首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caffeic acid is a clastogenic cinnamic acid found in a conjugated form in a variety of foods. The possibility that the biological activity of caffeic acid is due to hydrogen peroxide generated during its autooxidation in solution was investigated using chromosome aberrations in Chinese hamster ovary cells as a test system. Freshly prepared caffeic acid at pH 7.00 contained only traces of hydrogen peroxide, as assayed by the molybdate-catalyzed release of I-3. Such solutions exhibited clastogenic activity which could not be accounted for by the level of hydrogen peroxide present, and which was not significantly diminished by the addition of catalase or horseradish peroxidase. 3-day-old solutions of caffeic acid exhibited higher levels of hydrogen peroxide, and increased biological activity. In such solutions, the clastogenic activity was catalase-sensitive and could be entirely accounted for by the level of hydrogen peroxide present.  相似文献   

2.
Free peritoneal mast-cells of the rat are stimulated in vitro by molecular oxygen as well as by hydrogen peroxide. Histamine release is also observed in vivo when molecular oxygen or diluted solutions of hydrogen peroxide are injected into the peritoneal cavity of the rat. Inflammatory lesions are produced (vascular congestion, oedema, exudate) which are suppressed by pretreatment with anti-H1 antihistaminics. When hydrogen peroxide solutions are more concentrated, inflammation is also provoked but antihistaminics are no more inhibitory. Mast-cells of the skin and of the lungs are not stimulated neither by molecular oxygen, nor by hydrogen peroxide.  相似文献   

3.
Glucose oxidase enzymes were used to produce hydrogen peroxide from glucose and oxygen in aqueous solutions. Different working conditions, that is, temperature, aeration with liquefied air, presence of cotton fibre and time of enzyme activity, were tested in order to obtain a solution with the highest possible concentration of hydrogen peroxide. The hydrogen peroxide produced was transformed into different peracids which could bleach the cotton fabric under mild conditions, at a pH between 7 and 8 and at a temperature of around 60°C. The conversion or activation of hydrogen peroxide was conducted with the bleach activators TAED, NOBS and TBBC. The concentrations of hydrogen peroxide and peracids in the solutions were measured with sodium thiosulphate titrations.

The results indicated that the formation of hydrogen peroxide with glucose oxidase was effective under optimal conditions, which are 50°C, pH 4.6 and aeration. Convenient activators for the conversion of hydrogen peroxide into peracids were TAED and TBBC, which enabled attainment of a relatively high degree of whiteness at pH 7.5 and temperature 50°C. Using the activator NOBS under these conditions did not provide enough peracid to markedly improve whiteness.  相似文献   

4.
The formation of hydrogen peroxide in catholytes and anolytes of electrochemically activated solutions: bidistilled water and solutions of sodium chloride and nutrition medium M9 was studied. The concentration of hydrogen peroxide was determined by the method of enhanced chemiluminescence in a system peroxidase-luminol-p-iodophenol. It was shown that the concentration of hydrogen peroxide depends on the ionic content of the solution and varies from a few fractions of a micromole in catholytes of bidistilled water and sodium chloride solutions (10(-5) divided by 10(-2) M) to 20-25 microM in catholytes of medium M9. The concentration of H2O2 in anolytes of various solutions was 15-20 times lower than in the corresponding catholytes and was equal to a few nanomoles in bidistilled water and a few micromoles in medium M9. The biological activity of the catholyte of medium M9 was determined from changes in the growth of E. coli cells. It was found that this catholyte stimulates the cell growth. The stimulating effect was 20-25% and did not change after the decomposition of hydrogen peroxide in the catholyte by catalase. The addition of H2O2 at the corresponding concentration to the inactivated nutrient medium produced no stimulating effect. These data suggest that hydrogen peroxide formed in the catholyte of nutrient medium M9 does not affect its biological activity.  相似文献   

5.
Hydrogen peroxide is formed in solutions of glutathione exposed to oxygen. This hydrogen peroxide or its precursors will decrease the viscosity of polymers like desoxyribonucleic acid and sodium alginate. Further knowledge of the mechanism of these chemical effects of oxygen might further the understanding of the biological effects of oxygen. This study deals with the rate of solution of oxygen and with the decomposition of hydrogen peroxide in chemical systems exposed to high oxygen pressures. At 6 atmospheres, the absorption coefficient for oxygen into water was about 1 cm./hour and at 143 atmospheres, it was about 2 cm./hour; the difference probably being due to the modus operandi. The addition of cobalt (II), manganese (II), nickel (II), or zinc ions in glutathione (GSH) solutions exposed to high oxygen pressure decreased the net formation of hydrogen peroxide and also the reduced glutathione remaining in the solution. Studies on hydrogen peroxide decomposition indicated that these ions act probably by accelerating the hydrogen perioxide oxidation of glutathione. The chelating agent, ethylenediaminetetraacetic acid disodium salt, inhibited the oxidation of GSH exposed to high oxygen pressure for 14 hours. However, indication that oxidation still occurred, though at a much slower rate, was found in experiments lasting 10 weeks. Thiourea decomposed hydrogen peroxide very rapidly. When GSH solutions were exposed to high oxygen pressure, there was oxidation of the GSH, which became relatively smaller with increasing concentrations of GSH.  相似文献   

6.
1. The velocity of decomposition of hydrogen peroxide by catalase as a function of (a) concentration of catalase, (b) concentration of hydrogen peroxide, (c) hydrogen ion concentration, (d) temperature has been studied in an attempt to correlate these variables as far as possible. It is concluded that the reaction involves primarily adsorption of hydrogen peroxide at the catalase surface. 2. The decomposition of hydrogen peroxide by catalase is regarded as involving two reactions, namely, the catalytic decomposition of hydrogen peroxide, which is a maximum at the optimum pH 6.8 to 7.0, and the "induced inactivation" of catalase by the "nascent" oxygen produced by the hydrogen peroxide and still adhering to the catalase surface. This differs from the more generally accepted view, namely that the induced inactivation is due to the H2O2 itself. On the basis of the above view, a new interpretation is given to the equation of Yamasaki and the connection between the equations of Yamasaki and of Northrop is pointed out. It is shown that the velocity of induced inactivation is a minimum at the pH which is optimal for the decomposition of hydrogen peroxide. 3. The critical increment of the catalytic decomposition of hydrogen peroxide by catalase is of the order 3000 calories. The critical increment of induced inactivation is low in dilute hydrogen peroxide solutions but increases to a value of 30,000 calories in concentrated solutions of peroxide.  相似文献   

7.
A novel anthrapyrazole anticancer agent has been examined for photosensitizing properties. Illumination of the anthrapyrazole and ascorbic acid with blue light in aerated aqueous solutions causes SOD and catalasesensitive oxygen consumption, indicating involvement of both Superoxide radical and hydrogen peroxide in this process. Electron paramagnetic resonance showed that the ascorbyl radical is also produced during the photooxidation. When 3,4-dihydroxyphenylalanine (Dopa) is used as a substrate, production of hydrogen peroxide is evidenced by catalase-sensitive oxygen consumption. Generation of hydroxyl radicals during illumination of the drug and ascorbic acid (or Dopa) in the presence of catalytic amounts of the Fe(III)/EDTA complex is demonstrated using EPR and spin-trapping techniques.  相似文献   

8.
Using the method of enhanced chemiluminescence in a peroxidase-luminol-p-iodophenol system, we found the formation of reactive oxygen species (in equivalent of hydrogen peroxide concentration) in 1 mM phosphate buffer under the exposure to high peak-power pulsed electromagnetic radiation of extremely high frequencies (37 GHz, peak power 20 kW, pulse width 400 ns, repetition rate 500 Hz). The results obtained show that the formation of hydrogen peroxide in aqueous solutions under the action of electromagnetic radiation is the result of the summary influence of heat and thermoacoustic waves excited in the solutions.  相似文献   

9.
Brain mitochondria are not only major producers of reactive oxygen species but they also considerably contribute to the removal of toxic hydrogen peroxide by the glutathione (GSH) and thioredoxin-2 (Trx2) antioxidant systems. In this work we estimated the relative contribution of both systems and catalase to the removal of intrinsically produced hydrogen peroxide (H(2)O(2)) by rat brain mitochondria. By using the specific inhibitors auranofin and 1-chloro-2,4-dinitrobenzene (DNCB), the contribution of Trx2- and GSH-systems to reactive oxygen species (ROS) detoxification in rat brain mitochondria was determined to be 60±20% and 20±15%, respectively. Catalase contributed to a non-significant extent only, as revealed by aminotriazole inhibition. In digitonin-treated rat hippocampal homogenates inhibition of Trx2- and GSH-systems affected mitochondrial hydrogen peroxide production rates to a much higher extent than the endogenous extramitochondrial hydrogen peroxide production, pointing to a strong compartmentation of ROS metabolism. Imaging experiments of hippocampal slice cultures showed on single cell level substantial heterogeneity of hydrogen peroxide detoxification reactions. The strongest effects of inhibition of hydrogen peroxide removal by auranofin or DNCB were detected in putative interneurons and microglial cells, while pyramidal cells and astrocytes showed lower effects. Thus, our data underline the important contribution of the Trx2-system to hydrogen peroxide detoxification in rat hippocampus. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

10.
Brain mitochondria are not only major producers of reactive oxygen species but they also considerably contribute to the removal of toxic hydrogen peroxide by the glutathione (GSH) and thioredoxin-2 (Trx2) antioxidant systems. In this work we estimated the relative contribution of both systems and catalase to the removal of intrinsically produced hydrogen peroxide (H2O2) by rat brain mitochondria. By using the specific inhibitors auranofin and 1-chloro-2,4-dinitrobenzene (DNCB), the contribution of Trx2- and GSH-systems to reactive oxygen species (ROS) detoxification in rat brain mitochondria was determined to be 60 ± 20% and 20 ± 15%, respectively. Catalase contributed to a non-significant extent only, as revealed by aminotriazole inhibition. In digitonin-treated rat hippocampal homogenates inhibition of Trx2- and GSH-systems affected mitochondrial hydrogen peroxide production rates to a much higher extent than the endogenous extramitochondrial hydrogen peroxide production, pointing to a strong compartmentation of ROS metabolism. Imaging experiments of hippocampal slice cultures showed on single cell level substantial heterogeneity of hydrogen peroxide detoxification reactions. The strongest effects of inhibition of hydrogen peroxide removal by auranofin or DNCB were detected in putative interneurons and microglial cells, while pyramidal cells and astrocytes showed lower effects. Thus, our data underline the important contribution of the Trx2-system to hydrogen peroxide detoxification in rat hippocampus. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

11.
Insulin and insulin-like growth factor I (IGF-I) both play important roles in vascular remodeling. Moreover, nitric oxide (NO) is well established as a counterregulatory agent that opposes the actions of several vascular agonists, in part by decreasing smooth muscle motility. We tested the hypothesis that NO blocks insulin or IGF-I-induced rat aortic smooth muscle cell motility via a mechanism involving the attenuation of agonist-induced elevation of hydrogen peroxide levels and cGMP as mediator. Insulin or IGF-I induced an increase of hydrogen peroxide levels and cell motility. Both effects were blocked by catalase or diphenyleneiodonium, indicating that hydrogen peroxide elevation is necessary for induction of cell motility. Two NO donors mimicked the effects of catalase, indicating that NO decreases cell motility by suppressing agonist-induced elevation of hydrogen peroxide. A cGMP analogue mimicked the effect of NO, whereas a guanyl cyclase inhibitor blocked the effect of NO on hydrogen peroxide levels, indicating that elevation of cGMP is both necessary and sufficient to account for the reduction of hydrogen peroxide levels. A NO donor as well as a cGMP analogue attenuated insulin-stimulated NADPH activity, indicating that NO decreases hydrogen peroxide levels by inhibiting the generation of superoxide, via a cGMP-mediated mechanism. Finally, exogenous hydrogen peroxide increased cell motility and reversed the inhibitory effect of cGMP. These results support the view that NO plays an antioxidant role via reduction of hydrogen peroxide in cultured rat aortic smooth muscle cells and that this effect is both necessary and sufficient to account for its capacity to decrease cell motility.  相似文献   

12.
The hydrogen peroxide production upon vacuum ultraviolet (VUV) irradiation of water is reviewed, because published results from the last 10 years lead to conflicting mechanistic interpretations. This work confirms that in pure water, hydrogen peroxide is only produced in the presence of molecular oxygen. Mechanistic schemes explain these findings and confirm earlier statements that recombination of hydroxyl radicals is kinetically disfavoured. In agreement with other recent publications, this work confirms that enhanced hydrogen peroxide production takes place upon VUV irradiation of aqueous solutions of organic compounds. For these investigations, methanol was chosen as an organic model compound. During photolyses, hydrogen peroxide, dissolved molecular oxygen, pH-value of the reaction system, methanol and its products of oxidative degradation were analyzed, and kinetic studies were undertaken to explain the evolution of the concentrations of these components.  相似文献   

13.
Coffee shows direct-acting mutagenicity in Salmonella typhimurium TA100 and most of this mutagenicity is due to the synergistic effects of methylglyoxal and hydrogen peroxide. The modifications of deoxyribonucleosides by methylglyoxal plus hydrogen peroxide were studied in vitro. When 2'-deoxyguanosine (6.25 mumole) was treated with methylglyoxal (125 mumole) and hydrogen peroxide (125 mumole) in 5 ml of 0.1 M phosphate buffer (pH 7.4) at 37 degrees C for 3 h, N2-acetyl-2'-deoxyguanosine was formed with a yield of 1.1%. Its formation increased time-dependently. By contrast, no appreciable modification of other deoxynucleosides was detected after their incubation with methylglyoxal and hydrogen peroxide under similar conditions. N2-Acetyl-2'-deoxyguanosine was also formed during incubation of 2'-deoxyguanosine with instant coffee.  相似文献   

14.
A mixture of chloramines and hydrogen peroxide emits light. It was found that the reaction between taurine monochloramine and hydrogen peroxide is very slow. The stoichiometry of the reaction is 1:1 and taurine is detected as one of the products. The chlorinated proteins and bacteria, containing N-Cl groups, when reacting with hydrogen peroxide, are more effective in emitting light than low-molecular chloramines. Luminol enhances considerably light yield of the chloramine-hydrogen peroxide reaction. The chloramine-H2O2 reaction may account for light emitted by neutrophils during phagocytosis.  相似文献   

15.
The growth cessation of plant axis has been related with the formation of diphenyl bridges among the pectic components of the cell wall caused by the action of apoplastic peroxidases using hydrogen peroxide as electron acceptor. The formation of diphenyl bridges is prevented by the presence of ascorbate in the apoplastic fluid which acts as a hydrogen peroxide scavenger. The current work focuses on the role of the apoplastic ascorbate and hydrogen peroxide in the cell growth. The addition of hydrogen peroxide caused an inhibition of the auxin-induced growth as well as a significant decrease in the cell wall creep induced by acid-pH solutions. The hydrogen peroxide content in apoplastic fluid increased with the hypocotyl age and along the hypocotyl axis of 10-day-old pine seedlings, as the growth capacity decreased. On the other hand, the ascorbate content in the apoplastic fluid decreased with the hypocotyl age and along the hypocotyl axis of 10-day-old seedlings. A very significant correlation between the hydrogen peroxide apoplastic level and the growth rate as well as between the ascorbate/hydrogen peroxide molar ratio and the growth rate of hypocotyls have been found suggesting that the redox state is the main factor controlling the cell wall stiffening mechanism and thus growth in pine hypocotyls.  相似文献   

16.
Summary Hydrogen peroxide generated from dissolved oxygen through the alloxandialuric acid cycle affected both the permeability and the stability of lipid bilayer membranes. The permeability of the artificial membranes varied directly with the hydrogen peroxide concentration. Membrane stability varied inversely with the hydrogen peroxide concentration. Bilayers formed from solutions containing both phospholipid and the antioxidant vitamin E were less permeable and more stable in the presence of hydrogen peroxide than bilayers generated from solutions containing phospholipid alone. Peroxidation of phospholipid monolayers caused first an expansion of the films presumably through the introduction of peroxide groups. Further oxidation of phospholipid monolayers led to contraction of the films presumably through the formation of water-soluble products. The results of the monolayer studies and a consideration of the possible kinetics for the peroxidation reaction sequence have been used to explain the changes in the permeability and the stability of lipid bilayer membranes. Our data suggest that oxidation of lipid in biological membranes may first increase membrane permeability and then decrease membrane stability.  相似文献   

17.
The cytocompatibility of polyurethane membranes was tested following ultraviolet or gamma irradiation as well as treatment with hydrogen peroxide or glutaraldehyde containing solutions. Despite the fact that all of the methods had been recommended for antimicrobial treatment of glucose biosensors, the treatments investigated significantly influenced cytocompatibility characteristics. Cytotoxicity of membrane eluates was not observed following irradiation treatments. This was also the case when the membranes were repeatedly washed following chemical treatment. Cell growth upon the membranes was stimulated to a different extent after gamma and UV irradiation as well as following hydrogen peroxide treatments. Residues of an urea-based hydrogen peroxide inclusion compound caused a restriction in cell growth upon the membranes as was similarly observed with 2 and 4% glutaraldehyde solutions acting over 2 and 4 h, respectively. It is concluded that cytocompatibility in vitro reflecting the host response against a biomaterial in vivo does not only depend upon the material itself but also upon antimicrobial treatments which could have consequences for its bioperformance characteristics.  相似文献   

18.
1. In unbuffered alkaline solutions, autoxidizing adrenalin generates superoxide anions: both the scavenging by adrenalin itself, leading to adrenochrome, and the formation of nitrite from hydroxylamine are inhibited by superoxide dismutase. No hydroxyl radical could be detected. 2. The yield of hydrogen peroxide increases with pH in a way similar to that of adrenochrome and nitrite. The dissociated form of adrenalin (pK = 8.5) is proposed as the source of superoxide anions. 3. Superoxide dismutase delays rather than inhibits the reaction. In addition to the diminished formation of adrenochrome due to the scavenging of superoxide anions and re-reduction of the semiquinone by hydrogen peroxide, respectively, adrenochrome is further removed by hydrogen peroxide, with final products absorbing at 310 nm. 4. The diminished inhibitory effect of superoxide dismutase above pH 10 is due to superoxide-independent reactions. This effect is masked by the alkaline conversion of adrenochrome to indole compounds. 5. It is concluded that monitoring the absorption of adrenochrome in alkaline solutions does not produce reliable evidence for superoxide anions.  相似文献   

19.
W. Kaiser 《BBA》1976,440(3):476-482
Low concentrations of hydrogen peroxide strongly inhibit CO2 fixation of isolated intact chloroplasts (50% inhibition at 10−5 M hydrogen peroxide). Addition of catalase to a suspension of intact chloroplasts stimulates CO2 fixation 2–6 fold, indicating that this process is partially inhibited by endogenous hydrogen peroxide formed in a Mehler reaction.

The rate of CO2 fixation is strongly increased by addition of Calvin cycle intermediates if the catalase activity of the preparation is low. However, at high catalase activity addition of Calvin cycle intermediates remains without effect. Obviously the hydrogen peroxide formed at low catalase activity leads to a loss of Calvin cycle substrates which reduces the rate of CO2 fixation.

3-Phosphoglycerate-dependent O2-evolution is not influenced by hydrogen peroxide at a concentration (5 · 10−4 M) which inhibits CO2 fixation almost completely. Therefore the inhibition site of hydrogen peroxide cannot be at the step of 3-phosphoglycerate reduction. Dark CO2 fixation of lysed chloroplasts in a hypotonic medium is not or only slightly inhibited by hydrogen peroxide (2.5 · 10−4 M), if ribulose-1,5-diphosphate, ribose 5-phosphate or xylulose 5-phosphate were added as substrates. However, there is a strong inhibition of CO2 fixation by hydrogen peroxide, if fructose 6-phosphate together with triose phosphate are used as substrates. This indicates that hydrogen peroxide interrupts the Calvin cycle at the transketolase step, leading to a reduced supply of the CO2-acceptor ribulose 1,5-diphosphate.  相似文献   


20.
A technique was designed for the determination of hydrogen peroxide release. We found, however, that the isoluminol-amplified chemiluminescence technique is a suitable tool for measuring secretion of superoxide but not hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号