首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was hypothesized that some characteristics of the positions adopted by long jumpers during the final strides of the approach are significantly related to the distance of the jump, and that they are so related only by virtue of their relationships with the horizontal velocity at touchdown and/or the vertical velocity at takeoff. Trials by 20 male and 26 female long jumpers were recorded cinematographically and subsequently analyzed. The takeoff distance for the fourth-last stride, the landing distance for the last stride, and the height of the center of gravity (CG) at takeoff into the jump were significantly correlated with the distance of the jump. These three position variables were significantly related to the distance of the jump, through their relationships with the velocity of the approach and the vertical velocity of the CG at takeoff into the jump. Considered alone, they were not influential in determining the distance of the jump.  相似文献   

2.
The role of arm swing in jumping has been examined in numerous studies of standing jumps for height and forward distance, but no prior studies have explored its effect on lateral jumping. The purpose of the present study was to investigate the effect of arm motion on standing lateral jump performance and to examine the biomechanical mechanisms that may explain differences in jump distance. Six participants executed a series of jumps for maximum lateral distance from two in-ground force platforms for two jump cases (free and restricted arms) while an eight-camera, passive-reflector, motion capture system collected 3D position data throughout the movements. Inverse kinematics and dynamics analyses were performed for all jumps using three-dimensional (3D) link models to calculate segment angular velocities, joint moments, joint powers, and joint work. Free arm motion improved standing lateral jump performance by 29% on average. This improvement was due to increased takeoff velocity and improved lateral and vertical positions of the center of gravity (CG) at takeoff and touchdown. Improved velocity and position of the CG at takeoff resulted from a 33% increase in the work done by the body. This increase in work in free arm jumps compared to restricted arm jumps was found in both upper and lower body joints with the largest improvements (>30 J) occurring at the lower back, right hip, and right shoulder.  相似文献   

3.
4.
To characterize the electromyographic (EMG) activity, ground reaction forces, and kinematics were used in the running jump with different takeoff angles. Two male long jumpers volunteered to perform running jumps at different approach speeds by varying the number of steps (from 3 to 9) in the run-up. Subject TM achieved a greater vertical velocity of the center of gravity (CG) at takeoff for all approach distances. This jumping strategy was associated with greater backward trunk lean at touchdown and takeoff, a lesser range of motion for the thigh during the support phase, more extended knee and ankle angles at touchdown, and a more flexed knee angle at takeoff. Accompanying these differences in kinematics, TM experienced greater braking impulses and lesser propulsion impulses for the forward-backward component of the ground reaction force. Furthermore, TM activated mainly the rectus femoris, vastus medialis, lateral gastrocnemius, and tibialis anterior, while if rarely activated the biceps femoris from just before contact to roughly the first two-thirds of the support phase. These results indicate that TM used a greater takeoff angle in the running jump because he enabled and sustained a greater blocking effect via the coordination patterns of the muscles relative to the hip, knee, and ankle joints. These findings also suggest that the muscle activities recorded in the present experiment are reflected in kinematics and kinetics. Further, the possible influence of these muscle activities on joint movements in the takeoff leg, and their effect on the vertical and/or horizontal velocity of the jump are discussed.  相似文献   

5.
Oxygen consumption (VO2), ventilation (VI), respiratory exchange ratio (R), stride frequency and blood lactate concentrations were measured continuously in nine trained athletes during two continuous incremental treadmill runs to exhaustion on gradients of either 0 degree or -3 degrees. Compared to the run at 0 degree gradient, the athletes reached significantly higher maximal treadmill velocities but significantly lower VO2, VI, R and peak blood lactate concentrations (P less than 0.001) during downhill running. These lower VO2 and blood lactate concentrations at exhaustion indicated that factors other than oxygen delivery limited maximal performance during the downhill run. In contrast, stride frequencies were similar at each treadmill velocity; the higher maximal speed during the downhill run was achieved with a significantly longer stride length (P less than 0.001); maximal stride frequency was the same between tests. Equivalent maximal stride frequencies suggested that factors determining the rate of lower limb stride recovery may have limited maximal running speed during downhill running and, possibly, also during horizontal running.  相似文献   

6.
Triple jumpers employ either an asymmetrical ‘single-arm’ action or symmetrical ‘double-arm’ action in the takeoff of each phase of the jump. This study investigated which technique is more beneficial in each phase using computer simulation. Kinematic data were obtained from an entire triple jump using a Vicon automatic motion capture system. A planar 13-segment torque-driven subject-specific computer simulation model was evaluated by varying torque generator activation timings using a genetic algorithm in order to match performance data. The matching produced a close agreement between simulation and performance, with differences of 3.8%, 2.7%, and 3.1% for the hop, step, and jump phases, respectively. Each phase was optimised for jump distance and an increase in jump distance beyond the matched simulations of 3.3%, 11.1%, and 8.2% was obtained for the hop, step, and jump, respectively. The optimised technique used symmetrical shoulder flexion whereas the triple jumper had used an asymmetrical arm technique. This arm action put the leg extensors into slower concentric conditions allowing greater extensor torques to be produced. The main increases in work came at the joints of the stance leg but the largest increases in angular impulse came at the shoulder joints, indicating the importance of both measures when assessing the impact of individual joint actions on changes in technique. Possible benefits of the double-arm technique include: cushioning the stance leg during impact; raising the centre of mass of the body at takeoff; facilitating an increase in kinetic energy at takeoff; allowing a re-orientation of the body during flight.  相似文献   

7.
Small knee flexion angle during landing has been proposed as a potential risk factor for sustaining noncontact ACL injury. A brace that promotes increased knee flexion and decreased posterior ground reaction force during landing may prove to be advantageous for developing prevention strategies. Forty male and forty female recreational athletes were recruited. Three-dimensional videographic and ground reaction force data in a stop-jump task were collected in three conditions. Knee flexion angle at peak posterior ground reaction force, peak posterior ground reaction force, the horizontal velocity of approach run, the vertical velocity at takeoff, and the knee flexion angle at takeoff were compared among conditions: knee extension constraint brace, nonconstraint brace, and no brace. The knee extension constraint brace significantly increased knee flexion angle at peak posterior ground reaction force. Both knee extension constraint brace and nonconstraint brace significantly decreased peak posterior ground reaction force during landing. The brace and knee extension constraint did not significantly affect the horizontal velocity of approach run, the vertical velocity at takeoff, and the knee flexion angle at takeoff. A knee extension constraint brace exhibits the ability to modify the knee flexion angle at peak posterior ground reaction force and peak posterior ground reaction force during landing.  相似文献   

8.
Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.  相似文献   

9.
Force platforms as ergometers.   总被引:15,自引:0,他引:15  
Walking and running on the level involves external mechanical work, even when speed averaged over a complete stride remains constant. This work must be performed by the muscles to accelerate and/or raise the center of mass of the body during parts of the stride, replacing energy which is lost as the body slows and/or falls during other parts of the stride. External work can be measured with fair approximation by means of a force plate, which records the horizontal and vertical components of the resultant force applied by the body to the ground over a complete stride. The horizontal force and the vertical force minus the body weight are integrated electronically to determine the instantaneous velocity in each plane. These velocities are squared and multiplied by one-half the mass to yield the instantaneous kinetic energy. The change in potential energy is calculated by integrating vertical velocity as a function of time to yield vertical displacement and multiplying this by body weight. The total mechanical energy as a function of time is obtained by adding the instantaneous kinetic and potential energies. The positive external mechanical work is obtained by adding the increments in total mechanical energy over an integral number of strides.  相似文献   

10.
This study used a subject-specific model with eight segments driven by joint torques for forward dynamics simulation to investigate the effects of initial conditions and takeoff technique on the performance of running jumps for height and distance. The torque activation profiles were varied in order to obtain matching simulations for two jumping performances (one for height and one for distance) by an elite male high jumper, resulting in a simulated peak height of 1.98m and a simulated horizontal distance of 4.38m. The peak height reached/horizontal distance travelled by the mass centre for the same corresponding initial conditions were then maximised by varying the activation timings resulting in a peak height of 2.09m and a horizontal distance of 4.67m. In a further two optimizations the initial conditions were interchanged giving a peak height of 1.82m and a horizontal distance of 4.04m. The four optimised simulations show that even with similar approach speeds the initial conditions at touchdown have a substantial effect on the resulting performance. Whilst the takeoff phase is clearly important, unless the approach phase and the subsequent touchdown conditions are close to optimal then a jumper will be unable to compensate for touchdown condition shortcomings during the short takeoff phase to achieve a performance close to optimum.  相似文献   

11.
The gaits of the adult SWISS mice during treadmill locomotion at velocities ranging from 15 to 85 cm s–1 have been analysed using a high-speed video camera combined with cinefluoroscopic equipment. The sequences of locomotion were analysed to determine the various space and time parameters of limb kinematics. We found that velocity adjustments are accounted for differently by the stride frequency and the stride length if the animal showed a symmetrical or an asymmetrical gait. In symmetrical gaits, the increase of velocity is provided by an equal increase in the stride length and the stride frequency. In asymmetrical gaits, the increase in velocity is mainly assured by an increase in the stride frequency in velocities ranging from 15 to 29 cm s–1. Above 68 cm s–1, velocity increase is achieved by stride length increase. In velocities ranging from 29 to 68 cm s–1, the contribution of both variables is equal as in symmetrical gaits. Both stance time and swing time shortening contributed to the increase of the stride frequency in both gaits, though with a major contribution from stance time decrease. The pattern of locomotion obtained in a normal mouse should be used as a template for studying locomotor control deficits after lesions or in different mutations affecting the nervous system.  相似文献   

12.
We studied the specificity of elastic-cord towing by measuring selected kinematics of the acceleration phase of sprinting. Nine collegiate sprinters ran two 20-m maximal sprints (MSs) and towed sprints (TSs) that were recorded on high-speed video (180 Hz). Sagittal plane kinematics of a 4-segment model of the right side of the body were digitized for a complete stride at the 15-m point for the fastest trial. Significant (p < 0.001) differences were observed for horizontal velocity of the center of mass (CoM), stride length (SL), and horizontal distance from the CoM of the foot to the CoM of the body. There was no significant difference in stride rate between the MS and TS conditions. Omega-squared analysis showed that elastic-cord towing accounted for most of the variance in acute changes in horizontal velocity (73%), SL (68%), and horizontal position of the CoM at foot contact (64%). Elastic-cord tow training resulted in significant acute changes in sprint kinematics in the acceleration phase of an MS that do not appear to be sprint specific. More research is needed on the specificity of TS training and long-term effects on sprinting performance.  相似文献   

13.
The purposes of this study are (a) to examine the effects of contact time manipulation on jump parameters and (b) to examine the interaction between starting height changes and contact time changes on important jump parameters. Fifteen male athletes performed a series of drop jumps from heights of 20, 40, and 60 cm. The instructions given to the subjects were (a) "jump as high as you can" and (b) "jump high a little faster than your previous jump." Jumps were performed at each height until the athlete could not achieve a shorter ground contact time. The data were divided into 5 groups where group 1 was made up of the longest ground contact times of each athlete and groups 2-4 were composed of progressively shorter contact times, with group 5 having the shortest contact times. The jumps of group 3 produced the highest maximum and mean mechanical power (p <0.05) during the positive phase of the drop jumps regardless of starting jump height. The vertical takeoff velocities for the first 3 groups did not show significant (p < 0.05) differences. These results indicate that the manipulation of jump technique plays larger role than jump height in the manipulation of important jump parameters.  相似文献   

14.
A multi-segment model is used to investigate optimal compliant-surface jumping strategies and is applied to springboard standing jumps. The human model has four segments representing the feet, shanks, thighs, and trunk-head-arms. A rigid bar with a rotational spring on one end and a point mass on the other end (the tip) models the springboard. Board tip mass, length, and stiffness are functions of the fulcrum setting. Body segments and board tip are connected by frictionless hinge joints and are driven by joint torque actuators at the ankle, knee, and hip. One constant (maximum isometric torque) and three variable functions (of instantaneous joint angle, angular velocity, and activation level) determine each joint torque. Movement from a nearly straight motionless initial posture to jump takeoff is simulated. The objective is to find joint torque activation patterns during board contact so that jump height can be maximized. Minimum and maximum joint angles, rates of change of normalized activation levels, and contact duration are constrained. Optimal springboard jumping simulations can reasonably predict jumper vertical velocity and jump height. Qualitatively similar joint torque activation patterns are found over different fulcrum settings. Different from rigid-surface jumping where maximal activation is maintained until takeoff, joint activation decreases near takeoff in compliant-surface jumping. The fulcrum-height relations in experimental data were predicted by the models. However, lack of practice at non-preferred fulcrum settings might have caused less jump height than the models' prediction. Larger fulcrum numbers are beneficial for taller/heavier jumpers because they need more time to extend joints.  相似文献   

15.
The purpose of this study was to determine the reliability and validity of a portable force plate when analyzing jumping and landing tasks. Subjects performed 3 drop vertical jumps and 3 drop landings on both a standard strain gauge laboratory force plate and a portable force plate. In contrast to typical laboratory installed force plates, the portable 6-component force plate can be easily transported and used onsite at various training or data collection sites and incorporates Hall effect technology. The measured parameters included maximum force and time to maximum force for initial stance of the both tests, maximum takeoff force, and time to maximum takeoff force for the drop vertical jump. The Pearson correlation coefficients for the drop landing and the drop vertical jump for maximum force (r = 0.942, r = 0.940), time to maximum force (r = 0.891, r = 0.920) and for drop jump maximum jumping force (r = 0.971), and time to maximum takeoff force (r = 0.917) were all high and indicate that the force data collected by a resistor-type portable force plate provide similar measures to a standard strain-gauge laboratory force plate. Additionally, the within session reliability of the drop landing and the drop vertical jump measured by the portable force plate showed high interclass correlation coefficients for examined variables of 0.979 and 9.67 for maximum landing force and 0.917 and 0.920 for time to maximum landing force, respectively. The interclass correlation coefficients for the maximum takeoff force and time to maximum takeoff force during the drop vertical jump were 0.991 and 0.86. The results indicate the force and timing measurements from the portable force plate were both valid and reliable. Use of the portable force plate may facilitate methods of force measurement that can be applied out into the field and therefore a valuable tool for on site landing and jump force measurements in a variety of settings for large numbers of subjects.  相似文献   

16.
We quantified gait and stride characteristics (velocity, frequency, stride length, stance and swing duration, and duty factor) in the bursts of locomotion of two small, intermittently moving, closely related South American gymnophthalmid lizards: Vanzosaura rubricauda and Procellosaurinus tetradactylus. They occur in different environments: V. rubricauda is widely distributed in open areas with various habitats and substrates, while P. tetradactylus is endemic to dunes in the semi-arid Brazilian Caatinga. Both use trot or walking trot characterised by a lateral sequence. For various substrates in a gradient of roughness (perspex, cardboard, sand, gravel), both species have low relative velocities in comparison with those reported for larger continuously moving lizards. To generate velocity, these animals increase stride frequency but decrease relative stride length. For these parameters, P. tetradactylus showed lower values than V. rubricauda. In their relative range of velocities, no significant differences in stride length and frequency were recorded for gravel. However, the slopes of a correlation between velocity and its components were lower in P. tetradactylus on cardboard, whereas on sand this was only observed for velocity and stride length. The data showed that the difference in rhythmic parameters between both species increased with the smoothness of the substrates. Moreover, P. tetradactylus shows a highly specialised locomotor strategy involving lower stride length and frequency for generating lower velocities than in V. rubricauda. This suggests the evolution of a central motor pattern generator to control slower limb movements and to produce fewer and longer pauses in intermittent locomotion.  相似文献   

17.
Adaptationist theory predicts that species will evolve functional specializations for occupying different ecological niches. However, whereas performance traits are often complex, most comparative functional studies examine only simple measures of performance (e.g., sprint speed). Here we examine multiple facets of jumping biomechanics in 12 species of Caribbean Anolis lizards. These 12 species represent six ecomorphs, which are distinct ecological and morphological entities that have independently evolved on different Caribbean islands. We first show that the optimal angles for jumping maximum horizontal distances range from 39 degrees to 42 degrees, but the average jump angle of the 12 species is about 36 degrees. Interestingly, these "suboptimal" jumping angles result in only a small decrement in jump distance but substantial savings in flight duration and jump height. Further, our data show that the two key variables associated with increased jumping velocity (hindlimb length and takeoff acceleration) are independent of one another. Thus, there are two possible ways to achieve superior jumping capabilities: to evolve more muscular limbs--as stronger legs will produce more force and, hence, more acceleration--or evolve longer limbs. Our data show that anole species face trade-offs that prevent them from simultaneously optimizing different aspects of jumping ability but that they appear to have evolved behaviors that partially overcome these trade-offs.  相似文献   

18.
The purpose of this study was to determine the relationship between measures of unilateral and bilateral jumping performance and 10- and 25-m sprint performance. Fifteen division I women soccer players (height 165 ± 2.44 cm, mass 61.65 ± 7.7 kg, age 20.19 ± 0.91 years) volunteered to participate in this study. The subjects completed a 10- and 25-m sprint test. The following jump kinematic variables were measured using accelerometry: sprint time, step length, step frequency, jump height and distance, contact time, concentric contact time, and flight time (Inform Sport Training Systems, Victoria, BC, Canada). The following jumps were completed in random order: bilateral countermovement vertical jump, bilateral countermovement horizontal jump, bilateral 40-cm drop vertical jump, bilateral 40-cm drop horizontal jump, unilateral countermovement vertical jump (UCV), unilateral countermovement horizontal jump, unilateral 20-cm drop vertical jump (UDV), and unilateral 20-cm drop horizontal jump (UDH). The trial with the best jump height or distance, reactive strength (jump height or distance/total contact time), and flight time to concentric contact time ratio (FT/CCT) was recorded to analyze the relationship between jump kinematics and sprint performance. None of the bilateral jump kinematics significantly correlated with 10- and 25-m sprint time, step length, or step frequency. Right-leg jump height (r = -0.71, p = 0.006, SEE = 0.152 seconds), FT/CCT (r = -0.58, p = 0.04, SEE = 0.176 seconds), and combined right and left-leg jump height (r = -0.61) were significantly correlated with the 25-m sprint time during the UCV. Right-leg FT/CCT was also significantly related to 25-m step length (r = 0.68, p = 0.03, SEE = 0.06 m) during the UDV. The combined right and left leg jump distance to standing height ratio during the UDH significantly correlated (r = -0.58) with 10-m sprint time. In comparison to bilateral jumps, unilateral jumps produced a stronger relationship with sprint performance.  相似文献   

19.
Hemiplegic gait: a kinematic analysis using walking speed as a basis.   总被引:8,自引:0,他引:8  
The kinematics of treadmill ambulation of stroke patients (N = 9) and healthy subjects (N = 4) was studied at a wide range of different velocities (i.e. 0.25-1.5 m s-1), with a focus on the transverse rotations of the trunk. Video recordings revealed, for both stroke patients and healthy subjects, similar relations between walking speed and stride length as well as stride frequency. The phase difference between pelvic and thoracic rotations (i.e. trunk rotation) and the total range of trunk rotation were almost linearly related to the walking speed. Healthy subjects showed a marked increase in pelvic rotation from 1 to 1.5 m s-1. Using dimensional analysis in a comparison between stroke patients and healthy subjects, invariances in the coordination of gait were found for stride length, stride frequency, pelvic rotation, and trunk rotation. Constant relations were obtained between, on the one hand, dimensionless velocity and, on the other, dimensionless stride length as well as stride frequency. Transitions were found between the velocities 0.75 and 1 m s-1 for dimensionless pelvic rotation and trunk rotation, indicating that, from this velocity range onwards, pelvic swing lengthens the stride: rotations of pelvis, thorax and trunk become tightly coordinated. On the basis of the dimensionless stride length, stride frequency, pelvic rotation and trunk rotation, deficits in the gait of stroke patients could be quantified. It is concluded that walking speed is an important control parameter, which should be used as a basic variable in the evaluation of the gait of stroke patients.  相似文献   

20.
This study examined whether an extrinsic motivator, such as an overhead goal, during a plyometric jump may alter movement biomechanics. Our purpose was to examine the effects of an overhead goal on vertical jump height and lower-extremity biomechanics during a drop vertical jump and to compare the effects on female (N = 18) versus male (N = 17) athletes. Drop vertical jump was performed both with and without the use of an overhead goal. Greater vertical jump height (p = 0.002) and maximum takeoff external knee flexion (quadriceps) moment (p = 0.04) were attained with the overhead goal condition versus no overhead goal. Men had significantly greater vertical jump height (p < 0.001), maximum takeoff vertical force (p = 0.009), and maximum takeoff hip extensor moment (p = 0.02) compared with women. A significant gender x overhead goal interaction was found for stance time (p = 0.02) and maximum ankle (p = 0.04) and knee flexion angles (p = 0.04), with shorter stance times and lower angles in men during overhead goal time. These results indicate that overhead goals may be incorporated during training and testing protocols to alter lower-extremity biomechanics and can increase performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号