首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
J W Chiao 《Blood cells》1987,13(1-2):111-115
The process and mechanism of human myeloid leukemia cell differentiation induced by T-cell lymphokine maturation inducer activity was investigated. The maturation inducer activity was purified from conditioned medium of normal peripheral blood lymphocytes and shown to be a 50,000 M.W. protein. The degree of maturation of myeloid cell cultures was directly related to the dosage of the inducer. The interaction of the leukemia cells with the inducer led to initiation of terminal differentiation to monocytic cells. Proliferation cessation of the leukemia cells and the expressions of mature monocytic cells indicated a continuous and multistaged process.  相似文献   

3.
Role Of Immature Myeloid Cells in Mechanisms of Immune Evasion In Cancer   总被引:10,自引:0,他引:10  
Tumor affects myelopoiesis by inhibiting the process of differentiation/maturation of antigen-presenting cells from their myeloid precursors and by stimulating an accumulation of immature myeloid cells in cancer patients and tumor-bearing mice. These immature myeloid cells can contribute greatly to tumor progression and promote tumor evasion from immune attack: i) by inhibiting development of adaptive immune responses against tumor in lymphoid organs; ii) by migrating into tumor site and differentiating there into highly immune suppressive tumor-associated macrophages. Immature myeloid cells and tumor-associated macrophages utilize different JAK/STAT signaling pathways and different mechanisms to control T cell responses, which include increased production of TGF-beta, reactive oxygen species, peroxynitrites, as well as enhanced L-arginine metabolism. Understanding of precise mechanisms, which tumors use to affect differentiation of APC from myeloid cell precursors and inhibit T cell responses, could help to develop new approaches for cancer therapy and substantially improve efficiency of existing cancer vaccination strategies.  相似文献   

4.
Bezafibrate belongs to the class of fibric acid derivatives usually used as antihyperlipidemia agents. From the biochemical point of view, these drugs show intriguing properties which leads one to think they may promote a differentiation process in tumour cells. This new pharmacological activity of fibrates could partially depend on the induction of an oxidative stress. To test this hypothesis, the effect of bezafibrate, as well as of clofibric acid and gemfibrozil, on growth, functional and cytochemical characteristics of human leukaemia-derived cell lines HL-60, U-937 and K-562 has been studied in some details. The results show that bezafibrate, gemfibrozil and clofibric acid, do induce differentiation in human myeloid leukaemia cell lines as indicated by several differentiation markers. Moreover fibrates, in dose dependent manner, significantly alter the cell cycle distributions, mainly leading to G0/G1 phase increment and G2/M phase reduction. The differentiating activity of fibrates could have significant implications both for the pharmacotoxicological profile of this class of compounds and for the pathophysiology of neoplastic disease.  相似文献   

5.
Bryostatin-1 inhibits acute myeloid leukemia (AML) in vitroat doses that stimulate the growth of normal hematopoietic progenitors.Although bryostatin-1 has a number of distinct biological activities, those specifically responsible for its antileukemic activity are unclear. We found that bryostatin-1 (10(-8) M) inhibited cell cycling at G(1), induced phenotypic evidence of differentiation, and limited the clonogenic growth of both AML cell lines and patient specimens. This activity was markedly enhanced by granulocyte/macrophage-colony stimulating factor, whereas growth factor-neutralizing antibodies completely inhibited both the differentiating and antileukemic activities of bryostatin-1. Cell cycle inhibition and growth factors were also required for the differentiating activities of two unrelated agents, hydroxyurea and phenylbutyrate. These data suggest that many pharmacological differentiating agents require both cell cycle arrest and lineage-specific growth factors for full activity and may explain why these agents have demonstrated only limited clinical efficacy.  相似文献   

6.
Leukemia arises from blockage of the differentiation/maturation of hematopoietic progenitor cells at different stages with uncontrolled proliferation of leukemic cells. However, the signal pathways that block cell differentiation remain unclear. Herein we found that SUMOylation of the M2 isoform of pyruvate kinase (PKM2), a rate-limiting glycolytic enzyme catalyzing the dephosphorylation of phosphoenolpyruvate to pyruvate, is prevalent in a variety of leukemic cell lines as well as primary samples from patients with leukemia through multiple-reaction monitoring based targeted mass spectrometry analysis. SUMOylation of PKM2 lysine 270 (K270) triggered conformation change from tetrameric to dimeric of PKM2, reduced PK activity, and led to nuclear translocation of PKM2. SUMO1 modification of PKM2 recruits and promotes degradation of RUNX1 via a SUMO-interacting motif, resulting in blockage of myeloid differentiation of NB4 and U937 leukemia cells. Replacement of wild type PKM2 with a SUMOylation-deficient mutant (K270R) abrogated the interaction with RUNX1, and the blockage of myeloid differentiation in vitro and in xenograft model. Our results establish PKM2 as an essential modulator of leukemia cell differentiation and a potential therapeutic target, which may offer synergistic effect with differentiation therapy in the treatment of leukemia.Subject terms: Leukaemia, Haematological cancer  相似文献   

7.
EMR2/CD312 is a member of the adhesion-GPCR family that contains extracellular EGF-like domains. Previously it has been shown to interact with chondroitin sulphate glycosaminoglycans in an isoform-specific manner. Although EMR2 expression has been found to be restricted to human myeloid cells, its expression profile has not yet been systemically characterized. In this report, we show that EMR2 receptor expression is up-regulated during differentiation and maturation of macrophages, and is conversely down-regulated during dendritic cell maturation. We also demonstrate that EMR2 receptor alternative splicing and glycosylation is regulated during myeloid differentiation. In monocytes and macrophages, EMR2 can be specifically up-regulated by LPS and IL-10 via an IL-10-mediated pathway. In inflamed tissues, EMR2 is detected in subpopulations of myeloid cells including macrophages and neutrophils. The results presented here further support the idea that EMR2 plays a role in the migration and adhesion of myeloid cells during cell differentiation, maturation, and activation.  相似文献   

8.
It is well established that the effectiveness of anticancer drugs may result from combined cytotoxic and differentiation activities on tumor cells. Also, differentiating agents are able to alter the susceptibility of cancer cells to antineoplastic drug therapy. However, the acquisition and/or development of drug resistance that frequently appears in anticancer treatment can impair these interactions between differentiation agents and cytotoxic drugs. In the present study, we report that the acquisition of resistance to anthracyclines in two humans, promyeolocytic leukemia HL-60 and eythroleukemia K562 cell lines, results in a restricted maturation process induced by differentiating agents with respect to that exhibited by their corresponding drug-sensitive counterparts. Interestingly, differentiating agents are able to decrease the overexpression of drug-efflux pumps as it is the case of MRP1 in the resistant HL-60 cells, thus increasing the sensitivity of cells to drug treatment. In addition, susceptibility of the drug-sensitive cells to certain apoptotic stimuli is significantly reduced after differentiation. The results here reported indicate complex interactions between cytotoxic (drug therapy) and non-cytotoxic (differentiation) cancer treatments, which should be taken into account to improve therapeutic efficiency.  相似文献   

9.
The main purpose of this report is to provide a review of the present knowledge on the structure, function, and possible regulatory role of c-fes in the genetic programs underlying the proliferation and differentiation of hematopoietic myeloid cells. Fes encodes a non-receptor tyrosine kinase that is highly expressed in immature and differentiated cells of the granulocytic and mono-macrophagic lineages. It is therefore possible that c-fes is involved in the signal transduction of myeloid cell differentiation, even if the specific substrates phosphorylated by this protooncogene are only poorly characterised. Several experimental models have been established to evaluate the role of c-fes in myeloid differentiation, in particular: the differentiation capacity of HL60 cells lacking the p92(c-fes) protein, the transfection of c-fes gene into K562 cells and transgenic animals overexpressing c-fes. The results obtained point to the importance of c-fes in myeloid cells, since it appears to be involved in granulocytic maturation as an antiapoptotic gene, and in macrophagic maturation as a regulatory gene.  相似文献   

10.
Bcl-XL, a member of the Bcl-2 protein family, is able to suppress cell death induced by diverse stimuli in many cell types, including hematopoietic cells. Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that promotes the proliferation and maturation of neutrophils, eosinophils, and macrophages from bone marrow progenitors. We fused GM-CSF to Bcl-XL and examined the capacity of this chimera to bind human cells through the GM-CSF receptor and prevent apoptosis. We found that the chimeric protein increased the proliferation of human monocytes in culture from 24 h until at least 72 h. In the presence of different apoptotic agents, GM-CSF-Bcl-XL protected cells from induced cell death and promoted proliferation, whereas GM-CSF alone was completely inhibited. In the presence of cytarabine, GM-CSF-Bcl-XL was able also to promote the differentiation of the CD34+ myeloid precursor whereas Lfn-Bcl-XL, lacking the GM-CSF domain-stimulated cell proliferation and not differentiation. We conclude that recombinant GM-CSF-Bcl-XL binds the GM-CSF receptor on human monocyte/macrophage cells and bone marrow progenitors inducing differentiation and allowing Bcl-XL entry into cells where it blocks cell death and allows amplified cell proliferation. This fully human fusion protein has potential to prevent monocytopenia and represents a new strategy for engineering anti-apoptotic therapeutics.  相似文献   

11.
Three new antitumour drugs containing two 5-fluorouracil moieties at both ends of the structure and a two amide bond linker were synthesized. Appropriated bis-acetal were reacted with two equivalents of 5-FU to afford the desired compounds. These drugs were evaluated for their ability to induce myogenic maturation in vitro on human rhabdomyosarcoma cells in an experimental model. Compounds 5 and 6 induced morphological and phenotypical differentiation in rhabdomyosarcoma cells at 4.5 and 3.5 microM, respectively. These new cell differentiating agents could be used as an alternative to selective destruction of undifferentiated cells. A potential role of the differentiation therapy as an alternative approach to the treatment of rhabdomyosarcomas is suggested.  相似文献   

12.
The human promyelocytic cell line HL 60 can be induced to differentiate toward more mature myeloid or monocytic forms by a variety of agents. This process is thought to require several days of exposure to the inducer, thus making it difficult to identify the early cellular changes which are fundamental to the differentiation program, and to relate the induction to phases of the cell cycle. In order to study the kinetics of leukemic cell differentiation we have developed a system for the induction of rapid monocytic maturation in a subpopulation of HL 60 cells. The cells are exposed to 10(-7) M 1,25-dihydroxycholecalciferol for 4 hr in serum-free medium. Subsequent incubation in a complete medium results in cellular differentiation recognizable by several criteria (phagocytosis, nonspecific esterase reaction, adherence to substratum, cell morphology) beginning at 10 hr from the exposure to the inducer. Approximately 20 hr later 30-40% of the cells in culture show the differentiated phenotype and are capable of phagocytosis. The proportion of differentiated cells in culture decreases thereafter. This system has been utilized to study the expression of c-myc oncogene in relation to the kinetics of maturation, and it was found that the inhibition of the expression of this gene precedes the onset of phenotypic differentiation by approximately 8 hr, is transient, and is accompanied by a brief retardation of cell proliferation, which resumes the normal rate within 24 hr of the exposure to the inducer.  相似文献   

13.
The human myeloid cell nuclear differentiation antigen (MNDA) is expressed constitutively in cells of the myeloid lineage, appearing in myeloblast cells in some cases of acute myeloid leukemia and consistently being detected in promyelocyte stage cells as well as in all later stage cells including peripheral blood monocytes and granulocytes. The human myeloid leukemia cell lines, HL-60, U937, and THP-1, express similar levels of immunochemically detectable MNDA. Although, the level of MNDA mRNA in primary monocytes is very low it was up-regulated at 6 h following the addition of interferon α. The effect of interferon α on the MNDA mRNA is also observed in the cell lines HL-60, U937, and THP-1. The MNDA mRNA level in primary granulocytes was unaffected by addition of interferon α and other agents including interferon γ, endotoxin, poly (I) · poly (C), and FMLP. The MNDA mRNA level in the myeloid cell lines was also unaffected by the latter four agents. Induction of differentiation in the myeloid cell lines with phorbol ester induces monocyte differentiation which was accompanied by a decrease in MNDA mRNA level. This reduced level of mRNA could then be elevated with subsequent interferon α treatment. The effects of phorbol ester on MNDA mRNA appeared to be associated with induced differentiation since inhibiting cell proliferation did not alter the level of MNDA mRNA and cell cycle variation in MNDA mRNA levels were not observed. The ability of interferon α to up-regulate MNDA mRNA in phorbol ester treated myeloid cell lines is consistent with the observations made in primary monocytes. Granulocyte differentiation induced by retinoic acid treatment of HL-60 cells did not alter the MNDA mRNA level which was also unchanged following subsequent treatment with interferon α. The lack of interferon α effects on retinoic acid treated HL-60 cells is consistent with its inability to influence MNDA mRNA level in primary granulocytes.  相似文献   

14.
As the defining feature of Acute Myeloid Leukemia (AML) is a maturation arrest, a highly desirable therapeutic strategy is to induce leukemic cell maturation. This therapeutic strategy has the potential of avoiding the significant side effects that occur with the traditional AML therapeutics. We identified a natural compound securinine, as a leukemia differentiation-inducing agent. Securinine is a plant-derived alkaloid that has previously been used clinically as a therapeutic for primarily neurological related diseases. Securinine induces monocytic differentiation of a wide range of myeloid leukemia cell lines as well as primary leukemic patient samples. Securinine's clinical potential for AML can be seen from its ability to induce significant growth arrest in cell lines and patient samples as well as its activity in significantly impairing the growth of AML tumors in nude mice. In addition, securinine can synergize with currently employed agents such as ATRA and decitabine to induce differentiation. This study has revealed securinine induces differentiation through the activation of DNA damage signaling. Securinine is a promising new monocytic differentiation inducing agent for AML that has seen previous clinical use for non-related disorders.  相似文献   

15.
Studies were conducted to determine the relationship between the pretherapy characteristics of leukemia cells and their behaviour during culture in vitro. Leukemia cells which proliferated well in vitro also proliferated well in vivo. Cells which manifested myeloid or monocytic differentiation in vivo tended to manifest differentiation along these lines in vitro. Cells which manifested high levels of expression of c-fms, c-fes, or triose phosphate isomerase prior to culture were likely to differentiate in vitro, with high levels of c-fes expression being related to myeloid maturation. These observations suggest that differentiation at the molecular level prior to culture is a requisite for leukemia cell differentiation in vitro. The same may be true for differentiation in vivo under the influence of exogenously administered agents such as cytotoxic chemotherapy or recombinant growth factors.  相似文献   

16.
Myeloid differentiation of HL-60 human promyelocytic leukemia cells was studied during DMSO-induced differentiation. G 1/0-specific growth arrest could occur without the usual associated subsequent phenotypic differentiation into mature myeloid cells, suggesting that growth arrest and phenotypic differentiation are separately regulated. In the course of differentiating, the cells achieved a semi-stable intermediate state where they had a labile, pre-commitment memory of exposure to inducer, but were not yet committed to differentiation. This state was associated with a nuclear structural change previously found to be associated with the precommitment memory state. The process of differentiation could thus be resolved into two steps, early events up through development of pre-commitment memory and late events subsequents to pre-commitment memory. The kinetics of terminal cell differentiation indicated that the cellular regulatory event initiating a program of differentiation in response to inducer was S phase-specific. A comparison of the present results for DSMO to previous results for retinoic acid (RA)-induced HL-60 myeloid differentiation showed that the two inducers effect different cellular pathways for differentiation of HL-60 cells to mature myeloid cells, but with certain common features including the above S-phase specificity and pre-commitment memory.  相似文献   

17.
Vav1 is a critical signal transducer for both the development and function of normal hematopoietic cells, in which it regulates the acquisition of maturation-related properties, including adhesion, motility, and phagocytosis. Vav1 is also important for the agonist-induced maturation of acute promyelocytic leukemia (APL)-derived promyelocytes, in which it promotes the acquisition of a mature phenotype by playing multiple functions at both cytoplasmic and nuclear levels. We investigated the possible role of Vav1 in the differentiation of leukemic precursors to monocytes/macrophages. Tumoral promyelocytes in which Vav1 was negatively modulated were induced to differentiate into monocytes/macrophages with phorbol-12-myristate-13-acetate (PMA) and monitored for their maturation-related properties. We found that Vav1 was crucial for the phenotypical differentiation of tumoral myeloid precursors to monocytes/macrophages, in terms of CD11b expression, adhesion capability and cell morphology. Confocal analysis revealed that Vav1 may synergize with actin in modulating nuclear morphology of PMA-treated adherent cells. Our data indicate that, in tumoral promyelocytes, Vav1 is a component of lineage-specific transduction machineries that can be recruited by various differentiating agents. Since Vav1 plays a central role in the completion of the differentiation program of leukemic promyelocytes along diverse hematopoietic lineages, it can be considered a common target for developing new therapeutic strategies for the various subtypes of myeloid leukemias.  相似文献   

18.
19.
We examined whether chemical agents reported to induce differentiation of leukemic cells also have differentiating effects on normal human granulocytes using alkaline phosphatase activity as a marker. Among 11 compounds examined, only vitamin A analogues were shown to induce this activity in granulocytes from bone marrow of normal individuals. Retinoic acid was the most potent inducer of the activity followed by retinal, whereas retinol and retinol acetate did not induce any activity. The effect on the alkaline phosphatase activity by retinoic acid and retinal was considered to reflect their effect on normal granulocytic differentiation and maturation.  相似文献   

20.
The cell proliferation relating an uncommitted precursor cell to a differentiated terminal cell has been quantitated. HL-60 promyelocytes, a bipotent precursor cell capable of differentiating along either the myeloid or monocytic pathway, were induced by a human lymphocyte-conditioned medium (CM) to differentiate into macrophage-like cells. The promyelocytes had a generation time of approx. 42 h. Most promyelocytes which differentiated became macrophage-like cells after only one cell division. Some, a minority, underwent more than one division. The time between induction of differentiation and expression of differentiated characteristics could thus be very short. Labelled S-phase promyelocytes could differentiate after traversing S. G2 and undergoing mitosis. Some, approx. 21%, required a subsequent complete cell cycle before differentiating. The data suggest a model in which cells must undergo a S-phase-specific differentiation control event in the presence of CM in order to differentiate in the subsequent G1 phase. This model proposes that a discrete time in S phase exists when cells are susceptible to exogenous regulation directing them to yield differentiated daughter cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号