首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucus hypersecretion associated with airway inflammation is reduced by glucocorticoids. Two mechanisms of glucocorticoid-mediated inhibition of mucus production have been proposed, direct inhibition of mucus production by airway epithelial cells and indirectly through inhibition of proinflammatory mediators that stimulate mucus production. In this study, we examined the effect of dexamethasone (DEX) on mRNA expression and synthesis of MUC5AC by A549 human lung adenocarcinoma cells as well as Muc5ac and total high-molecular-weight (HMW) mucins by primary rat tracheal surface epithelial (RTSE) cells. Our results showed that in primary RTSE cells, DEX 1) dose dependently suppressed Muc5ac mRNA levels, but the levels of cellular Muc5ac protein and HMW mucins were unaffected; 2) did not affect constitutive or UTP-stimulated mucin secretion; 3) enhanced the translation of Muc5ac; and 4) increased the stability of intracellular Muc5ac protein by a mechanism other than the inhibition of the proteasomal degradation. In A549 cells, however, DEX suppressed both MUC5AC mRNA levels and MUC5AC protein secretion in a dose-dependent manner. We conclude that whereas DEX inhibits the levels of Muc5ac mRNA in primary RTSE cells, the levels of Muc5ac protein remain unchanged as a consequence of increases in both translation and protein stability. Interestingly, some of the effects of DEX were opposite in a cell line.  相似文献   

2.
Pseudomonas aeruginosa is an opportunistic pathogen involved in nosocomial infections. Flagellin is a P. aeruginosa virulence factor involved in host response to this pathogen. We examined the role of flagellin in P. aeruginosa-induced mucus secretion. Using a mouse model of pulmonary infection we showed that PAK, a wild type strain of P. aeruginosa, induced airway mucus secretion and mucin muc5ac expression at higher levels than its flagellin-deficient mutant (ΔFliC). PAK induced expression of MUC5AC and MUC2 in both human airway epithelial NCI-H292 cell line and in primary epithelial cells. In contrast, ΔFliC infection had lower to no effect on MUC5AC and MUC2 expressions. A purified P. aeruginosa flagellin induced MUC5AC expression in parallel to IL-8 secretion in NCI-H292 cells. Accordingly, ΔFliC mutant stimulated IL-8 secretion at significantly lower levels compared to PAK. Incubation of NCI-H292 cells with exogenous IL-8 induced MUC5AC expression and pre-incubation of these cells with an anti-IL-8 antibody abrogated flagellin-mediated MUC5AC expression. Silencing of TLR5 and Naip, siRNA inhibited both flagellin-induced MUC5AC expression and IL-8 secretion. Finally, inhibition of ERK abolished the expression of both PAK- and flagellin-induced MUC5AC. We conclude that: (i) flagellin is crucial in P. aeruginosa-induced mucus hyper-secretion through TLR5 and Naip pathways; (ii) this process is mediated by ERK and amplified by IL-8. Our findings help understand the mechanisms involved in mucus secretion during pulmonary infectious disease induced by P. aeruginosa, such as in cystic fibrosis.  相似文献   

3.
Airway inflammation and mucus hyperproduction play the central role in the development of asthma, although the mechanisms remain unclear. The aquaporin (AQP)‐5 may be involved in the process due to its contribution to the volume of liquid secreted from the airways. The present study firstly found the overexpression of AQP5 in the airway epithelium and submucosal glands of asthmatics. Furthermore, we aimed at evaluating the role of AQP5 in airway inflammation and mucous hyperproductions during chronic allergic responses to house dust mite (HDM). Bronchoalveolar lavage levels of interleukin (IL)‐2, IL‐4, IL‐10, interferon‐γ and Mucin 5AC (MUC5AC), and number of peribronchial and perivascular cells were measured in AQP5 wild‐type and AQP5 knockout (KO) mice. We found that HDM induced airway inflammation, lung Th2 cell accumulation and mucin hypersecretion in C57BL/6 mice rather than AQP5 KO mice. Expression of MUC5AC and MUC5B proteins and genes in the lung tissue was significantly lower in AQP5 KO mice. Thus, our results implicate involvement of AQP5 in the development of airway inflammation and mucous hyperproduction during chronic asthma.  相似文献   

4.
5.
6.
7.
Mucus hypersecretion is a major manifestation in patients with chronic inflammatory airway diseases, and mucin5AC (MUC5AC) protein is a major component of airway mucus. Previous studies have demonstrated that neutrophil elastase (NE) stimulates the secretion of MUC5AC from airway epithelial cells, however, the mechanism is poorly understood. NE is a known ligand for protein active receptors (PARs), which have been confirmed to participate in releasing MUC5AC in the airways. However, the role of PARs in NE-induced MUC5AC secretion remains unclear. We demonstrated that airway goblet-like Calu-3 cells express PAR1, PAR2, and PAR3 with a predominant level of PAR2. NE can increase PAR2 expression and MUC5AC release. In our study, we showed that NE binding to PAR2 can increase the cytosolic calcium concentration and subsequently activate PKC, leading to MUC5AC secretion. In order to investigate the mechanism of increased cytosolic calcium in Calu-3 cells, thapsigargin was used to exhaust the endoplasmic reticulum (ER) calcium pools, and 2-aminoethoxydiphenyl borate was used to inhibit the function of the store-operated calcium entry (SOCE) channels in the plasma membrane. We found that the NE-induced increase in intracellular calcium concentration is derived from release of the ER calcium pool and its subsequent calcium internal flux from the extracellular space via SOCE channels, which is dependent on sufficient levels of extracellular calcium.  相似文献   

8.
Mucus hypersecretion is a clinically important manifestation of chronic inflammatory airway diseases, such as asthma and Chronic obstructive pulmonary disease (COPD). Mucin production in airway epithelia is increased under conditions of oxidative stress. Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 suppression is related to the development of airway inflammation and increased ROS levels. In this study, we investigated the role of SHP-1 in mucin secretion triggered by oxidative stress. Human lung mucoepidermoid H292 carcinoma cells were transfected with specific siRNA to eliminate SHP-1 gene expression. Cultured cells were treated with hydrogen peroxide (H2O2), and Mucin 5AC(MUC5AC) gene expression and mucin production were determined. Activation of p38 mitogen activated protein kinase (MAPK) in association with MUC5AC production was evaluated. N-acetylcysteine (NAC) was employed to determine whether antioxidants could block MUC5AC production. To establish the precise role of p38, mucin expression was observed after pre-treatment of SHP-1-depleted H292 cells with the p38 chemical blocker. We investigated the in vivo effects of oxidative stress on airway mucus production in SHP-1-deficient heterozygous (mev/+) mice. MUC5AC expression was enhanced in SHP-1 knockdown H292 cells exposed to H2O2, compared to that in control cells. The ratio between phosphorylated and total p38 was significantly increased in SHP-1-deficient cells under oxidative stress. Pre-treatment with NAC suppressed both MUC5AC production and p38 activation. Blockage of p38 MAPK led to suppression of MUC5AC mRNA expression. Notably, mucin production was enhanced in the airway epithelia of mev/+ mice exposed to oxidative stress. Our results clearly indicate that SHP-1 plays an important role in airway mucin production through regulating oxidative stress.  相似文献   

9.
The surface of the human respiratory tract is covered with a mucus layer containing mucin 5AC (MUC5AC) and mucin 5B (MUC5B) as the main components. This layer contributes to biological defense by eliminating irritants, but excessive MUC5AC secretion by the airway epithelial cells exacerbates asthma. Therefore, regulating mucin production is important for asthma treatment. In this study, the effects of integrin β1 subunit on MUC5AC and MUC5B production were examined in NCI–H292 human lung cancer epithelial cells. When integrin β1 was overexpressed, cellular and secreted MUC5AC levels were decreased, whereas cellular MUC5B production was increased. Conversely, integrin β1 depletion using siRNA increased cellular and secreted MUC5AC production, but decreased cellular MUC5B production. Further, the activity of extracellular signal-regulated kinase (ERK), which promotes MUC5AC production, was decreased by integrin β1 overexpression and increased by its depletion. These results suggest that integrin β1 suppresses MUC5AC production and promotes MUC5B production by downregulating ERK.  相似文献   

10.
Cytokine modulation of autophagy is increasingly recognized in disease pathogenesis, and current concepts suggest that type 1 cytokines activate autophagy, whereas type 2 cytokines are inhibitory. However, this paradigm derives primarily from studies of immune cells and is poorly characterized in tissue cells, including sentinel epithelial cells that regulate the immune response. In particular, the type 2 cytokine IL13 (interleukin 13) drives the formation of airway goblet cells that secrete excess mucus as a characteristic feature of airway disease, but whether this process is influenced by autophagy was undefined. Here we use a mouse model of airway disease in which IL33 (interleukin 33) stimulation leads to IL13-dependent formation of airway goblet cells as tracked by levels of mucin MUC5AC (mucin 5AC, oligomeric mucus/gel forming), and we show that these cells manifest a block in mucus secretion in autophagy gene Atg16l1-deficient mice compared to wild-type control mice. Similarly, primary-culture human tracheal epithelial cells treated with IL13 to stimulate mucus formation also exhibit a block in MUC5AC secretion in cells depleted of autophagy gene ATG5 (autophagy-related 5) or ATG14 (autophagy-related 14) compared to nondepleted control cells. Our findings indicate that autophagy is essential for airway mucus secretion in a type 2, IL13-dependent immune disease process and thereby provide a novel therapeutic strategy for attenuating airway obstruction in hypersecretory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis lung disease. Taken together, these observations suggest that the regulation of autophagy by Th2 cytokines is cell-context dependent.  相似文献   

11.
12.
Mucus hypersecretion and persistent airway inflammation are common features of various airway diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. One key question is: does the associated airway inflammation in these diseases affect mucus production? If so, what is the underlying mechanism? It appears that increased mucus secretion results from increased mucin gene expression and is also frequently accompanied by an increased number of mucous cells (goblet cell hyperplasia/metaplasia) in the airway epithelium. Many studies on mucin gene expression have been directed toward Th2 cytokines such as interleukin (IL)-4, IL-9, and IL-13 because of their known pathophysiological role in allergic airway diseases such as asthma. However, the effect of these cytokines has not been definitely linked to their direct interaction with airway epithelial cells. In our study, we treated highly differentiated cultures of primary human tracheobronchial epithelial (TBE) cells with a panel of cytokines (interleukin-1alpha, 1beta, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, and tumor necrosis factor alpha). We found that IL-6 and IL-17 could stimulate the mucin genes, MUC5B and MUC5AC. The Th2 cytokines IL-4, IL-9, and IL-13 did not stimulate MUC5AC or MUC5B in our experiments. A similar stimulation of MUC5B/Muc5b expression by IL-6 and IL-17 was demonstrated in primary monkey and mouse TBE cells. Further investigation of MUC5B expression demonstrated that IL-17's effect is at least partly mediated through IL-6 by a JAK2-dependent autocrine/paracrine loop. Finally, evidence is presented to show that both IL-6 and IL-17 mediate MUC5B expression through the ERK signaling pathway.  相似文献   

13.
Chronic obstructive pulmonary disease (COPD) is an inflammatory process characterized by airway mucus hypersecretion. Previous studies have reported that lipopolysaccharides (LPS) stimulate mucin 5AC (MUC5AC) production via epidermal growth factor receptor (EGFR) in human airway cells. Moreover, this production was shown to depend on the expression and activity of matrix metalloproteinase 9 (MMP-9), which is increased in COPD patients’ serum. In the present study we investigated the signaling pathway mediating LPS-stimulated secretion and activation of MMP-9, and the regulatory effects of this pathway on the production of MUC5AC in the human airway cells NCI-H292. Using specific inhibitors, we found that LPS-stimulated cells secreted and activated MMP-9 via EGFR. Our results also indicate that signaling events downstream of EGFR involved PI3K-dependent activation of Rac1, which mediated the NADPH-generated reactive oxygen species responsible for MMP-9 secretion and activation. Finally, we observed that EGFR/PI3K/Rac1/NADPH/ROS/MMP-9 regulate MUC5AC production in LPS-challenged NCI-H292 cells.  相似文献   

14.
Cigarette smoke represents a major risk factor for the development of chronic obstructive pulmonary disease (COPD), a respiratory condition associated with airflow obstruction, mucus hypersecretion, chronic inflammation, and upregulation of inflammatory mediators such as the monocyte chemotactic protein-1 (MCP-1). MCP-1 through its receptor CCR2 induces chemotaxis and activates (44/42)MAPK, a kinase known to play a key role in mucin regulation in bronchial epithelium. In the present study we used differentiated primary cultures of normal human bronchial epithelial (NHBE) cells to test whether MCP-1 through its receptor CCR2 induces mucin upregulation. We have provided evidence that NHBE cells release MCP-1 to the epithelial surface and express the CCR2B isoform of the receptor mainly at the apical pole. In addition, we found that MCP-1 has a novel function in airway epithelium, increasing the two major airway mucins MUC5AC and MUC5B, an effect mediated, at least in part, by a cascade of events initiated by interaction of its receptor CCR2B with G(q) subunits in caveolae, followed by PLCβ, PKC, and (44/42)MAPK activation. We also have shown that MCP-1 is able to induce its own expression using the same receptor but through a different pathway that involves RhoA GTPase. Furthermore, we found that a single exposure to MCP-1 is enough to induce MCP-1 secretion and sustained mucin upregulation up to 7 days after initial exposure, an effect mediated by CCR2B as confirmed using short hairpin RNA. These results agree with our data in smoker's airway epithelium, where CCR2B is present in MUC5AC- and MUC5B-expressing cells and augmented MCP-1 expression is associated with increased MUC5AC and MUC5B immunolabeling, suggesting that the mechanisms described in primary cell cultures in the present study are operative in vivo. Therefore, therapeutic approaches targeting MCP-1/CCR2B may be useful in preventing not only influx of inflammatory cells to the airways but also mucus hypersecretion and goblet cell hyperplasia.  相似文献   

15.
16.
Respiratory syncytial virus (RSV) infection is the main cause of bronchiolitis in children. Excessive mucus secretion is one of the primary symbols in RSV related lower respiratory tract infections (RSV-related LRTI), which is closely associated with the occurrence and development of asthma in later life. Integrin β4 (ITGB4) is down-regulated in the airway epithelial cells (AECs) of asthma patients which plays a critical role in the pathogenesis of asthma. However, whether ITGB4 is involved in the pathological processes of RSV infection remains unclear. In this study, we found that decreased expression of ITGB4 was negatively correlated with the level of MUC5AC in childhood AECs following RSV infection. Moreover, ITGB4 deficiency led to mucus hypersecretion and MUC5AC overexpression in the small airway of RSV-infected mice. MUC5AC expression was upregulated by ITGB4 in HBE cells through EGFR, ERK and c-Jun pathways. EGFR inhibitors treatment inhibited mucus hypersecretion and MUC5AC overexpression in ITGB4-deficient mice after RSV infection. Together, these results demonstrated that epithelial ITGB4 deficiency induces mucus hypersecretion by upregulating the expression of MUC5AC through EGFR/ERK/c-Jun pathway, which further associated with RSV-related LRTI.  相似文献   

17.
18.
19.
Eosinophil recruitment and mucus hypersecretion are characteristic of asthmatic airway inflammation, but eosinophils have not been shown to induce mucin production. Because an epidermal growth factor receptor (EGFR) cascade induces MUC5AC mucin in airways, and because EGFR is up-regulated in asthmatic airways, we examined the effect of eosinophils on MUC5AC mucin production in NCI-H292 cells (a human airway epithelial cell line that produces mucins). Eosinophils were isolated from the peripheral blood of allergic patients, and their effects on MUC5AC mucin gene and protein synthesis were assessed using in situ hybridization and ELISAs. When IL-3 plus GM-CSF or IL-3 plus IL-5 were added to eosinophils cultured with NCI-H292 cells, MUC5AC mucin production increased; eosinophils or cytokines alone had no effect. Eosinophil supernatant obtained by culturing eosinophils with IL-3 plus GM-CSF or IL-3 plus IL-5 also increased MUC5AC synthesis in NCI-H292 cells, an effect that was prevented by selective EGFR inhibitors (AG1478, BIBX1522). Supernatant of activated eosinophils induced EGFR phosphorylation in NCI-H292 cells. Supernatant of activated eosinophils contained increased concentrations of TGF-alpha protein (an EGFR ligand) and induced up-regulation of TGF-alpha expression and release in NCI-H292 cells. A blocking Ab to TGF-alpha reduced activated eosinophil-induced MUC5AC synthesis in NCI-H292 cells. These results show that activated eosinophils induce mucin synthesis in human airway epithelial cells via EGFR activation, and they implicate TGF-alpha produced by eosinophils and epithelial cells in the EGFR activation that results in mucin production in human airway epithelium.  相似文献   

20.
目的:通过观察高温高湿环境暴露下小鼠气道黏液分泌相关蛋白在不同时间段的变化,探讨应激和习服在湿热环境中对呼吸系统疾病的作用。方法:45只BABL/c小鼠随机分成5组(n=9):对照组、湿热1组、湿热2组、湿热3组、湿热4组。对照组普通环境饲养,7 d后处死。其余各组置入气候箱接受湿度(95±5)%,温度(33±0.5)℃的高温高湿刺激,第12小时处死为湿热1组,第24小时处死为湿热2组,第4天处死为湿热3组,第7天处死为湿热4组。免疫组化法检测小鼠肺黏蛋白5AC (MUC5AC)、表皮生长因子受体(EGFR)、水通道蛋白1(AQP1)、水通道蛋白5(AQP5)蛋白表达。结果:把小鼠置入高温高湿环境后,小鼠肺组织在12 h时AQP5增高,在24 h时MUC5AC、EGFR的蛋白表达增高,与正常组比较差异均有统计学意义(P<0.05);第7天,MUC5AC蛋白表达水平显著低于正常组(P<0.05);其余时间段,MUC5AC、EGFR、AQP5蛋白表达均与正常组无明显差异。AQP1蛋白表达在湿热各组均与正常组无差异,与湿热1组、湿热2组比较,湿热3组、湿热4组表达则减弱(P<0.05)。结论:湿热应激可引起小鼠气道黏液高分泌,持续处于该环境则可能产生一系列更复杂的反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号