首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the simple eucaryote Saccharomyces cerevisiae there are at least three phenotypically distinct classes of mutants sensitive to inactivation by radiations and alkylating agents: class I mutants are sensitive to ultraviolet light and nitrogen mustard (HN2); class II mutants are sensitive to X-rays and methylmethane sulphonate (MMS); and class III mutants are sensitive to all four of these agents. We have constructed doubly mutant strains of types (I, I), (I, II), (I, III), and (II, III) and have measured their sensitivity to UV, X-rays, HN2 and MMS in order to characterize the interactions of the various mutant gene pairs. Class (I, III) double mutants proved to be supersensitive to UV and HN2 and class (II, III) double mutants proved to be supersensitive to X-rays and MMS. All other double mutants showed little or no enhancement of sensitivity over their most sensitive single mutant parents. Mutants of class I are known to be defective in excision repair and our results are consistent with the idea that there exist at least two additional pathways for dark repair in yeast, one capable of repairing X-ray and MMS damage to DNA, and another, possibly analogous to post-replication repair in bacteria, that competes with the other two for damaged regions in DNA.  相似文献   

2.
Genetic Control of Radiation Sensitivity in SCHIZOSACCHAROMYCES POMBE   总被引:17,自引:1,他引:17  
A. Nasim  B. P. Smith 《Genetics》1975,79(4):573-582
Genetic analysis of a large number of radiation-sensitive mutants of S. pombe, isolated in different laboratories, showed that these isolates represent 22 non-allelic loci. The mutants were shown to fall into three distinct classes concerning response to UV and ionizing radiation, including two mutants which are primarily sensitive to ionizing radiation but not to UV. Single-gene mutants were crossed to obtain supersensitive double mutants. Such double mutants showed a marked increase in sensitivty to a variety of inactivating agents as compared to the parental strains. The isolation of three classes of radiation-sensitive mutants and the construction of double mutants implies the presence of multiple pathways in S. pombe for repair of radiation-induced damage. The bearing of these data on cellular repair mechanisms in eukaryotes is discussed.  相似文献   

3.
Summary We have isolated a mutant of the yeast Schizosaccharomyces pombe which exhibits sensitivity to UV light when grown at either 30° or 37°C, as compared to the parental wild-type strain. This increased sensitivity is more pronounced when cells are grown at 37°C. The mutant is also sensitive to 18 MeV electrons at the high temperature. Tetrad analysis of spores generated by crossing the mutant and a Rad+ strain revealed that sensitivity to both types of radiation cosegregate 2:2, relative to wild-type resistance, indicating that a single altered chromosomal locus is responsible for the radiation sensitivities observed. In addition, analysis of spores resulting from crosses between the mutant and all other known S. pombe rad mutants indicates that the temperature-dependent sensitivity described in this report is mediated by a mutation in a previously unidentified rad locus.  相似文献   

4.
McCready SJ  Osman F  Yasui A 《Mutation research》2000,451(1-2):197-210
This review is concerned with repair and tolerance of UV damage in the fission yeast, Schizosaccharomyces pombe and with the differences between Sch. pombe and budding yeast, Saccharomyces cerevisiae in their response to UV irradiation. Sch. pombe is not as sensitive to ultra-violet radiation as Sac. cerevisiae nor are any of its mutants as sensitive as the most sensitive Sac. cerevisiae mutants. This can be explained in part by the fact that Sch. pombe, unlike budding yeast or mammalian cells, has an extra pathway (UVER) for excision of UV photoproducts in addition to nucleotide excision repair (NER). However, even in mutants lacking this additional pathway, there are significant differences between the two yeasts. Sch. pombe mutants that lack the alternative pathway are still more UV-resistant than wild-type Sac. cerevisiae; recombination mutants are significantly UV sensitive (unlike their Sac. cerevisiae equivalents); mutants lacking the second pathway are sensitized to UV by caffeine; and checkpoint mutants are relatively more sensitive than the budding yeast equivalents. In addition, Sch. pombe has no photolyase. Thus, the response to UV in the two yeasts has a number of significant differences, which are not accounted for entirely by the existence of two alternative excision repair pathways. The long G2 in Sch. pombe, its well-developed recombination pathways and efficient cell cycle checkpoints are all significant components in survival of UV damage.  相似文献   

5.
Summary Several mutants of the unicellular blue-green alga Synechocystis aquatilis Sanv. were isolated. They differed from the wild type by the levels of sensitivity to ultraviolet (UV) irradiation. The most sensitive mutant is unable to carry out photoreactivation and shows increased resistance to mitomycin C, N-methyl-N-nitro-N-nitrosoguanidine and methyl methanesulfonate. This strain shows an enhanced rate of spontaneous and UV-induced mutagenesis. Another UV-sensitive mutant with normal level of X-ray sensitivity is characterized by a decreased mutability. The three other UV-sensitive mutants show simultaneous decrease of resistance to X-ray and alkylating agents. The existence of these cross-sensitive mutants indicates that a repair mechanism may operate in blue-green algae similar to dark repair systems of bacteria and yeast.  相似文献   

6.
Summary SummaryYeast cultures progressing from the exponential to the stationary phase of growth showed changes in cell sensitivity to physical agents such as UV light, heat shock at 52° C and the chemical mutagens ethyl methane sulphonate, nitrous acid and mitomycin C.Exponential phase cells showed maximum resistance to UV light and minimum resistance to heat shock and the three chemicals. The increased resistance of exponential phase cells to UV light was shown to be dependent upon the functional integrity of the RAD 50 gene.Treatment of growing yeast cultures with radioactively labelled ethyl methane sulphonate indicated the preferential uptake of radioactivity during the sensitive exponential stage of growth. The results indicated that the differential uptake of the chemical mutagens was responsible for at least a fraction of the variations in cell sensitivity observed in yeast cultures at different phases of growth.  相似文献   

7.
Escherichia coli ras locus: its involvement in radiation repair   总被引:5,自引:3,他引:2       下载免费PDF全文
There are several classes of Escherichia coli mutants defective in radiation repair. These include strains defective in pyrimidine dimer excision, in photoreactivation, in recombination, in repair of X-ray damage, and ultraviolet (UV)-conditional mutants which do not divide after UV. Another mutant (ras(-)) has been isolated. The ras(-) has increased UV sensitivity, but only slightly increased X-ray sensitivity (1.5-fold increase). Ability to effect genetic recombination, to reactivate irradiated bacteriophage T1, and to be photoreactivated is normal. UV-induced mutation frequency is greatly increased in the mutant. The ras(-) apparently lacks the ability to repair some UV damage in the bacterial cell but can repair UV damage to bacteriophage DNA. The ras locus is located between lac and purE on the chromosome map.  相似文献   

8.
Uv- and Gamma-Radiation Sensitive Mutants of Arabidopsis Thaliana   总被引:3,自引:0,他引:3       下载免费PDF全文
C. Z. Jiang  C. N. Yen  K. Cronin  D. Mitchell    A. B. Britt 《Genetics》1997,147(3):1401-1409
Arabidopsis seedlings repair UV-induced DNA damage via light-dependent and -independent pathways. The mechanism of the ``dark repair' pathway is still unknown. To determine the number of genes required for dark repair and to investigate the substrate-specificity of this process we isolated mutants with enhanced sensitivity to UV radiation in the absence of photoreactivating light. Seven independently derived UV sensitive mutants were isolated from an EMS-mutagenized population. These fell into six complementation groups, two of which (UVR1 and UVH1) have previously been defined. Four of these mutants are defective in the dark repair of UV-induced pyrimidine [6-4] pyrimidinone dimers. These four mutant lines are sensitive to the growth-inhibitory effects of gamma radiation, suggesting that this repair pathway is also involved in the repair of some type of gamma-induced DNA damage product. The requirement for the coordinate action of several different gene products for effective repair of pyrimidine dimers, as well as the nonspecific nature of the repair activity, is consistent with nucleotide excision repair mechanisms previously described in Saccharomyces cerevisiae and nonplant higher eukaryotes and inconsistent with substrate-specific base excision repair mechanisms found in some bacteria, bacteriophage, and fungi.  相似文献   

9.
The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X rays, we are screening these mutants to identify additional genes that cause increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype cosegregates with the deletion allele and are obtaining multipoint survival-vs.-dose assays in at least one homozygous diploid and two haploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1, and VID21/EAF1 and discuss their potential roles in repair. Eight of these genes cause a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, results in at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultraviolet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino acids are also X-ray sensitive, which confirms that methylation of the lysine-79 residue is required for effective repair of radiation damage.  相似文献   

10.
A range of hamster cell mutants, which have been characterised as sensitive to ionising radiation, were examined for their cross-sensitivity to four DNA-DNA cross-linking agents and the protein-DNA cross-linking agent, camptothecin. The mutants represent 7 distinct complementation groups. Two complementation groups were identified as having a major sensitivity to cross-linking damage, more marked than their sensitivity to ionising radiation (irs1, irs1SF). These two mutants also show sensitivity to UV-irradiation. Two of the remaining complementation groups (xrs and XR-1) have a defect in rejoining DNA double-strand breaks, and these exhibit sensitivity to 3 of the 4 DNA-DNA cross-linking agents. The results with these mutants suggest an involvement of double-strand break rejoining in the repair of certain cross-link damage. Two mutants were also notably sensitive to the topoisomerase I inhibiting anticancer drug, camptothecin. One of these mutants was sensitive to the DNA cross-linking agents examined (irs1SF), but the other was not at all sensitive to this class of drug (EM9).  相似文献   

11.
The Saccharomyces cerevisiae DNA2 gene encodes a DNA-stimulated ATPase and DNA helicase/nuclease essential for DNA replication. In characterizing dna2 mutants, we have found that Dna2p also participates in DNA repair or in damage avoidance mechanisms. dna2 mutants are sensitive to X rays, although they are less sensitive than rad52 mutants. The X-ray sensitivity of dna2 mutants is suppressed by overexpression of a 5' to 3' exonuclease, the yeast FEN-1 structure-specific nuclease, encoded by the RAD27 gene, which also suppresses the growth defect of dna2-ts mutants. SGS1 encodes a helicase with similar properties to Dna2 protein. Although sgs1Delta mutants are resistant to X rays, dna2-2 sgs1Delta double mutants are more sensitive to X rays than the dna2-2 mutant. Temperature sensitive dna2 mutants are only slightly sensitive to UV light, show normal levels of spontaneous and UV induced mutagenesis, and have only a 2.5-fold elevated level of dinucleotide tract instability compared to wildtype. However, dna2Delta strains kept alive by overproduction of RAD27 are highly sensitive to UV light. These phenotypes, in addition to the epistasis analysis reported, allow us to propose that Dna2 is involved in postreplication and DSB repair pathways.  相似文献   

12.
J Qiu  M X Guan  A M Bailis    B Shen 《Nucleic acids research》1998,26(13):3077-3083
Two closely related genes, EXO1 and DIN 7, in the budding yeast Saccharomyces cerevisiae have been found to be sequence homologs of the exo1 gene from the fission yeast Schizosaccharomyces pombe . The proteins encoded by these genes belong to the Rad2/XPG and Rad27/FEN-1 families, which are structure-specific nucleases functioning in DNA repair. An XPG nuclease deficiency in humans is one cause of xeroderma pigmentosum and those afflicted display a hypersensitivity to UV light. Deletion of the RAD2 gene in S. cerevisiae also causes UV hypersensitivity, due to a defect in nucleotide excision repair (NER), but residual UV resistance remains. In this report, we describe evidence for the residual repair of UV damage to DNA that is dependent upon Exo1 nuclease. Expression of the EXO1 gene is UV inducible. Genetic analysis indicates that the EXO1 gene is involved in a NER-independent pathway for UV repair, as exo1 rad2 double mutants are more sensitive to UV than either the rad2 or exo1 single mutants. Since the roles of EXO1 in mismatch repair and recombination have been established, double mutants were constructed to examine the possible relationship between the role of EXO1 in UV resistance and its roles in other pathways for repair of UV damaged DNA. The exo1 msh2 , exo1 rad51 , rad2 rad51 and rad2 msh2 double mutants were all more sensitive to UV than their respective pairs of single mutants. This suggests that the observed UV sensitivity of the exo1 deletion mutant is unlikely to be due to its functional deficiencies in MMR, recombination or NER. Further, it suggests that the EXO1 , RAD51 and MSH2 genes control independent mechanisms for the maintenance of UV resistance.  相似文献   

13.
DNA photolyase binds to and repairs cyclobutane pyrimidine dimers induced by UV radiation. Here we demonstrate that in the yeast Saccharomyces cerevisiae, photolyase also binds to DNA damaged by the anticancer drugs cis-diamminedichloroplatinum (cis-DDP) and nitrogen mustard (HN2) and by the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Surprisingly, mutations in photolyase were associated with resistance of yeast cells to cis-DDP, MNNG, 4-nitroquinoline oxide (4NQO), and HN2. Transformation of yeast photolyase mutants with the photolyase gene increased sensitivity to these agents. Thus, while the binding of photolyase to DNA damaged by UV radiation aids survival of the cell, binding to DNA damaged by other agents may interfere with cell survival, perhaps by making the lesions inaccessible to the nucleotide excision repair system.  相似文献   

14.
Summary The properties of four radiation sensitive ts mutants of the yeast Saccharomyces paradoxus, txs 1, txs 2, txs 4and txs 5,were studied. Genetic analysis proves the mutants to be non-allelic. The mutants are sensitive to X-rays and ultraviolet. Holding at 37°C in a complete medium but not in water sharply decreases the viability. With txs 2this effect could also be observed in water. The mutants formed filaments and showed abnormal cytokinesis under restrictive conditions, this effect being the most pronounced with txs 4.The frequency of mitotic recombiantion induced by X-rays and UV is much lower in the mutants (except txs 2)as compared to the wild type. Restrictive temperature somewhat increased the mitotic recombination in the mutants (excepts txs 1).Shift of the mutants into restrictive temperature leads to immediate, inhibition of DNA synthesis; the extent of this inhibition correlates with the levels of radiation and temperature sensitivity, both being higher in txs 2and txs 4.Elevated temperature also decreased RNA and protein synthesis in txs 2.It is suggested that mutation txs 2affects a function participating at the last stages in postirradiation repair of DNA, probably DNA ligase, txs 4seemed to affect the process of nuclear division.  相似文献   

15.
The fission yeast Dbf4 homologue Dfp1 has a well-characterized role in regulating the initiation of DNA replication. Sequence analysis of Dfp1 homologues reveals three highly conserved regions, referred to as motifs N, M, and C. To determine the roles of these conserved regions in Dfp1 function, we have generated dfp1 alleles with mutations in these regions. Mutations in motif N render cells sensitive to a broad range of DNA-damaging agents and replication inhibitors, yet these mutant proteins are efficient activators of Hsk1 kinase in vitro. In contrast, mutations in motif C confer sensitivity to the alkylating agent methyl methanesulfonate (MMS) but, surprisingly, not to UV, ionizing radiation, or hydroxyurea. Motif C mutants are poor activators of Hsk1 in vitro but can fulfill the essential function(s) of Dfp1 in vivo. Strains carrying dfp1 motif C mutants have an intact mitotic and intra-S-phase checkpoint, and epistasis analysis indicates that dfp1 motif C mutants function outside of the known MMS damage repair pathways, suggesting that the observed MMS sensitivity is due to defects in recovery from DNA damage. The motif C mutants are most sensitive to MMS during S phase and are partially suppressed by deletion of the S-phase checkpoint kinase cds1. Following treatment with MMS, dfp1 motif C mutants exhibit nuclear fragmentation, chromosome instability, precocious recombination, and persistent checkpoint activation. We propose that Dfp1 plays at least two genetically separable roles in the DNA damage response in addition to its well-characterized role in the initiation of DNA replication and that motif C plays a critical role in the response to alkylation damage, perhaps by restarting or stabilizing stalled replication forks.  相似文献   

16.
Summary Radiation sensitive mutants of Saccharomyces cerevisiae were exposed to the action of nitrogen mustard (HN2) and methyl methanesulfonate (MMS). Sensitivity to HN2 was found to be correlated with sensitivity to ultraviolet light, whereas sensitivity to MMS was found to be correlated with sensitivity to X-rays. One mutant strain that is sensitive to both UV and X-rays was found to be sensitive also to HN2 and MMS. The latter result shows that there exists a locus in yeast that controls the repair of DNA damaged by all four of these mutagens.  相似文献   

17.
Summary The effect of the ligts-7 mutation on cell survival and the extent of DNA repair after UV (254 nm) irradiation was determined for wild-type and uvrB5 cells of E. coli K-12 at 30° and 42°C. At the restrictive temperature (42°C) the ligts-7 mutation resulted in (i) a decrease in the extent of repair of DNA incision breaks arising during the excision repair process, and (ii) a decrease in the extent of post-replicational repair of gaps in newly-synthesized DNA. These deficiencies in DNA repair correlated with increases in cellular sensitivity to killing by UV radiation. Thus, DNA ligase plays an important role in vivo in both the excision and post-replicational repair processes.  相似文献   

18.
To study the role of different DNA repair genes in the resistance of Deinococcus radiodurans to mono- and polychromatic UV radiation, wild-type strain and knockout mutants in RecA, PprA, and IrrE of D. radiodurans were irradiated with UV-C (254 nm), UV-(A + B) (280–400 nm) and UV-A (315–400 nm) radiation, and survival was monitored. The strain deficient in recA was highly sensitive to UV-C radiation compared to the wild-type, but showed no loss of resistance against irradiation with UV-(A + B) and UV-A, while pprA and irrE-deficient strains exhibited elevated sensitivity to UV-A and UV-(A + B) radiation. These results suggest that the repair of DNA double-strand breaks is essential after treatment with highly energetic UV-C radiation, whereas protection from oxidative stress may play a greater role in resistance to environmentally relevant UV radiation.  相似文献   

19.
Aims: To identify structural components of Bacillus subtilis spores serving as targets for sterilization with microwave induced low‐pressure, low‐temperature nitrogen‐oxygen plasma. Methods and Results: The inactivation of spores followed a biphasic kinetics consisting of a log‐linear phase with rapid inactivation followed by a slow inactivation phase. In the course of plasma treatment, damage to DNA, proteins and spore membranes were observed by monitoring the occurrence of auxotrophic mutants, inactivation of catalase (KatX) activity and the leakage of dipicolinic acid, respectively. Spores of the wild‐type strain showed the highest resistance to plasma treatment. Spores of mutants defective in nucleotide excision repair (uvrA) and small acid‐soluble proteins (ΔsspA ΔsspB) were more sensitive than those defective in the coat protein CotE or spore photoproduct repair (splB). Exclusion of reactive particles and spectral fractions of UV radiation from access to the spores revealed that UV‐C radiation is the most effective inactivation agent in the plasma, whereby the splB and ΔcotE mutant spores were equally and slightly less sensitive, respectively, than the wild‐type spores. Finally, the extent of damages in the spore DNA determined by quantitative PCR correlated with the spore inactivation. Conclusions: Spore inactivation was efficiently mediated by a combination of DNA damage and protein inactivation. DNA was identified to be the primary target for spore inactivation by UV radiation emitted by the plasma. Coat proteins were found to constitute a protective layer against the action of the plasma. Significance and Impact of the Study: The results provide new evidence to the understanding of plasma sterilization processes. This knowledge supports the identification of useful parameters for novel plasma sterilization equipment to control process safety.  相似文献   

20.
Summary The isolation and properties of a new radiation sensitive mutant of Escherichia coli K-12 are described which shows a correlation between radiation sensitivity and replication of irradiated DNA. The mutation, called rer, is located between argB and purD loci. The mutant, when grown in tryptone broth after irradiation, is sensitive to UV and -rays and incorporates little or no 3H-thymidine but in minimal glucose-salts medium both the radiation sensitivity and incorporation of 3H-thymidine remain identical to that of the parent strain. Studies with a temperature sensitive double mutant rer dnaC show that 1 hr incubation of irradiated cells at 42° C before their transfer to 30° C results in higher survival as compared to their incubation at 30° C only. It is suggested that rer controls the replication of irradiated DNA and thus regulates the coordination between replication and repair of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号