首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The liquid phase of different units of an underground gas storage (UGS) in the period of gas injection was studied with respect to its hydrochemical composition and characterized microbiologically. The presence of viable aerobic and anaerobic bacteria was revealed in the UGS stratal and associated waters. An important source of microorganisms and biogenic elements in the ecosystem studied is water and various technogenic admixtures contained in trace amounts in the gas entering from the gas main in the period of gas injection into the storage. Owing to this fact, the bacterial functional diversity, number, and activity are maximal in the system of gas treatment and purification and considerably lower in the observation well zone. At the terminal stages, the anaerobic transformation of organic matter in the UGS aqueous media occurs via sulfate reduction and methanogenesis; exceptionally high rates of these processes (up to 4.9 × 105 ng S2? l?1 day?1 and 2.8 × 106 nl CH4 l?1 day?1, respectively) were recorded for above-ground technological equipment.  相似文献   

2.
The numbers of microorganisms belonging to ecologically significant groups and the rates of terminal microbial processes of sulfate reduction and methanogenesis were determined in the liquid phase of an underground gas storage (UGS) in the period of gas extraction. The total number of microorganisms in water samples from the operation and injection wells reached 2.1 x 10(6) cells/ml. Aerobic organotrophs (including hydrocarbon- and oil-oxidizing ones) and various anaerobic microorganisms (fermenting bacteria, methanogens, acetogens, sulfate-, nitrate-, and iron-reducing bacteria) were constituent parts of the community. The radioisotopic method showed that, in all the UGS units, the terminal stages of organic matter decomposition included sulfate reduction and methanogenesis, with the maximal rate of these processes recorded in the aqueous phase of above-ground technological equipment which the gas enters from the operation wells. A comparative analysis by these parameters of different anaerobic ecotopes, including natural hydrocarbon fields, allows us to assess the rate of these processes in the UGS as high throughout the annual cycle of its operation. The data obtained indicate the existence in the UGS of a bacterial community that is unique in its diversity and metabolic capacities and able to make a certain contribution to the geochemistry of organic and inorganic compounds in the natural and technogenic ecosystem of the UGS and thus influence the industrial gas composition.  相似文献   

3.
The numbers of microorganisms belonging to ecologically significant groups and the rates of terminal microbial processes of sulfate reduction and methanogenesis were determined in the liquid phase of an underground gas storage (UGS) in the period of gas extraction. The total number of microorganisms in water samples from the operation and injection wells reached 2.1 × 106 cells/ml. Aerobic organotrophs (including hydrocarbon-and oil-oxidizing ones) and various anaerobic microorganisms (fermenting bacteria, methanogens, acetogens, sulfate-, nitrate-, and iron-reducing bacteria) were constituent parts of the community. The radioisotopic method showed that, in all the UGS units, the terminal stages of organic matter decomposition included sulfate reduction and methanogenesis, with the maximal rate of these processes recorded in the aqueous phase of above-ground technological equipment which the gas enters from the operation wells. A comparative analysis by these parameters of different anaerobic ecotopes, including natural hydrocarbon fields, allows us to assess the rate of these processes in the UGS as high throughout the annual cycle of its operation. The data obtained indicate the existence in the UGS of a bacterial community that is unique in its diversity and metabolic capacities and able to make a certain contribution to the geochemistry of organic and inorganic compounds in the natural and technogenic ecosystem of the UGS and thus influence the industrial gas composition.  相似文献   

4.
The prolonged effect of thyroliberin in ULD after single intramuscular injection on contractility of lymphatic vessels directly was investigated. The controlled group of animals received injection of 0.2 ml of physiological solution. The experimental group was injected by 0.2 ml of thyroliberin in concentrations of 10(-10) or 10(-16) mol/l (1 x 10(-4) and 1 x 10(-10) micrograms/kg of the body weight respectively). During the experiment the animals were grouped in the following way: 1) directly after the injection; 2) 3 hours later; 3) on the 1st day and then every day during 2 weeks. Lymphatic vessels reactivity of the experimental animals as well as controlled was studied by application of thyroliberin and noradrenalin (in concentrations of 1 x 10(-16) and 1 x 10(-6) mol/l respectively) directly on mesentery lymphatic vessels. The lymphatic vessels reaction in control group of animals on the noradrenalin and thyroliberin was the same during the period of observation. Thyroliberin stimulated contractility at concentration of 1 x 10(-16) mol/l. The reaction of experimental group was dramatically decreased to 10(-4) mol/l on the 1st and the 3rd day (in the case i.m. injected concentration 1 x 10(-10) mol/l) and to 10(-10) mol/l (in the case of i.m. injected concentration 10(-16) mol/l). The lymphatic vessels reactivity to exogenous thyroliberin gradually established at the 6-7th days till 12th day from the moment of thyroliberin injection. The mechanisms of the action of thyroliberin in ULD are discussed.  相似文献   

5.
The physicochemical conditions and microbiological characteristics of the formation waters of the Kongdian bed of the Dagang oil field (China) were studied. It was demonstrated that this bed is a high-temperature ecosystem with formation waters characterized by low mineralization. The concentrations of nitrogen and phosphorus compounds, as well as of electron acceptors, are low. Oil and oil gas are the main organic matter sources. The bed is exploited with water-flooding. The oil stratum was inhabited mostly by anaerobic thermophilic microorganisms, including fermentative (10(2)-10(5) cells/ml), sulfate-reducing (0-10(2) cells/ml), and methanogenic (0-10(3) cells/ml) microorganisms. Aerobic bacteria were detected mainly in the near-bottom zone of injection wells. The rate of sulfate reduction varied from 0.002 to 18.940 microg S(2-) l(-1) day(-1) and the rate of methanogenesis from 0.012 to 16.235 microg CH4 l(-1) day(-1). Microorganisms with great biotechnological potential inhabited the bed. Aerobic thermophilic bacteria were capable of oxidizing oil with the formation of biomass, the products of partial oxidation of oil (volatile acids), and surfactants. During growth on the culture liquid of oiloxidizing bacteria, methanogenic communities produced methane and carbon dioxide, which also had oil-releasing capabilities. Using various labeled tracers, the primary filtration flows of injected solutions at the testing site were studied. Our comprehensive investigations allowed us to conclude that the tested method for microbial enhancement of oil recovery based on the activation of the stratal microflora can be applied in the Kongdian bed horizons.  相似文献   

6.
The effects of sparger design and gas flow rate on, gas holdup distribution and liquid (slurry) recirculation velocity have been studied in a surrogate anaerobic bioreactor used for treating bovine waste with a conical bottom mixed by gas recirculation. A single orifice sparger (SOS) and a multi-orifice ring sparger (MORS) with the same orifice open area and gas flow rates (hence the same process power input) are compared in this study. The advanced non-invasive techniques of computer automated tomography (CT) and computer automated radioactive particle tracking (CARPT) were employed to determine gas holdup, liquid recirculation velocity, and the poorly mixed zones. Gas flows (Q(g)) ranging of 0.017 x 10(-3) m(3)/s to 0.083 x 10(-3) m(3)/s were used which correspond to draft tube superficial gas velocities ranging from 1.46 x 10(-2) m/s to 7.35 x 10(-2) m/s (based on draft tube diameter). Air was used for the gas, as the molecular weights of air and biogas (consisting mainly of CH(4) and CO(2)) are in the same range (biogas: 28.32-26.08 kg/kmol and air: 28.58 kg/kmol). When compared to the SOS for a given gas flow rate, the MORS gave better gas holdup distribution in the draft tube, enhanced the liquid (slurry) recirculation, and reduced the fraction of the poorly mixed zones. The improved gas holdup distribution in the draft tube was found to have increased the overall liquid velocity. Hence, for the same process power input the MORS system performed better by enhancing the liquid recirculation and reducing the poorly mixed zones.  相似文献   

7.
Tracheal gas insufflation (TGI) flushes expired gas from the ventilator circuitry and central airways, augmenting CO2 clearance. Whereas a significant portion of this washout effect may occur distal to the injection orifice, the penetration and mixing behavior of TGI gas has not been studied experimentally. We examined the behavior of 100% oxygen TGI injected at set flow rates of 1-20 l/min into a simulated trachea consisting of a smooth-walled, 14-mm-diameter tube. Models incorporating a separate coaxial TGI injector, a rough-walled trachea, and a bifurcated trachea were also studied. One-hundred percent nitrogen, representing expiratory flow, passed in the direction opposite to TGI at set flow rates of 1-25 l/min. Oxygen concentration within the "trachea" was mapped as a function of axial and radial position. Three consistent findings were observed: 1) mixing of expiratory and TGI gases occurred close to the TGI orifice; 2) the oxygenated domain extended several centimeters beyond the endotracheal tube, even at high-expiratory flows, but had a defined distal limit; and 3) more distally from the site of gas injection, the TGI gas tended to propagate along the tracheal wall, rather than as a central projection. We conclude that forward-directed TGI penetrates a substantial distance into the central airways, extending the compartment susceptible to CO2 washout.  相似文献   

8.
The main purpose of this work was to study the microbiology of the Hungarian Upper Permian Siltstone (Aleurolite) Formation, to assess the safety of future underground repositories for nuclear waste. Sixty-seven air, groundwater, technical water, rock, and surface samples were collected aseptically from different depths. The number of aerobic and anaerobic isolates was 277. The mesophilic minimum and maximum CFU counts of the air samples were 1.07-5.84 x 10(2).mL-1 (aerobic) and 0.22-1.04 x 10(2).mL-1 (anaerobic), respectively; those of the water samples were 0.39-1.25 x 10(5).mL-1 (aerobic) and 0.36-3.9 x 10(3).mL-1 (anaerobic); those of the technical water samples were 0.27-5.03 x 10(6).mL-1 (aerobic) and 4 x 10(5)-->10(6).mL-1 (anaerobic); and those of the aleurolite samples were 2.32 x 10(2)-2.47 x 10(5).g-1 (aerobic) and 0.45-9.5 x 10(2).g-1 (anaerobic). In the groundwater, the thermophilic aerobic bacteria count was 0-2.4 x 10(2).mL-1 and the thermophilic anaerobic bacteria count was 0.43-4.6 x 10(4).mL-1. The gases produced by the 16 gas-forming isolates were CO2 (aerobic isolates), and CO2 and H2 (anaerobic isolates). About 20% of the aerobic isolates produced siderophores. The proportions of organic acid producers were lowest in aerobic and anaerobic isolates from the aleurolite, 13% and 14%, respectively. The highest proportions of acid producers in the aerobic and anaerobic isolates from the air samples were 63% and 54%. Altogether 160 of the aerobic isolates and 52 of the anaerobic isolates were spore formers. The radiosensitivity of the aerobic isolates was also determined; the D10 values of the sporeformers ranged between 0.8-2.44 kGy. Our results indicate that the sulfate-reducing bacteria and the production of complexing agents (siderophores) may contribute to the mobilization of radionuclides from underground repositories. As well, microbial gas production can influence the environmental conditions. The variability in bacterial radiotolerance indicates the biodiversity at this potential disposal site. These facts must be considered during the planning of a nuclear waste repository.  相似文献   

9.
Gas transport in fruit tissue is governed by both diffusion and permeation. The latter phenomenon is caused by overall pressure gradients which may develop due to the large difference in O(2) and CO(2) diffusivity during controlled atmosphere storage of the fruit. A measurement set-up for tissue permeation based on unsteady-state gas exchange was developed. The gas permeability of pear tissue was determined based on an analytical gas transport model. The overall gas transport in pear tissue samples was validated using a finite element model describing simultaneous O(2), CO(2), and N(2) gas transport, taking into account O(2) consumption and CO(2) production due to respiration. The results showed that the model described the experimentally determined permeability of N(2) very well. The average experimentally determined values for permeation of skin, cortex samples, and the vascular bundle samples were (2.17+/-1.71)x10(-19) m(2), (2.35+/-1.96)x10(-19) m(2), and (4.51+/-3.12)x10(-17) m(2), respectively. The permeation-diffusion-reaction model can be applied to study gas transport in intact pears in relation to product quality.  相似文献   

10.
Pieces of fresh beef were inoculated with three strains of Campylobacter jejuni. The meat was then allocated to three treatments: (a) vacuum packaged, (b) packaged in an atmosphere of 20% CO2 + 80% N2, and (c) packaged into sterile Petri dishes in anaerobic cultivation boxes, which were filled with a gas mixture of 5% O2 + 10% CO2 + 85% N2. The packaging material in the first two treatments was PA 80/PE 100-PE 100/PA 80/PE 100. The survival of Campylobacter cells was followed at 37 degrees C, 20 degrees C and 4 degrees C for 48 h, 4 days and 25 days, respectively. At 37 degrees C the counts of two Campylobacter strains increased in each package treatment for 48 h. At 20 degrees C and at 4 degrees C the counts of the same two strains decreased by 1 to 2 log units and 0.5 to 1 log unit, respectively, during storage. The survival of the two strains was about the same in all package treatments. The third strain was the most sensitive of the strains studied. At 37 degrees C its numbers increased only in the optimal gas atmosphere; at 20 degrees C the strain was not detectable after 24 to 48 h storage and at 4 degrees C after 4 days storage. The aerobic plate counts were determined for all samples at the same time as Campylobacter counts. The high indigenous bacterial numbers of the meat samples did not appear to have a great effect on the survival or growth of campylobacters.  相似文献   

11.
Nazina  T. N.  Abukova  L. A.  Tourova  T. P.  Babich  T. L.  Bidzhieva  S. Kh.  Filippova  D. S.  Safarova  E. A. 《Microbiology》2021,90(5):621-631
Microbiology - Underground natural gas storage facilities (UGS) have been recently proposed as sites to store “green” gas containing biogas, synthetic methane, and molecular hydrogen....  相似文献   

12.
We aimed to test effects of altitude acclimatization on pulmonary gas exchange at maximal exercise. Six lowlanders were studied at sea level, in acute hypoxia (AH), and after 2 and 8 wk of acclimatization to 4,100 m (2W and 8W) and compared with Aymara high-altitude natives residing at this altitude. As expected, alveolar Po2 was reduced during AH but increased gradually during acclimatization (61 +/- 0.7, 69 +/- 0.9, and 72 +/- 1.4 mmHg in AH, 2W, and 8W, respectively), reaching values significantly higher than in Aymaras (67 +/- 0.6 mmHg). Arterial Po2 (PaO2) also decreased during exercise in AH but increased significantly with acclimatization (51 +/- 1.1, 58 +/- 1.7, and 62 +/- 1.6 mmHg in AH, 2W, and 8W, respectively). PaO2 in lowlanders reached levels that were not different from those in high-altitude natives (66 +/- 1.2 mmHg). Arterial O2 saturation (SaO2) decreased during maximum exercise compared with rest in AH and after 2W and 8W: 73.3 +/- 1.4, 76.9 +/- 1.7, and 79.3 +/- 1.6%, respectively. After 8W, SaO2 in lowlanders was not significantly different from that in Aymaras (82.7 +/- 1%). An improved pulmonary gas exchange with acclimatization was evidenced by a decreased ventilatory equivalent of O2 after 8W: 59 +/- 4, 58 +/- 4, and 52 +/- 4 l x min x l O2(-1), respectively. The ventilatory equivalent of O2 reached levels not different from that of Aymaras (51 +/- 3 l x min x l O2(-1)). However, increases in exercise alveolar Po2 and PaO2 with acclimatization had no net effect on alveolar-arterial Po2 difference in lowlanders (10 +/- 1.3, 11 +/- 1.5, and 10 +/- 2.1 mmHg in AH, 2W, and 8W, respectively), which remained significantly higher than in Aymaras (1 +/- 1.4 mmHg). In conclusion, lowlanders substantially improve pulmonary gas exchange with acclimatization, but even acclimatization for 8 wk is insufficient to achieve levels reached by high-altitude natives.  相似文献   

13.
Although there is significant interest in the potential interactions of microbes with gas hydrate, no direct physical association between them has been demonstrated. We examined several intact samples of naturally occurring gas hydrate from the Gulf of Mexico for evidence of microbes. All samples were collected from anaerobic hemipelagic mud within the gas hydrate stability zone, at water depths in the ca. 540- to 2,000-m range. The delta(13)C of hydrate-bound methane varied from -45.1 per thousand Peedee belemnite (PDB) to -74.7 per thousand PDB, reflecting different gas origins. Stable isotope composition data indicated microbial consumption of methane or propane in some of the samples. Evidence of the presence of microbes was initially determined by 4,6-diamidino 2-phenylindole dihydrochloride (DAPI) total direct counts of hydrate-associated sediments (mean = 1.5 x 10(9) cells g(-1)) and gas hydrate (mean = 1.0 x 10(6) cells ml(-1)). Small-subunit rRNA phylogenetic characterization was performed to assess the composition of the microbial community in one gas hydrate sample (AT425) that had no detectable associated sediment and showed evidence of microbial methane consumption. Bacteria were moderately diverse within AT425 and were dominated by gene sequences related to several groups of Proteobacteria, as well as Actinobacteria and low-G + C Firmicutes. In contrast, there was low diversity of Archaea, nearly all of which were related to methanogenic Archaea, with the majority specifically related to Methanosaeta spp. The results of this study suggest that there is a direct association between microbes and gas hydrate, a finding that may have significance for hydrocarbon flux into the Gulf of Mexico and for life in extreme environments.  相似文献   

14.
Capillary zone electrophoresis was employed for the determination of midecamycin using an end-column amperometric detection with a carbon fiber micro-disk bundle electrode at a constant potential of +1.15 V vs. saturated calomel electrode. The optimum conditions of separation and detection are 1.00x10(-3) mol l(-1) Na(2)HPO(4)-3.49x10(-4) mol l(-1) NaOH (pH 11.4) for the buffer solution, 20 kV for the separation voltage, 5 kV and 5 s for the injection voltage and the injection time, respectively. The limit of detection is 5.0x10(-7) mol l(-1) or 0.41 fmol (S/N=3). The linear range of the calibration curve is 1.00x10(-6)-1.00x10(-3) mol l(-1). The relative standard deviation is 1.4% for the migration time and 4.9% for the electrophoretic peak current. The method could be applied to the determination of midecamycin in human urine. In this case, a separation voltage of 14 kV was used.  相似文献   

15.
An integrated physicochemical and biological technique for NO(x) removal from flue gas, the so-called BioDeNO(x) process, combines the principles of wet absorption of NO in an aqueous Fe(II)EDTA(2-) solution with biological reduction of the sorbed NO in a bioreactor. The biological reduction of NO to di-nitrogen gas (N(2)) takes place under thermophilic conditions (55 degrees C). This study demonstrates the technical feasibility of this BioDeNO(x) concept in a bench-scale installation with a continuous flue gas flow of 650 l.h(-1) (70-500 ppm NO; 0.8-3.3% O(2)). Stable NO removal with an efficiency of at least 70% was obtained in case the artificial flue gas contained 300 ppm NO and 1% O(2) when the bioreactor was inoculated with a denitrifying sludge. An increase of the O(2) concentration of only 0.3% resulted in a rapid elevation of the redox potential (ORP) in the bioreactor, accompanied by a drastic decline of the NO removal efficiency. This was not due to a limitation or inhibition of the NO reduction, but to a limited biological iron reduction capacity. The latter leads to a depletion of the NO absorption capacity of the scrubber liquor, and thus to a poor NO removal efficiency. Bio-augmentation of the reactor mixed liquor with an anaerobic granular sludge with a high Fe(III) reduction capacity successfully improved the bioreactor efficiency and enabled to treat a flue gas containing at least 3.3% O(2) and 500 ppm NO with an NO removal efficiency of over 80%. The ORP in the bioreactor was found to be a proper parameter for the control of the ethanol supply, needed as electron donor for the biological regeneration process. The NO removal efficiency as well as the Fe(III)EDTA(-) reduction rate were found to decline at ORP values higher than -140 mV (pH 7.0). For stable BioDeNO(x) operation, the supply of electron donor (ethanol) can be used to control the ORP below that critical value.  相似文献   

16.
Efficient anaerobic degradation may be completed only under low levels of dissolved hydrogen in the liquid surrounding the microorganisms. This restraint can be intensified by the limitations of liquid-to-gas H2 mass transfer, which results in H2 accumulation in the bulk liquid of the reactor. Dissolved hydrogen proved to be an interesting parameter for reactor monitoring by showing a good correlation with short-chain volatile fatty acid concentration, namely propionate, which was not the case for the H2 partial pressure. Biogas recycle was performed in a upflow anaerobic sludge bed and filter reactor. The effects of varying the ratio of recycled-to-produced gas from 2:1 (9 l/l reactor per day) to 8:1 (85 l/l reactor per day) were studied. By increasing the liquid—gas interface with biogas recycling, the dissolved hydrogen concentration could be lowered from 1.1 to 0.4 μ . Accordingly, the H2 sursaturation factor was also reduced, leading to an important improvement of the H2 mass transfer rate, which reached 20.86 h−1 (±9.79) at a 8:1 gas recycling ratio, compared to 0.72 h−1 (±0.24) for the control experiment. Gas recycling also lowered the propionate concentration from 655 to 288 mg l−1 and improved the soluble chemical oxygen demand removal by 10–15%. The main problem encountered was the shorter solid retention time, which could lead to undesirable biomass washout at high gas recycling ratio. This could be circumvented by improving the reactor design to reduce the turbulence within the biomass bed.  相似文献   

17.
The common and specific uptake of 3H-testosterone (3H-T) by tissues of urogenital sinus (UGS) and bladder (BL) in human 10-12 weeks fetuses was studied. The values of common and specific 3H-T uptake in UGS were significantly higher than those in BL. A high specific uptake of labeled hormone was also detected in UGS mesenchyme separated from epithelium. The authors did not reveal any sexual dimorphism of 3H-T uptake by UGS tissues.  相似文献   

18.
The purposes of this investigation were to quantify the noise component of child breath-by-breath data, investigate the major determinants of the breath-to-breath noise, and to characterise the noise statistically. Twenty-four healthy children (12 males and 12 females) of mean (SD) age 13.1 (0.3) years completed 25 min of steady-state cycle ergometry at an exercise intensity of 50 W. Ventilatory and gas exchange variables were computed breath-by-breath. The mean (SD) oxygen consumption (VO2) ranged from 0.72 (0.16) to 0.92 (0.26) l x min(-1); mean (SD) carbon dioxide production (VCO2) ranged from 0.67 (0.20) l x min(-1) to 0.85 (0.16) l x min(-1); and mean (SD) minute ventilation ranged from 17.81 (3.54) l x min(-1) to 24.97 (5.63) l x min(-1). The majority of the breath-to-breath noise distributions differed significantly from Gaussian distributions with equivalent mean and SD parameters. The values of the normalised autocorrelation functions indicated a negligible breath-to-breath correlation. Tidal volume accounted for the majority of the VO2 (43%) and VCO2 (49%) variance. The breath-to-breath noise can be explained in terms of variations in the breathing pattern, although the large noise magnitude, together with the relatively small attainable response amplitudes in children reduces the certainty with which ventilatory and gas exchange kinetics can be measured.  相似文献   

19.
The co-immobilization and the culture of anaerobic and aerobic communities was tested for the mineralization of 2,4,6-trichlorophenol (2,4,6-TCP). At first, the anaerobic microorganisms (aggregated into granules) were cultivated in an upflow anaerobic sludge blanket (UASB) reactor, in a continuous mode, with glucose, propionate, acetate (COD loading rate = 0.5-2.0 g COD/l per day, ratio 1:1:1) and 2,4,6-TCP (2,4,6-TCP loading rate = 25-278 micromol/l per day) as substrates. 2,4,6-TCP was degraded into 2,4-DCP and 4-CP, but it was not mineralized because of the low degradation rates of 4-CP. Furthermore, the highest loading rates of 2,4,6-TCP (>126 micromol/l per day) caused the inhibition of the strains degrading the propionate. The granules were therefore tested in association with the aerobic community. They were immobilized in kappa-carrageenan/gelatin [2% (w/w) of each polymer] gel beads and cultivated in a reactor, on their own (to test the influence of the gel), and then with the aerobic community, under anaerobic and air-limited conditions, respectively. The results showed that (1) the gel did not influence the activity of the granules, (2) the anaerobic and aerobic communities could be easily co-immobilized in gel beads and cultivated in a reactor, (3) the mineralization of 2,4,6-TCP (2,4,6-TCP loading rate = 10-506 micromol/l per day), its intermediates of degradation and the other substrates [glucose + acetate + propionate (ratio 1:1:1) = COD loading rate = 500 mg COD/l per day] could be obtained under air-limited conditions if the culture parameters were strictly controlled [airflow = 36-48 vvd (volume of air/volume of liquid in the reactor per day), pH value at around 7.5]. Finally, the gel did not retain its structure during the whole culture (263 days) in the air-limited reactor, but the anaerobic and aerobic communities retained their activities and worked together for the mineralization.  相似文献   

20.
1. L-carnitine was administered orally to thoroughbred horses for 58 days. 2. Acceptability and effects on plasma, muscle and urine concentration were studied. 3. Ten-60 g/day (as 2-3 doses) was acceptable with no deleterious effects. 4. One x 10 g L-carnitine significantly raised the plasma-free carnitine concentration (7 hr post) from 21.2 to 31.8 mumol/l; 2 x 30 g increased the mean to 36.5 mumol/l. 5. Plasma acetylcarnitine increased from approximately 1 to 5.5 mumol/l (7 hr post) on 2 x 30 g/day. 6. Muscle total carnitine was unchanged over 58 days. 7. Urinary output accounted for 3.5-7.5% of added carnitine, indicating low intestinal absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号