 backgrounds. Collectively, the data show that ERK1 is not critical for the function of peripheral T cells in the response to self and foreign Ags and in T cell-mediated autoimmunity, and suggest that its loss can be compensated by ERK2.  相似文献   

6.
Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. A number of studies have shown that the Ras/Raf/ERK1/2 (extracellular signal-regulated kinase) signaling pathway plays important roles in the genesis of neural progenitors, learning and memory. Ras/Raf/ERK1/2 and ERK5 have also been shown to have death-promoting apoptotic roles in neural cells. Recent studies have shown a possible association between neural cell death and autism. In addition, two recent studies reported that a deletion of a locus on chromosome 16, which included the mitogen-activated protein kinase 3 (MAPK3) gene that encodes ERK1, is associated with autism. Most recently, our laboratory detected that Ras/Raf/ERK1/2 signaling activities were significantly enhanced in the brain of BTBR mice that model autism, as they exhibit many autism-like behaviors. We thus hypothesized that Ras/Raf/ERK1/2 signaling and ERK5 could be abnormally regulated in the brain of autistic subjects. In this study, we show that the expression of Ras protein was significantly elevated in the frontal cortex of autistic subjects. C-Raf phosphorylation was increased in the frontal cortex, while both C-Raf and A-Raf activities were enhanced in the cerebellum of autistic subjects. We also detected that both the protein expression and activities of ERK1/2 were significantly upregulated in the frontal cortex of autistic subjects, but not in the cerebellum. Furthermore, we showed that ERK5 protein expression is upregulated in both frontal cortex and cerebellum of autistic subjects. These results suggest that the upregulation of Ras/Raf/ERK1/2 signaling and ERK5 activities mainly found in the frontal cortex of autistic subjects may be critically involved in the pathogenesis of autism.  相似文献   

7.
Pilocarpine-induced seizures are mediated by the M(1) subtype of muscarinic acetylcholine receptor (mAChR), but little is known about the signaling mechanisms linking the receptor to seizures. The extracellular signal-regulated kinase (ERK) signaling cascade is activated by M(1) mAChR and is elevated during status epilepticus. Yet, the role of ERK activation prior to seizure has not been evaluated. Here, we examine the role of pilocarpine-induced ERK activation in the induction of seizures in mice by pharmacological and behavioral approaches. We show that pilocarpine induces ERK activation prior to the induction of seizures by both western blot and immunocytochemistry with an antibody to phosphorylated ERK. In addition, we show that the ERK pathway inhibitor SL327 effectively blocks the pilocarpine-induced ERK activation. However, SL327 pretreatment has no effect on the initiation of seizures. In fact, animals treated with SL327 had higher seizure-related mortality than vehicle-treated animals, suggesting activated ERK may serve a protective role during seizures. In addition, ERK inhibition had no effect on the development of the long-term sequelae of status epilepticus (SE), including mossy fiber sprouting, neuronal death and spontaneous recurrent seizures.  相似文献   

8.
The dentate gyrus (DG) is the central input region to the hippocampus and is known to play an important role in learning and memory. Previous studies have shown that prenatal alcohol is associated with hippocampal-dependent learning deficits and a decreased ability to elicit long-term potentiation (LTP) in the DG in adult animals. Given that activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade by NMDA receptors is required for various forms of learning and memory, as well as LTP, in hippocampal regions, including the DG, we hypothesized that fetal alcohol-exposed adult animals would have deficits in hippocampal NMDA receptor-dependent ERK1/2 activation. We used immunoblotting and immunohistochemistry techniques to detect NMDA-stimulated ERK1/2 activation in acute hippocampal slices prepared from adult fetal alcohol-exposed mice. We present the first evidence linking prenatal alcohol exposure to deficits in NMDA receptor-dependent ERK1/2 activation specifically in the DG of adult offspring. This deficit may account for the LTP deficits previously observed in the DG, as well as the life-long cognitive deficits, associated with prenatal alcohol exposure.  相似文献   

9.
Hyperglycemia stimulates a plethora of intracellular signaling pathways within the cells of the vascular wall resulting in dysfunction-associated pathologies. Most of the studies reported so far explored the effect of rather short-time exposure of smooth muscle cells to high glucose concentrations. To mimic situation in Type 2 diabetes in which vascular wall is constantly exposed to circulating hyperglycemia, we report here the long-term (7 days) effect of high glucose concentration on human media artery smooth muscle cells. This consists in up-regulation of PTP1B protein expression, down-regulation of basal Akt phosphorylation, and elevation of basal ERK1/2 activation. Acute stimulation of cells in high glucose with insulin down-regulated PTP1B expression, slightly decreased ERK1/2 activity, and activated Akt, whereas oxidative stress up-regulated Akt and ERK1/2 phosphorylation. In conclusion, long-term high glucose and acute oxidative stress and insulin stimulation imbalance the expression of activated kinases Akt and ERK1/2 and of dephosphorylating PTP1B in the insulin signaling pathway.  相似文献   

10.
The G protein-coupled sst2 somatostatin receptor is a critical negative regulator of cell proliferation. sstII prevents growth factor-induced cell proliferation through activation of the tyrosine phosphatase SHP-1 leading to induction of the cyclin-dependent kinase inhibitor p27Kip1. Here, we investigate the signaling molecules linking sst2 to p27Kip1. In Chinese hamster ovary-DG-44 cells stably expressing sst2 (CHO/sst2), the somatostatin analogue RC-160 transiently stimulates ERK2 activity and potentiates insulin-stimulated ERK2 activity. RC-160 also stimulates ERK2 activity in pancreatic acini isolated from normal mice, which endogenously express sst2, but has no effect in pancreatic acini derived from sst2 knock-out mice. RC-160-induced p27Kip1 up-regulation and inhibition of insulin-dependent cell proliferation are both prevented by pretreatment of CHO/sst2 cells with the MEK1/2 inhibitor PD98059. In addition, using dominant negative mutants, we show that sst2-mediated ERK2 stimulation is dependent on the pertussis toxin-sensitive Gi/o protein, the tyrosine kinase Src, both small G proteins Ras and Rap1, and the MEK kinase B-Raf but is independent of Raf-1. Phosphatidylinositol 3-kinase (PI3K) and both tyrosine phosphatases, SHP-1 and SHP-2, are required upstream of Ras and Rap1. Taken together, our results identify a novel mechanism whereby a Gi/o protein-coupled receptor inhibits cell proliferation by stimulating ERK signaling via a SHP-1-SHP-2-PI3K/Ras-Rap1/B-Raf/MEK pathway.  相似文献   

11.
Bax Inhibitor-1 (BI-1) is an evolutionally conserved apoptotic suppressor and belongs to the BI-1 family of proteins, which contain BI-1-like transmembrane domains. As their cellular functions and regulatory mechanisms remain incompletely understood, we compared their anti-apoptotic properties. Forced expression of BI-1 resulted in the most effective suppression of stress-induced apoptosis, compared with other family members, together with significant extracellular signal-regulated kinase (ERK)1/2 activation. BI-1-mediated ERK1/2 activation led to the suppression of mitochondria-mediated reactive oxygen species (ROS) production. Involvement of the ERK signaling pathway in BI-1-induced anti-apoptotic effects was confirmed by knockdown studies with ERK- or BI-1-specific siRNA. Moreover, we produced transgenic (TG) mice overexpressing BI-1, and the relationship between ERK1/2 activation and the suppression of ROS production or apoptosis was confirmed in mouse embryonic fibroblast (MEF) cells derived from these mice. Interestingly, we found that BI-1 TG mice showed splenomegaly and abnormal megakaryopoiesis. Taken together, our results suggest that BI-1-induced ERK1/2 activation plays an important role in the modulation of intracellular ROS generation and apoptotic cell death and may also affect autoimmune response.  相似文献   

12.
The mammalian target of rapamycin (mTOR) is a protein kinase that, when present in a complex referred to as mTOR complex 1 (mTORC1), acts as an important regulator of growth and metabolism. The activity of the complex is regulated through multiple upstream signaling pathways, including those involving Akt and the extracellular-regulated kinase (ERK). Previous studies have shown that, in part, Akt and ERK promote mTORC1 signaling through phosphorylation of a GTPase activator protein (GAP), referred to as tuberous sclerosis complex 2 (TSC2), that acts as an upstream inhibitor of mTORC1. In the present study we extend the earlier studies to show that activation of the Akt and ERK pathways acts in a synergistic manner to promote mTORC1 signaling. Moreover, we provide evidence that the Akt and ERK signaling pathways converge on TSC2, and that Akt phosphorylates residues on TSC2 distinct from those phosphorylated by ERK. The results also suggest that leucine-induced stimulation of mTORC1 signaling occurs through a mechanism distinct from TSC2 and the Akt and ERK signaling pathways. Overall, the results are consistent with a model in which Akt and ERK phosphorylate distinct sites on TSC2, leading to greater repression of its GAP activity, and consequently a magnified stimulation of mTORC1 signaling, when compared with either input alone. The results further suggest that leucine acts through a mechanism distinct from TSC2 to stimulate mTORC1 signaling.  相似文献   

13.
We previously reported that the STAM family members STAM1 and STAM2 are phosphorylated on tyrosine upon stimulation with cytokines through the gammac-Jak3 signaling pathway, which is essential for T-cell development. Mice with targeted mutations in either STAM1 or STAM2 show no abnormality in T-cell development, and mice with double mutations for STAM1 and STAM2 are embryonically lethal; therefore, here we generated mice with T-cell-specific double mutations for STAM1 and STAM2 using the Cre/loxP system. These STAM1(-/-) STAM2(-/-) mice showed a significant reduction in thymocytes and a profound reduction in peripheral mature T cells. In proliferation assays, thymocytes derived from the double mutant mice showed a defective response to T-cell-receptor (TCR) stimulation by antibodies and/or cytokines, interleukin-2 (IL-2) and IL-7. However, signaling events downstream of receptors for IL-2 and IL-7, such as activations of STAT5, extracellular signal-regulated kinase (ERK), and protein kinase B (PKB)/Akt, and c-myc induction, were normal in the double mutant thymocytes. Upon TCR-mediated stimulation, prolonged activations of p38 mitogen-activated protein kinase and Jun N-terminal protein kinase were seen, but activations of ERK, PKB/Akt, and intracellular calcium flux were normal in the double mutant thymocytes. When the cell viability of cultured thymocytes was assessed, the double mutant thymocytes died more quickly than controls. These results demonstrate that the STAMs are indispensably involved in T-cell development and survival in the thymus through the prevention of apoptosis but are dispensable for the proximal signaling of TCR and cytokine receptors.  相似文献   

14.
Hyperhomocysteinemia due to cystathionine beta synthase (CBS) deficiency is associated with diverse brain disease. Whereas the biological actions linking hyperhomocysteinemia to the cognitive dysfunction are not well understood, we tried to establish relationships between hyperhomocysteinemia and alterations of signaling pathways. In the brain of CBS-deficient mice, a murine model of hyperhomocysteinemia, we previously found an activation of extracellular signal-regulated kinase (ERK) pathway and an increase of Dyrk1A, a serine/threonine kinase involved in diverse functions ranging from development and growth to apoptosis. We then investigated the relationship between Dyrk1A and the signaling pathways initiated by receptor tyrosine kinases (RTK), the ERK and PI3K/Akt pathways. We found a significant increase of phospho-ERK, phospho-MEK, and phospho-Akt in the brain of CBS-deficient and Dyrk1a-overexpressing mice. This increase was abolished when CBS-deficient and Dyrk1A-transgenic mice were treated with harmine, an inhibitor of Dyrk1A kinase activity, which emphasizes the role of Dyrk1A activity on ERK and Akt activation. Sprouty 2 protein level, a negative feedback loop modulator that limits the intensity and duration of RTK activation, is decreased in the brain of CBS-deficient mice, but not in the brain of Dyrk1A transgenic mice. Furthermore, a reduced Dyrk1A and Grb2 binding on sprouty 2 and an increased interaction of Dyrk1A with Grb2 were found in the brain of Dyrk1A transgenic mice. The consequence of Dyrk1A overexpression on RTK activation seems to be a decreased interaction of sprouty 2/Grb2. These observations demonstrate ERK and Akt activation induced by Dyrk1A in the brain of hyperhomocysteinemic mice and open new perspectives to understand the basis of the cognitive defects in hyperhomocysteinemia.  相似文献   

15.
The aim of this study was to characterize the interaction between mTOR and ERK in primary endothelial cells (EC) following MHC class I and integrin ligation. Ligation of MHC class I molecules or integrins on the surface of EC leads to phosphorylation of ERK at Thr202/Tyr204. We utilized small interfering RNA (siRNA) blockade of mTOR and proteins involved in mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) to define a relationship between mTOR and ERK following MHC class I signaling. We found mTORC2 was responsible for MHC class I and integrin induced phosphorylation of ERK at Thr202/Tyr204. We corroborated these results demonstrating that long-term exposure to rapamycin also inhibited ERK pathway activation in response to MHC class I signaling. Our results demonstrate, for the first time, that engagement of either MHC class I or integrin on the surface of EC leads to ERK activation through an mTORC2-dependent pathway.  相似文献   

16.
Extracellular signal-regulated kinases (ERKs) are signaling molecules that regulate many cellular processes. We have previously identified an alternatively spliced 46-kDa form of ERK1 that is expressed in rats and mice and named ERK1b. Here we report that the same splicing event in humans and monkeys causes, due to sequence differences in the inserted introns, the production of an ERK isoform that migrates together with the 42-kDa ERK2. Because of the differences of this isoform from ERK1b, we named it ERK1c. We found that its expression levels are about 10% of ERK1. ERK1c seems to be expressed in a wide variety of tissues and cells. Its activation by MEKs and inactivation by phosphatases are slower than those of ERK1, which is probably the reason for its differential regulation in response to extracellular stimuli. Unlike ERK1, ERK1c undergoes monoubiquitination, which is increased with elevated cell density concomitantly with accumulation of ERK1c in the Golgi apparatus. Elevated cell density also causes enhanced Golgi fragmentation, which is facilitated by overexpression of native ERK1c and is prevented by dominant-negative ERK1c, indicating that ERK1c mediates cell density-induced Golgi fragmentation. The differential regulation of ERK1c extends the signaling specificity of MEKs after stimulation by various extracellular stimuli.  相似文献   

17.
The adipocyte-derived hormone leptin regulates energy homeostasis and the innate immune response. We previously reported that leptin plays a protective role in bacterial pneumonia, but the mechanisms by which leptin regulates host defense remain poorly understood. Leptin binding to its receptor, LepRb, activates multiple intracellular signaling pathways, including ERK1/2, STAT5, and STAT3. In this study, we compared the responses of wild-type and s/s mice, which possess a mutant LepRb that prevents leptin-induced STAT3 activation, to determine the role of this signaling pathway in pneumococcal pneumonia. Compared with wild-type animals, s/s mice exhibited greater survival and enhanced pulmonary bacterial clearance after an intratracheal challenge with Streptococcus pneumoniae. We also observed enhanced phagocytosis and killing of S. pneumoniae in vitro in alveolar macrophages (AMs) obtained from s/s mice. Notably, the improved host defense and AM antibacterial effector functions in s/s mice were associated with increased cysteinyl-leukotriene production in vivo and in AMs in vitro. Augmentation of phagocytosis in AMs from s/s mice could be blocked using a pharmacologic cysteinyl-leukotriene receptor antagonist. Phosphorylation of ERK1/2 and cytosolic phospholipase A(2) α, known to enhance the release of arachidonic acid for subsequent conversion to leukotrienes, was also increased in AMs from s/s mice stimulated with S. pneumoniae in vitro. These data indicate that ablation of LepRb-mediated STAT3 signaling and the associated augmentation of ERK1/2, cytosolic phospholipase A(2) α, and cysteinyl-leukotriene synthesis confers resistance to s/s mice during pneumococcal pneumonia. These data provide novel insights into the intracellular signaling events by which leptin contributes to host defense against bacterial pneumonia.  相似文献   

18.
The ERK/MAP kinase cascade is important for long-term memory formation and synaptic plasticity, with a myriad of upstream signals converging upon ERK activation. Despite this convergence of signaling, neurons routinely activate appropriate biological responses to different stimuli. Scaffolding proteins represent a mechanism to achieve compartmentalization of signaling and the appropriate targeting of ERK-dependent processes. We report that kinase suppressor of Ras (KSR1) functions biochemically in the hippocampus to scaffold the components of the ERK cascade, specifically regulating the cascade when a membrane fraction of ERK is activated via a PKC-dependent pathway but not via a cAMP/PKA-dependent pathway. Specificity of KSR1-dependent signaling also extends to specific downstream targets of ERK. Behaviorally and physiologically, we found that the absence of KSR1 leads to deficits in associative learning and theta burst stimulation-induced LTP. Our report provides novel insight into the endogenous scaffolding role of KSR1 in controlling kinase activation within the nervous system.  相似文献   

19.
Recent investigations have shown that three major striatal-signaling pathways (protein kinase A/DARPP-32, Akt/glycogen synthase kinase 3, and ERK) are involved in the regulation of locomotor activity by the monoaminergic neurotransmitter dopamine. Here we used dopamine transporter knock-out mice to examine which particular changes in the regulation of these cell signaling mechanisms are associated with distinct behavioral responses to psychostimulants. In normal animals, amphetamine and methylphenidate increase extracellular levels of dopamine, leading to an enhancement of locomotor activity. However, in dopamine transporter knock-out mice that display a hyperactivity phenotype resulting from a persistent hyperdopaminergic state, these drugs antagonize hyperactivity. Under basal conditions, dopamine transporter knock-out mice show enhanced striatal DARPP-32 phosphorylation, activation of ERK, and inactivation of Akt as compared with wild-type littermates. However, administration of amphetamine or methylphenidate to these mice reveals that inhibition of ERK signaling is a common determinant for the ability of these drugs to antagonize hyperactivity. In contrast, psychostimulants activate ERK and induce hyperactivity in normal animals. In hyperactive mice psychostimulant-mediated behavioral inhibition and ERK regulation are also mimicked by the serotonergic drugs fluoxetine and 5-carboxamidotryptamine, thereby revealing the involvement of serotonin-dependent inhibition of striatal ERK signaling. Furthermore, direct inhibition of the ERK signaling cascade in vivo using the MEK inhibitor SL327 recapitulates the actions of psychostimulants in hyperactive mice and prevents the locomotor-enhancing effects of amphetamine in normal animals. These data suggest that the inhibitory action of psychostimulants on dopamine-dependent hyperactivity results from altered regulation of striatal ERK signaling. In addition, these results illustrate how altered homeostatic state of neurotransmission can influence in vivo signaling responses and biological actions of pharmacological agents used to manage psychiatric conditions such as Attention Deficit Hyperactivity Disorder (ADHD).  相似文献   

20.
Gab1 is a member of the Gab/DOS (Daughter of Sevenless) family of adapter molecules, which contain a pleckstrin homology (PH) domain and potential binding sites for SH2 and SH3 domains. Gab1 is tyrosine phosphorylated upon stimulation of various cytokines, growth factors, and antigen receptors in cell lines and interacts with signaling molecules, such as SHP-2 and phosphatidylinositol 3-kinase, although its biological roles have not yet been established. To reveal the functions of Gab1 in vivo, we generated mice lacking Gab1 by gene targeting. Gab1-deficient embryos died in utero and displayed developmental defects in the heart, placenta, and skin, which were similar to phenotypes observed in mice lacking signals of the hepatocyte growth factor/scatter factor, platelet-derived growth factor, and epidermal growth factor pathways. Consistent with these observations, extracellular signal-regulated kinase mitogen-activated protein (ERK MAP) kinases were activated at much lower levels in cells from Gab1-deficient embryos in response to these growth factors or to stimulation of the cytokine receptor gp130. These results indicate that Gab1 is a common player in a broad range of growth factor and cytokine signaling pathways linking ERK MAP kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号