首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the concentration of a mixture (1/1 [wt/wt]) of yeast extract and bioTrypcase (YE+bT) on the growth and physiology of a new species, Bacillus thermoamylovorans, a moderately thermophilic, non-spore-forming, lactic acid-producing bacterium isolated from palm wine, was studied. At an initial glucose concentration of 100 mM, B. thermoamylovorans growth was limited when the concentration of YE+bT was lower than 5.0 g liter−1; under these conditions, cellular yield reached a maximum value of 0.4 g of cells per g of YE+bT. Growth limitation due to deficiency in growth factors led to a significant shift in glucose metabolism towards lactate production. Lactate constituted 27.5 and 76% of the end products of glucose fermentation in media containing YE+bT at 20.0 and 1.0 g liter−1, respectively. This result markedly differed from published data for lactic bacteria, which indicated that fermentative metabolism remained homolactic regardless of the concentration of YE. Our results showed that the ratio between cellular synthesis and energy production increased with the concentration of YE+bT in the culture medium. They indicate that the industrial production of lactic acid through glucose fermentation by B. thermoamylovorans can be optimized by using a medium where glucose is present in excess and the organic additives are limiting.  相似文献   

2.
K L Ho  A L Pometto  rd    P N Hinz 《Applied microbiology》1997,63(7):2533-2542
Four customized bioreactors, three with plastic composite supports (PCS) and one with suspended cells (control), were operated as repeated-batch fermentors for 66 days at pH 5 and 37 degrees C. The working volume of each customized reactor was 600 ml, and each reactor's medium was changed every 2 to 5 days for 17 batches. The performance of PCS bioreactors in long-term biofilm repeated-batch fermentation was compared with that of suspended-cell bioreactors in this research. PCS could stimulate biofilm formation, supply nutrients to attached and free suspended cells, and reduce medium channelling for lactic acid production. Compared with conventional repeated-batch fermentation, PCS bioreactors shortened the lag time by threefold (control, 11 h; PCS, 3.5 h) and sixfold (control, 9 h; PCS, 1.5 h) at yeast extract concentrations of 0.4 and 0.8% (wt/vol), respectively. They also increased the lactic acid productivity of Lactobacillus casei subsp. rhamnosus (ATCC 11443) by 40 to 70% and shortened the total fermentation time by 28 to 61% at all yeast extract concentrations. The fastest productivity of the PCS bioreactors (4.26 g/liter/h) was at a starting glucose concentration of 10% (wt/vol), whereas that of the control (2.78 g/liter/h) was at 8% (wt/vol). PCS biofilm lactic acid fermentation can drastically improve the fermentation rate with reduced complex-nutrient addition.  相似文献   

3.
The effect of pH on the growth and physiology of Bacillus thermoamylovorans, a new moderately thermophilic and non-spore-forming bacterium isolated from palm wine, was studied. Growth occurred from pH 5.4 to 8.5, with optimum growth at 7.0. During the exponential growth phase at optimum pH, glucose was consumed at the maximum rate (qs), 17.87 mmol g(sup-1) h(sup-1), and was mainly fermented into acetate, ethanol, and formate (76.5% of metabolites produced). In acidic or alkaline conditions, glucose specific consumption rates were considerably reduced (qs = 8.06 mmol g(sup-1) h(sup-1) at pH 5.6 and 2.85 mmol g(sup-1) h(sup-1) at pH 8.4), and a switch in glucose metabolism toward lactate production (62.6% of metabolites produced at pH 5.6 and 41.2% of those produced at pH 8.4) was observed. Moreover, optimum cellular yield (Y(infx/ATP)), 14.8 g mol(sup-1), and optimum energy yield (Y(infATP/s)), 2.65 mol mol(sup-1), were observed at neutrality. The results of this study were compared with published data about lactic acid bacteria; this comparison allowed us to complement our previous taxonomic study of B. thermoamylovorans and to identify additional phenotypic differences between B. thermoamylovorans and lactobacilli.  相似文献   

4.
Fed batch cultures were performed to investigate the effect of yeast extract concentration on the kinetics of growth and acetic acid production of recombinant Escherichia coli BL21 in a synthetic medium. Three runs were performed with 40g/l total glucose concentration. The yeast extract/glucose ratio (YE/G; w/w), was 0.1, 0.05 and 0.025 in the feed. These decreasing YE/G values did not affect growth kinetics, but reduced the final cell concentration by about 10%, and also reduced the cell yield. Experiments with 60g/l total glucose concentration, one with a YE/G of 0.025 in the feed and the other without yeast extract, showed final acetic acid concentrations of 5.1 and 0.5g/l respectively, without any difference in cellular concentration. Although there was no significant influence on growth kinetics and final cellular concentration, the cell fermentative capacity was enhanced by yeast extract. The feed medium without yeast extract was the best condition for control purposes in high cell density cultures and for recombinant gene expression.  相似文献   

5.
Although available kinetic data provide a useful insight into the effects of medium composition on xanthan production by Xanthomonas campestris, they cannot account for the synergetic effects of carbon (glucose) and nitrogen (yeast extract) substrates on cell growth and xanthan production. In this work, we studied the effects of the glucose/yeast-extract ratio (G/YE) in the medium on cell growth and xanthan production in various operating modes, including batch, two-stage batch, and fed-batch fermentations. In general, both the xanthan yield and specific production rate increased with increasing G/YE in the medium, but the cell yield and specific growth rate decreased as G/YE increased. A two-stage batch fermentation with a G/YE shift from an initial low level (2.5% glucose/0.3% yeast extract) to a high level (5.0% glucose/0.3% yeast extract) at the end of the exponential growth phase was found to be preferable for xanthan production. This two-stage fermentation design both provided fast cell growth and gave a high xanthan yield and xanthan production rate. In contrast, fed-batch fermentation with intermittent additions of glucose to the fermentor during the stationary phase was not favorable for xanthan production because of the relatively low G/YE resulting in low xanthan production rate and yield. It is also important to use a moderately high yeast extract concentration in the medium in order to reach a high cell density before the culture enters the stationary phase. A high cell density is also important to the overall xanthan production rate. Received: 30 September 1996 / Received revision: 21 January 1997 / Accepted: 10 February 1997  相似文献   

6.
7.
The growth and citric acid production kinetics of Saccharomycopsis lipolytica on glucose are investigated in an aerated stirred fermentor. Cellular growth first proceeds exponentially until exhaustion of ammonia in the fermentation medium. Cells then continue to grow at a reduced rate with a concomitant decrease in intracellular nitrogen content. Citric and isocitric acid production starts at the end of the growth phase. During about 80 hr excretion proceeds at a constant rate of 0.7 g/liter/hr for citric acid and 0.1 g/liter/hr for isocitric acid. The final citric and isocitric acid concentrations are 95 and 10g/liter, respectively. During acid excretion cellular respiration accounts for 60 and 35% of consumed oxygen and glucose. Both acid and CO2 production rates follow a Michaelis–Menten-type dependence on oxygen concentration with Michaelis–Menten constants of 0.9 and 0.15 mg/liter for acid and CO2 productions, respectively.  相似文献   

8.
《Process Biochemistry》2004,39(9):1057-1062
Optimization of the fermentation medium for maximization of actinorhodin production by Streptomyces coelicolor A3(2) was carried out. Response surface methodology (RSM) was applied to optimize the medium constituents. A 24 full-factorial central composite design (CCD) was chosen to explain the combined effects of the four medium constituents, viz. sucrose, glucose, yeast extract (YE) and peptone, and to design a minimum number of experiments. The P-values of the coefficients for linear, quadratic and cross-product effect of sucrose and glucose concentration were <0.0001, suggesting that these were critical variables having the greatest effect on the production of actinorhodin in the complex medium. The optimized medium consisting of 339 g/l sucrose, 1 g/l glucose, 1.95 g/l YE and 2.72 g/l peptone predicted 195 mg/l of actinorhodin which was 32% higher than that of the unoptimized medium. The amounts of glucose, YE and peptone required were also reduced with RSM.  相似文献   

9.
Efficient lactic acid production from cane sugar molasses by Lactobacillus delbrueckii mutant Uc-3 in batch fermentation process is demonstrated. Lactic acid fermentation using molasses was not significantly affected by yeast extract concentrations. The final lactic acid concentration increased with increases of molasses sugar concentrations up to 190 g/liter. The maximum lactic acid concentration of 166 g/liter was obtained at a molasses sugar concentration of 190 g/liter with a productivity of 4.15 g/liter/h. Such a high concentration of lactic acid with high productivity from molasses has not been reported previously, and hence mutant Uc-3 could be a potential candidate for economical production of lactic acid from molasses at a commercial scale.  相似文献   

10.
The fermentation of Grifola frondosa was investigated in the shake flasks and a 5-L jar fermenter in batch and fed-batch modes. In the shake-flask experiments, the preferable mycelial growth and exopolysaccharide (EPS) production was observed at relatively low pH; maltose and glucose were preferred carbon sources for high mycelial production. The EPS was doubled after 13 d of cultivation when glucose was increased from 2% to 4%. Yeast extract (YE) (0.4%) in combination with corn steep powder (CSP) (0.6%) and YE (0.8%) in combination with CSP (1.2%) were preferred nitrogen sources for high mycelial production and EPS production, respectively. All plant oils tested significantly stimulate cell growth of G. frondosa but they failed to enhance EPS production. The EPS products usually consisted of two fractions of different molecular sizes varied by the plant oils used. The fed-batch fermentation by glucose feeding was performed when the glucose concentration in the medium was lower than 0.5% (5g/L), which greatly enhanced the accumulation of mycelial biomass and EPS; the mycelial biomass and EPS were 3.97g/L and 1.04g/L before glucose feeding, which reached 8.23g/L and 3.88g/L at 13 d of cultivation. In contrast, the mycelial biomass and EPS in the batch fermentation were 6.7g/L and 3.3g/L at 13 d of cultivation.  相似文献   

11.
The supplementation of a simple medium with soy flour led to an increase in the specific growth rate and viable cell concentration of Saccharomyces bayanus during fermentation. Increasing the amount of soy flour led to an increase in the maximum number of viable yeast cells and the percentage of glucose fermented. It was possible in 64 h to reach 12.8% (wt/vol) ethanol by adding 4% soy flour (wt/vol) to a simple medium with 300 g of glucose per liter. The aqueous extract from soy flour was nearly as effective as whole-soy flour, whereas the lipidic fraction had no positive effect.  相似文献   

12.
The effect of the component concentrations of a synthetic medium on acetone and butanol fermentation by Clostridium acetobutylicum ATCC 824 was investigated. Cell growth was dependent on the presence of Mg, Fe, and K in the medium. Mg and Mn had deleterious effects when in excess. Ammonium acetate in excess caused acid fermentation. The metabolism was composed of two phases: an acid phase and a solvent one. Low concentrations of glucose allowed the first phase only. The theoretical ratio of the conversion of glucose to solvents, which was 28 to 33%, was obtained with the following medium: MgSO4, 50 to 200 mg/liter; MnSO4, 0 to 20 mg/liter; KCl, 0.015 to 8 g/liter (an equivalent concentration of K+ was supplied in the form of KH2PO4 and K2HPO4); FeSO4, 1 to 50 mg/liter; ammonium acetate, 1.1 to 2.2 g/liter; para-aminobenzoic acid, 1 mg/liter; biotin, 0.01 mg/liter; glucose, 20 to 60 g/liter.  相似文献   

13.
We investigated metabolic engineering of fermentation pathways in Escherichia coli for production of optically pure D- or L-lactate. Several pta mutant strains were examined, and a pta mutant of E. coli RR1 which was deficient in the phosphotransacetylase of the Pta-AckA pathway was found to metabolize glucose to D-lactate and to produce a small amount of succinate by-product under anaerobic conditions. An additional mutation in ppc made the mutant produce D-lactate like a homofermentative lactic acid bacterium. When the pta ppc double mutant was grown to higher biomass concentrations under aerobic conditions before it shifted to the anaerobic phase of D-lactate production, more than 62.2 g of D-lactate per liter was produced in 60 h, and the volumetric productivity was 1.04 g/liter/h. To examine whether the blocked acetate flux could be reoriented to a nonindigenous L-lactate pathway, an L-lactate dehydrogenase gene from Lactobacillus casei was introduced into a pta ldhA strain which lacked phosphotransacetylase and D-lactate dehydrogenase. This recombinant strain was able to metabolize glucose to L-lactate as the major fermentation product, and up to 45 g of L-lactate per liter was produced in 67 h. These results demonstrate that the central fermentation metabolism of E. coli can be reoriented to the production of D-lactate, an indigenous fermentation product, or to the production of L-lactate, a nonindigenous fermentation product.  相似文献   

14.
Process variables and concentration of carbon in media were optimised for lactic acid production by Lactobacillus casei NRRL B-441. Lactic acid yield was inversely proportional to initial glucose concentration within the experimental area (80-160 g l(-1)). The highest lactic acid concentration in batch fermentation, 118.6 g l(-1), was obtained with 160 g 1(-1) glucose. The maximum volumetric productivity, 4.4 g 1(-1) h(-1) at 15 h, was achieved at an initial glucose concentration of 100 g l(-1). Similar lactic acid concentrations were reached with a fedbatch approach using growing cells, in which case the fermentation time was much shorter. Statistical experimental design and response surface methodology were used for optimising the process variables. The temperature and pH optima for lactic acid production were 35 degrees C, pH 6.3. Malt sprout extract supplemented with yeast extract (4 g l(-1)) appeared to be an economical alternative to yeast extract alone (22 g l(-1)) although the fermentation time was a little longer. The results demonstrated both the separation of the growth and lactic acid production phases and lactic acid production by non-growing cells without any nutrient supplements. Resting L. casei cells converted 120 g l(-1) glucose to lactic acid with 100% yield and a maximum volumetric productivity of 3.5 g l(-1) h(-1).  相似文献   

15.
鼠李糖乳杆菌经实验室耐高糖高酸选育,能够在高糖浓度下高效高产L-乳酸。以酵母粉为氮源和生长因子,葡萄糖初始浓度分别为120 g/L和146 g/L,摇瓶培养120h,L-乳酸产量分别为104g/L和117.5g/L,L-乳酸得率分别为86.7%和80.5%。高葡萄糖浓度对菌的生长和乳酸发酵有一定的抑制。增加接种量,在高糖浓度发酵条件下,可以缩短发酵时间,但对增加乳酸产量效果不明显。乳酸浓度对鼠李糖乳杆菌生长和产酸有显著的影响。初始乳酸浓度到达70g/L以上时,鼠李糖乳杆菌基本不生长和产酸,葡萄糖消耗也被抑制。酵母粉是鼠李糖乳杆菌的优良氮源,使用其它被测试的氮源菌体生长和产酸都有一定程度的下降。用廉价的黄豆粉并补充微量维生素液,替代培养基中的酵母粉,可以使产酸浓度和碳源得率得以基本维持。  相似文献   

16.
Mortierella isabellina cultivated in nitrogen-limited media presented remarkable cell growth (up to 35.9 g/l) and high glucose uptake even with high initial sugar concentrations (e.g. 100 g/l) in media. After nitrogen depletion, significant fat quantities were accumulated inside the fungal mycelia (50-55%, wt/wt oil in dry biomass), resulting in a notable single cell oil production of 18.1 g/l of culture medium. Total dry biomass and lipid yields presented greatly increased values (0.34 and 0.17 g respectively per gram of glucose consumed). The microbial lipid produced contained gamma-linolenic acid (GLA) at a concentration of 3.5+/-1.0%, wt/wt, which corresponded to 16-19 mg GLA per gram of dry microbial mass and a maximum concentration of 0.801 g GLA per liter of culture medium.  相似文献   

17.
To reduce nutrient cost for lactic acid production, rice bran, one of agricultural wastes, was chosen as a nutrient source in this study. Although rice bran is rich in protein and vitamins, the use of rice bran without any treatment was inefficient in lactic acid production. Rice bran was treated by acid-hydrolysis before it was put in experiment, when it was hydrolyzed at initial pH 1, 30 g/L rice bran could provide a productivity to that degree of about 8 g/L YE, showing such a desirable result that the use of rice bran as nutrient source would be a solution for reducing nutrient cost. However, the addition of hydrolyzed rice bran prolonged lag phase of fermentation, especially, in the fermentation with rice bran hydrolyzed at initial pH 0.5, a prolonged lag phase of about 40 h was observed. According to the quantitative determination of thiamine, pyridoxine, organic nitrogen and carbon, the prolongation of lag phase might be the result from the destruction of B vitamins and excessive hydrolysis of protein. To shorten the lag phase, combining hydrolyzed rice bran with yeast extract (YE) of small amount was considered to be a solution. When 3g/L YE was combined with 30 g/L rice bran hydrolyzed at initial pH 1, obtained was a productivity 1.6 times higher than that of the control fermentation with 15 g/L YE.  相似文献   

18.
Succinic acid is a four-carbon dicarboxylic acid produced as one of the fermentation products of anaerobic metabolism. Based on the complete genome sequence of a capnophilic succinic acid-producing rumen bacterium, Mannheimia succiniciproducens, gene knockout studies were carried out to understand its anaerobic fermentative metabolism and consequently to develop a metabolically engineered strain capable of producing succinic acid without by-product formation. Among three different CO2-fixing metabolic reactions catalyzed by phosphoenolpyruvate (PEP) carboxykinase, PEP carboxylase, and malic enzyme, PEP carboxykinase was the most important for the anaerobic growth of M. succiniciproducens and succinic acid production. Oxaloacetate formed by carboxylation of PEP was found to be converted to succinic acid by three sequential reactions catalyzed by malate dehydrogenase, fumarase, and fumarate reductase. Major metabolic pathways leading to by-product formation were successfully removed by disrupting the ldhA, pflB, pta, and ackA genes. This metabolically engineered LPK7 strain was able to produce 13.4 g/liter of succinic acid from 20 g/liter glucose with little or no formation of acetic, formic, and lactic acids, resulting in a succinic acid yield of 0.97 mol succinic acid per mol glucose. Fed-batch culture of M. succiniciproducens LPK7 with intermittent glucose feeding allowed the production of 52.4 g/liter of succinic acid, with a succinic acid yield of 1.16 mol succinic acid per mol glucose and a succinic acid productivity of 1.8 g/liter/h, which should be useful for industrial production of succinic acid.  相似文献   

19.
Yarrowia lipolytica ACA-DC 50109 cultivated on olive-mill wastewater (O.M.W.)-based media, enriched with commercial-industrial glucose, presented an efficient cell growth. Parameters of growth were unaffected by the presence of O.M.Ws in the growth medium. In diluted O.M.Ws enriched with high glucose amounts (initial sugar concentration, 65 g l(-1)), a notable quantity of total citric acid was produced (28.9 g l(-1)). O.M.W.-based media had a noteworthy stimulating effect on the production of citric acid, since both final citric acid concentration and conversion yield of citric acid produced per unit of sugar consumed were higher when compared with the respective parameters obtained from trials without added O.M.W. Adaptation of the strain in O.M.W.-based media favoured the biosynthesis of cellular unsaturated fatty acids (principally of oleic and palmitoleic acids). Additionally, a non-negligible decrease of the phenolic compounds in the growth medium [up to 15% (wt/wt)], a slight decrease of the phyto-toxicity, and a remarkable decolourisation of the O.M.W. were observed. All these results suggest the potentiality of O.M.Ws utilisation in the fermentation process of citric acid production.  相似文献   

20.
The metabolism of strain H10, a cellulolytic mesophilic Clostridium sp., was studied on glucose and cellobiose as energy and carbon sources. The main products of fermentation of both sugars were acetate, lactate, and ethanol. At low sugar levels, molar growth yields were better for cellobiose than for glucose. In both cases, an inhibition of growth was observed between 1 and 2 g/liter and a total inhibition after the latter concentration. Inhibition was not the result of low pH due to acid formation; growth under static pH conditions was limited in the same way. On the other hand, acetate and lactate had no inhibitory effect when added at concentrations equal to the final titers. Concomitant with the inhibition of growth was a change in metabolic pathways for sugar concentrations between 1 and 2 g/liter, i.e., the production of lactate was higher. After complete inhibition of growth, an accumulation of carbohydrates which were neither glucose nor cellobiose was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号