首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of varied supply of phosphorus (10 and 250 mmolP m–3) potassium (50 and 2010 mmol K m–3) and magnesium(20 and 1000 mmol Mg m–3) on the partitioning of dry matterand carbohydrates (reducing sugars, sucrose and starch) betweenshoots and roots was studied in bean (Phaseolus vulgaris) plantsgrown in nutrient solution over a 12 d period. Shoot and rootgrowth were quite differently affected by low supply of P, K,and Mg. The shoot/root dry weight ratios were 4.9 in the control(sufficient plants), 1.8 in P-deficient, 6.9 in K-deficientand 10.2 in Mg-deficient plants. In primary (source) leaves,but not in trifoliate leaves, concentrations of reducing sugars,sucrose and starch were also differently affected by low nutrientsupply. In primary leaves under K deficiency and, particularlyMg deficiency, the concentrations of sucrose and reducing sugarswere much higher than in control and P-deficient plants. Magnesiumdeficiency also distinctly increased the starch concentrationin the primary leaves. In contrast, in roots, the lowest concenfrationsof sucrose, reducing sugars and starch were found in Mg-deficientplants, whereas the concentrations of sucrose and starch wereparticularly high in P-deficient plants. There was a close relationshipbetween shoot/root dry weight ratios and relative distributionof total carbohydrates (sugars and starch) in shoot and roots.Of the total amounts of carbohyd rates per plant, the followingproportions were parti tioned to the roots: 22.7% in P-deficient,15.7% in control, 3.4% in K-deficient and 0.8% in Mg-deficientplants. The results indicate a distinct role of Mg and K in the exportof photosynthates from leaves to roots and suggest that alterationin photosynthate partitioning plays a major role in the differencesin dry matter distribution between shoots and roots of plantssuffering from mineral nutrient deficiency. Key words: Bean, carbohydrates, magnesium nutrition, phosphorus nutrition, potassium nutrition, shoot/root growth  相似文献   

2.
The composition of phloem sap, sampled at different heights along, the stem of castor bean ( Ricinus communis L. cv. Gibsonii) plants, was determined. A gradient in pH was observed; the highest pH values occurred near the shoot apex, decreasing towards the base of the stem. The sucrose content of the exudate exhibited a similar gradient. The concentration of potassium ions was highest near the uppermost, full-grown leaves, decreasing towards the apex and the base of the stem. The importance of these findings for the understanding of phloem translocation and unloading is discussed.  相似文献   

3.
To understand the plant response to oxidative stresses, we studied the influence of magnesium (Mg++) deficiency on the formation of hydrogen peroxide (H2O2), malondialdehyde (MDA), and protease activity in kidney bean plants. The expression pattern of proteins under Mg++ deficiency also was examined via two-dimensional electrophoresis. The formation of H2O2 and MDA increased in the primary leaves of plants grown in a nutrient solution deficient in Mg++. Protease activity in Mg++-deficient plants was also higher than in those grown with sufficient Mg++. The expression pattern of the proteins showed that 25 new proteins were generated and 64 proteins disappeared under Mg++-deficient conditions. Therefore, a deficiency in Mg++ may cause oxidative stress and a change in protein expression. Some of these proteins may be related to the oxidative stress induced by Mg++ deficiency.  相似文献   

4.
Iron deficiency in higher plants causes accumulation of salts of organic acids in the roots, the most characteristic being citrate. We show that citrate and malate accumulate in beans (Phaseolus vulgaris L. var Prélude), not because of a lack of the iron-containing enzyme aconitase (EC 4.2.1.3), but in close coupling to the extrusion of protons during rhizosphere acidification, one of the `Fe-efficiency' reactions of dicotyledonous plants. When proton excretion is induced in roots of control bean plants by addition of fusicoccin, only malate, not citrate, is accumulated. We propose that iron deficiency induces production of organic acids in the roots, which in beans leads to both proton excretion and an increased capacity to reduce ferric chelates via the induced electron transfer system in the root epidermis cells.  相似文献   

5.
Plant root sensing and adaptation to changes in the nutrient status of soils is vital for long-term productivity and growth. Reactive oxygen species (ROS) have been shown to play a role in root response to potassium deprivation. To determine the role of ROS in plant response to nitrogen and phosphorus deficiency, studies were conducted using wild-type Arabidopsis and several root hair mutants. The expression of several nutrient-responsive genes was determined by Northern blot, and ROS were quantified and localized in roots. The monitored genes varied in intensity and timing of expression depending on which nutrient was deficient. In response to nutrient deprivation, ROS concentrations increased in specific regions of the Arabidopsis root. Changes in ROS localization in Arabidopsis and in a set of root hair mutants suggest that the root hair cells are important for response to nitrogen and potassium. In contrast, the response to phosphorus deprivation occurs in the cortex where an increase in ROS was measured. Based on these results, we put forward the hypothesis that root hair cells in Arabidopsis contain a sensing system for nitrogen and potassium deprivation.  相似文献   

6.
7.
Summary The effect of a wide range of ammonium concentrations (1.78×10–5 to 3.57×10–3 M) on the uptake and tissue content of P, K, Ca and Mg in intact soybean (Glycine max (L.) Merr. Cv. Amsoy) plants at different growth stages was studied. A stimulatory effect of ammonium on the uptake and content of P was observed over the entire concentration range, whereas this effect was observed only up to 500 M of ammonium with respect to K. At higher levels (>500 M), ammonium suppressed the uptake and content of K. Inhibition by high levels (>357 M) of ammonium was also found for the uptake and content of Ca and Mg. Inhibition of uptake of K, Ca and Mg by high levels of ammonium may be an important factor in the mineral nutrition of soybean plants. re]19760420  相似文献   

8.
9.
Mature leaves of corn plants (Zea mays L. cv. Prior) which were darkened for 48 h contain neither bundle-sheath starch nor glucose, and their sucrose content is below 5 M. In such leaves phloem export has ceased. When re-illuminated, photosynthetic sucrose production starts without delay, but the sucrose: glucose ratio is 1.25:1. Obviously, most of the new-formed sugar is utilized locally. Labeling with 14CO2 has shown that phloen export starts 30 to 40 min after the onset of photosynthesis, when the sucrose: glucose ratio has increased to 13:1. The first newly formed starch can be detected when phloem export is reactivated. Glucose content remains constantly low af about 2 M for at least 2 h, and it never exceeds 10 M. Radioactivity in the exporting veins is about five times higher after 2 to 7 h of re-illumination than in the 14-h-day plant. Therefore, phloem export is either intensified during the period of reactivation or exported assimilates are partly unloaded along their way. Comparison of photosynthetic activity of equal-sized leaf strips has shown that both accumulation of photosynthates and radioactivity of exporting veins are about three times higher in the detached strip than in the strip which remained attached to the mother plant.  相似文献   

10.
Effects of deficient (20mmol m?3) and sufficient (1000 mmol m?3) magnesium (Mg) supply and of varied light intensity (100 μmol m?2 s?1 to 580 μmol m?2 s?1) on paraquat-dependent chlorophyll destruction in bean (Phaseolus vulgaris) plants grown in nutrient solution were studied over a 12-d period using leaf discs or intact primary leaves. Treatment of leaf discs with 10mmol m 3 paraquat for 15h caused severe chlorophyll loss, especially with increasing light intensity. This chlorophyll destruction by paraquat was very much higher in Mg-sufficient than Mg-deficient leaves. The occurrence of paraquat resistance in Mg deficient leaves was already apparent after 6d growth in nutrient solution, i.e. before any decrease in chlorophyll or growth by Mg deficiency was evident. Also, following foliar application of paraquat (10–140 mmol m?3) to intact plants, Mg-deficient plants were much more resistant to paraquat, even following longer exposure duration (72 h) and four to 14 times higher paraquat concentrations than those received by Mg sufficient plants. From experiments where exogenous scavengers of superoxide radical (O2.-), hydroxyl radical (OH·) and singlet oxygen (1O2) were applied to leaf discs, it appears that O2.-, and partly, OH· are the main O2 species which contribute to chlorophyll destruction by paraquat. The results demonstrate that Mg-deficient bean plants become highly resistant to O2.--mediated and light-induced paraquat injury. The mode of this paraquat resistance is attributed to well-known stimulative effects of Mg deficiency on O2.- and H2O2 scavenging enzymes and antioxidants.  相似文献   

11.
Fageria  Nand Kumar 《Plant and Soil》1974,41(2):313-324
Plant and Soil - In this investigation absorption characteristics of magnesium were investigated by intact groundnut (Arachis hypogaea L.) plants from dilute nutrient solutions over an extended...  相似文献   

12.
A new soil testing procedure has been used to demonstrate the effect of an overfertilization by potassium during the preceding years. The total concentration of cations was governed by the amount of soluble anions and the proportion between the different cations was dependent on exchange reactions and is described by activity ratio. High activity ratio between potassium and calcium induced Ca-deficiency, which resulted in a restricted root functioning shown by periodic decreases of nutrient uptake rates and plant growth rate. P-deficiency restricted root growth, but although ammonium phosphate was most effective to increase P-concentration in soil extracts and P-absorption by plants, ordinary superphosphate gave the highest yield and the best utilization of the absorbed phosphorus, magnesium, and calcium.  相似文献   

13.
Several lines of evidence indicate that glucose and fructose are essentially absent in mobile phloem sap. However, this paradigm has been called into question, especially but not entirely, with respect to species in the Ranunculaceae and Papaveraceae. In the experiments in question, phloem sap was obtained by detaching leaves and placing the cut ends of the petioles in an EDTA solution. More hexose than sucrose was detected. In the present study, these results were confirmed for four species. However, almost identical results were obtained when the leaf blades were removed and only petiole stubs were immersed. This suggests that the sugars in the EDTA solution represent compounds extracted from the petioles, rather than sugars in transit in the phloem. In further experiments, the leaf blades were exposed to (14)CO(2) and, following a chase period, radiolabelled sugars in the petioles and EDTA exudate were identified. Almost all the radiolabel was in the form of [(14)C]sucrose, with little radiolabelled hexose. The data support the long-held contention that sucrose is a ubiquitous transport sugar, but hexoses are essentially absent in the phloem stream.  相似文献   

14.
为了揭示低磷胁迫下蔗糖对杉木低磷胁迫响应和蔗糖代谢的影响,选用两种不同磷效率杉木家系M32和M28进行低磷胁迫下的蔗糖添加试验,分析蔗糖添加对低磷胁迫下杉木形态特征、生理特性和低磷诱导相关基因表达的影响。结果表明:蔗糖添加促进了低磷胁迫下杉木苗高、根长、根表面积、根平均直径、根体积、根叶组织蔗糖含量和根叶组织无机磷含量的增加,但仍明显低于正常供磷处理下添加蔗糖处理的杉木增量。低磷促进杉木叶中花青素的积累,而正常供磷和低磷胁迫下的蔗糖添加处理都显著促进了叶片花青素含量的增加。随着胁迫时间的延长,M28与M32在根、叶组织的蔗糖含量存在显著差异,且M28根叶组织中的蔗糖合成酶活性和蔗糖磷酸合成酶活性都高于M32。蔗糖合成酶ClSuSy在M28和M32根系中受低磷胁迫诱导下调表达,但蔗糖添加处理明显诱导ClSuSy表达量升高,M28在正常供磷并添加蔗糖处理下的ClSuSy表达量显著高于其它处理。蔗糖转运蛋白SUT4、磷转运蛋白ClPht1;4、紫色酸性磷酸酶PAP1和PAP11在M28和M32根系中总体上受低磷胁迫诱导上调表达,且受蔗糖添加处理诱导下调表达。低磷胁迫下,添加或不添加蔗糖处理的M32根系SUT4的表达量均在15d时显著升高,并在45d时回落到正常水平。ClPht1;4和PAP1在低磷胁迫15d的表达量显著高于45d时的表达量,且ClPht1;4在M32根系中的表达量远高于M28。本研究表明,蔗糖对杉木低磷胁迫响应和糖代谢有重要的影响作用,低磷胁迫下添加蔗糖处理能够在一定程度上缓解杉木低磷胁迫响应。  相似文献   

15.
16.
Phlorizin (1-[2-(β- d -glucopyranosyloxy)-4, 6-dihydroxyphenyl]-3-(4-hydroxyphenyl)-1-propanone) is a well-known non-transported inhibitor of glucose uptake in animal cells. The effects of this compound were studied on the transmembrane potential difference (PD) of broad bean ( Vicia faba L. cv. Aguadulce) mesophyll cells, and on the uptake of amino acids and sugars by the leaf tissues. Phlorizin (5 m M ) induced a marginal depolarization (7 to 10 mV) of the normal PD (-140 mV), and a slight decrease in the uptake of glycine and serine. By contrast, phlorizin induced a stronger inhibition of the uptake of glucose and 3–O-methylglucose, and more particularly of sucrose uptake and phloem loading. In tissues aged for 12 h, 5 m M phlorizin inhibited the absorption of sucrose from a 1 m M solution by 70%. Kinetic experiments demonstrated that phlorizin acted as a competitive inhibitor for the sucrose carrier and for the hexose carrier. Efflux experiments showed that the counter-exchange of sucrose and of 3–O-methylglucose was also phlorizin-sensitive. Overall, the data show that phlorizin is recognized by the hexose carrier and, more efficiently, by the sucrose carrier of the material investigated, but that it is not transported across the membrane.  相似文献   

17.
Volatiles released from bean plants in response to agromyzid flies   总被引:1,自引:0,他引:1  
Wei JN  Zhu J  Kang L 《Planta》2006,224(2):279-287
Liriomyza sativae Blanchard and Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae) are two invasive flies in China that have caused economical damage on vegetables and ornamental plants. In this article, we report the profiles of emitted volatiles from healthy, mechanically damaged, and leafminer-damaged bean, Phaseolus vulgaris L., plants. Among 25 emitted volatiles identified, (E)-2-hexen-1-al, (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), (Z)-3-hexenyl acetate, (Z)-3-hexen-1-ol, (syn)- and (anti)-2-methylpropanal oxime, (syn)-2-methylbutanal oxime, linalool, and (E,E)-α-farnesene were consistently released from damaged bean plants. Combined amounts of these nine compounds made up more than 70% of the total volatiles emitted from each treatment. No qualitative differences in volatile emission were found between bean plants damaged by the two fly species; however, amounts of several major compounds induced by L. huidobrensis damage were significantly higher than those from plants damaged by L. sativae. The mechanically damaged plants released a higher proportion of green leaf volatiles than plants in the other treatments, whereas leafminer-damaged plants produced more terpenoids and oximes. Furthermore, the volatile profiles emitted from plants, damaged by adult leafminers, by second instar larvae, and even the plants with empty mines left by leafminer larvae (the pupal stage) were significantly different. The identification of volatile oximes released from damaged plants was confirmed and is discussed in a behavioral and biological control context.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

18.
To study the export of sugars from leaves and their long-distance transport, sucrose-proton/co-transporter activity of potato was inhibited by antisense repression of StSUT1 under control of either a ubiquitously active (CaMV 35S ) or a companion-cell-specific (rolC) promotor in transgenic plants. Transformants exhibiting reduced levels of the sucrose-transporter mRNA and showing a dramatic reduction in root and tuber growth, were chosen to investigate the ultrastructure of their source leaves. The transformants had a regular leaf anatomy with a single-layered palisade parenchyma, and bicollateral minor veins within the spongy parenchyma. Regardless of the promoter used, source leaves from transformants showed an altered leaf phenotype and a permanent accumulation of assimilates as indicated by the number and size of starch grains, and by the occurrence of lipid-storing oleosomes. Starch accumulated throughout the leaf: in epidermis, mesophyll and, to a smaller degree, in phloem parenchyma cells of minor veins. Oleosomes were observed equally in mesophyll and phloem parenchyma cells. Companion cells were not involved in lipid accmulation and their chloroplasts developed only small starch grains. The similarity of ultrastructural symptoms under both promotors corresponds to, rather than contradicts, the hypothesis that assimilates can move symplasmically from mesophyll, via the bundle sheath, up to the phloem. The microscopical symptoms of a constitutively high sugar level in the transformant leaves were compared with those in wild-type plants after cold-girdling of the petiole. Inhibition of sugar export, both by a reduction of sucrose carriers in the sieve element/companion cell complex (se/cc complex), or further downstream by cold-girdling, equally evokes the accumulation of assimilates in all leaf tissues up to the se/cc complex border. However, microscopy revealed that antisense inhibition of loading produces a persistently high sugar level throughout the leaf, while cold-girdling leads only to local patches containing high levels of sugar. Received: 4 March 1998 / Accepted: 7 April 1998  相似文献   

19.
MicroRNAs (miRNAs) are endogenous small RNAs regulating plant development and stress responses. In addition, phosphorus (P) is an important macronutrient for plant growth and development. More than two hundred miRNAs have been identified in Glycine Max and a few of miRNAs have been shown to respond to P deficiency, however, whether there are other miRNAs involved in P deficiency response is largely unknown. In this study, we used high-throughput small RNA sequencing and whole-genome-wide mining to identify the potential miRNAs in response to P deficiency. After sequencing, we deduced 183 known, 99 conserved and 126 novel miRNAs in Glycine Max. Among them, in response to P deficiency, the expressions of 27 known, 16 conserved and 12 novel miRNAs showed significant changes in roots, whereas the expressions of 34 known, 14 conserved and 7 novel miRNAs were significantly different in shoots. Furthermore, we validated the predicated novel miRNAs and found that three miRNAs in roots and five miRNAs in shoots responded to P deficiency. Some miRNAs were P-induced whereas some were P-suppressed. Together these results indicated that the miRNAs identified might play important roles in regulating P signaling pathway.  相似文献   

20.
  • Being the principal product of photosynthesis, sucrose is involved in many metabolic processes in plants. As magnesium (Mg) is phloem mobile, an inverse relationship between Mg shortage and sugar accumulation in leaves is often observed.
  • Mg deficiency effects on carbohydrate contents and invertase activities were determined in Sulla carnosa Desf. Plants were grown hydroponically at different Mg concentrations (0.00, 0.01, 0.05 and 1.50 mM Mg) for one month.
  • Mineral analysis showed that Mg contents were drastically diminished in shoots and roots mainly at 0.01 and 0.00 mM Mg. This decline was adversely associated with a significant increase of sucrose, fructose and mainly glucose in shoots of plants exposed to severe deficiency. By contrast, sugar contents were severely reduced in roots of these plants indicating an alteration of carbohydrate partitioning between shoots and roots of Mg‐deficient plants. Cell wall invertase activity was highly enhanced in roots of Mg‐deficient plants, while the vacuolar invertase activity was reduced at 0.00 mM Mg. This decrease of vacuolar invertase activity may indicate the sensibility of roots to Mg starvation resulting from sucrose transport inhibition. 14CO2 labeling experiments were in accordance with these findings showing an inhibition of sucrose transport from source leaves to sink tissues (roots) under Mg depletion.
  • The obtained results confirm previous findings about Mg involvement in photosynthate loading into phloem and add new insights into mechanisms evolved by S. carnosa to cope with Mg shortage in particular the increase of the activity of cell wall invertase.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号