首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of CO2 gas exchange, transpiration, stomatal conductivity, and efficiency of the use of water were assessed in leaves of the sugar beet (Beta vulgaris var. Saccharifera (Alef) Krass.) sprayed with 40% methanol, against the background of increasing water deficiency in soil. A decrease in the negative impact of water deficiency in experimental plants was shown to be due to the larger stress-resistance of the photosynthetic apparatus, higher rate of photosynthesis, and more effective use of water.  相似文献   

2.
The effects of Fe deficiency (whether direct or bicarbonate-induced) on plant morphology, growth parameters, photosynthesis-related pigment contents, gas exchange, and water relations were addressed in two contrasting chickpea varieties (INRAT88 and Chetoui, respectively tolerant and sensitive to Fe deficiency). A marked decrease in the whole plant Fe content was observed in the Fe deprived plants of both varieties, especially the bicarbonate-treated ones, which showed a slower growth development and water deficit stress symptoms (increased leaf tissue osmolality associated with decreased shoot height, increased leaf mass to area ratio, and decreased water content). Both Fe shortage and bicarbonate addition resulted in both varieties in the decline of the photosynthetic pigment contents, contributing to lower photosynthetic efficiency (φc) and lower net photosynthesis (A). Fe deficiency reduced the water use efficiency and physiological availability of water too. However, INRAT88 was more tolerant to Fe deficiency than Chetoui, by maintaining a higher growth rate associated with lower respiration rate (RD), higher chlorophyll a and b concentrations, higher A, lower transpiration rate (E) and a higher water use efficiency (A/E). The present data suggest that the efficient utilisation of Fe for the synthesis of chlorophyll together with the effective control of electron-transport chains at chloroplasts (high A) and mitochondria (low RD) may account for the higher tolerance of INRAT88 to direct Fe deficiency. Further investigations with respect to oxidative stress and ROS generation, or about photorespiration would be helpful for a better understanding of their interaction with Fe deficiency in this grain legume.  相似文献   

3.
The responses of gas exchange and water use efficiency to nitrogen nutrition for winter wheat were investigated under well-watered and drought conditions. The photosynthetic gas exchange parameters of winter wheat are remarkably improved by water and nitrogen nutrition and the regulative capability of nitrogen nutrition is influenced by water status. The effects of nitrogen nutrition on photosynthetic characteristics and on the limited factors to photosynthesis are not identical under different water status. Intrinsic water use efficiency (WUE(i)) of the plants at the high-N nutrition was decreased by a larger value than that of the plants in the low-N treatment due to a larger decrease in photosynthetic rate than in transpiration rate. Carbon isotope composition of plant material (delta(p)) is increased by the increase of drought intensity. The delta(p) at a given level of C(i)/C(a) is reduced by nitrogen deficiency. Leaf carbon isotope discrimination (Delta) is increased by the increase of nitrogen nutrition and decreased by the increase of drought intensity. Transpirational water use efficiency (WUE(t)) is negatively correlated with Delta in both nitrogen supply treatments and increased with the nitrogen supply.  相似文献   

4.
Chickpea (Cicer arietinum) is an important dryland pulse crop in many parts of the world. Productivity is often limited by periods of water deficit and in a number of regions zinc deficiency occurs, but the interaction between zinc nutrition and water stress has not been studied extensively. This interaction was examined in two glasshouse experiments. Chickpea was grown under deficient (no applied Zn) or adequate (2.5 μg Zn/g soil) levels of zinc in pots for either 53 days (Experiment 1) or 40 days (Experiment 2) before being exposed to a single period of water stress that lasted for 12 days (Experiment 1) or 23 days (Experiment 2). In one experiment four genotypes (Tyson, ICC-4958, T-1587 and NIFA-88) differing in their sensitivity to zinc deficiency were compared during a single drying cycle, and in the second experiment a single cultivar (Tyson) was compared under well-watered and water stress conditions. Water stress was induced by allowing the soil to dry gradually and the responses in shoot biomass, water use, plant water relations and carbon isotope discrimination (Δ, ‰) were measured. Shoot biomass, water use and water use efficiency were reduced by zinc deficiency. Stomatal conductance was lower in zinc-deficient plants as well. Zinc deficiency reduced Δ by about 1‰ and there were significant differences in Δ between genotypes which were independent of the level of zinc nutrition. At an adequate level of zinc there was a significant negative correlation between Δ and shoot biomass and between Δ and water use efficiency among the four chickpea genotypes, but these correlations were not significant under zinc deficiency. Osmotic potential was lower and turgor higher in the leaves of zinc-deficient plants, but the ability to adjust osmotically was reduced by zinc deficiency as stress developed. In conclusion, zinc-deficiency reduced the efficiency with which the water was used for biomass production and compromised the plant’s capacity to respond to water stress by osmotic adjustment.  相似文献   

5.
In an open gas exchange system with a thermocouple psychrometer the transpiration rate of the first leaf in 8-day plants of spring barley was measured in dependence on the water saturation deficit (ΔW sat). The plants were cultivated in Richter’s nutrient solution, either complete, or deficient in nitrogen or phosphorus. The cuticular transpiration (as measured in the dark) was unaffected by N and P deficiency. The N deficiency reduced the transpiration rate by increasing stomatal resistance since full water saturation of the leaf (67% rate of the control variant) up to stomatal closing at Δ Wsat = 14%. The P deficiency does not affect the transpiration rate at initial phases of wilting, but the stomata close only at a higher Δ Wsat (25%) than those in the control.  相似文献   

6.
To investigate if latent manganese (Mn) deficiency leads to increased transpiration, barley plants were grown for 10 weeks in hydroponics with daily additions of Mn in the low n M range. The Mn-starved plants did not exhibit visual leaf symptoms of Mn deficiency, but Chl a fluorescence measurements revealed that the quantum yield efficiency of PSII (Fv/Fm) was reduced from 0.83 in Mn-sufficient control plants to below 0.5 in Mn-starved plants. Leaf Mn concentrations declined from 30 to 7 μg Mn g−1 dry weight in control and Mn-starved plants, respectively. Mn-starved plants had up to four-fold higher transpiration than control plants. Stomatal closure and opening upon light/dark transitions took place at the same rate in both Mn treatments, but the nocturnal leaf conductance for water vapour was still twice as high in Mn-starved plants compared with the control. The observed increase in transpiration was substantiated by 13C-isotope discrimination analysis and gravimetric measurement of the water consumption, showing significantly lower water use efficiency in Mn-starved plants. The extractable wax content of leaves of Mn-starved plants was approximately 40% lower than that in control plants, and it is concluded that the increased leaf conductance and higher transpirational water loss are correlated with a reduction in the epicuticular wax layer under Mn deficiency.  相似文献   

7.
Mechanically-induced stress (MIS) applied by brushing the shootsof lettuce and cauliflower seedings with paper for 90 s eachday retarded the growth of water deficient and nutrient deficientseedlings as effectively as it did the growth of those wateredregularly or fed regularly with nutrient. The results are discussedboth in relation to how MIS might effect plant growth in thefield and to the possible use of stress treatments applied duringthe raising of transplants. Lactuca sativa L., lettuce, Brassica oleracea var, botrytis DC, cauliflower, mechanically-induced stress (MIS), water deficiency, nutrient deficiency, water potential  相似文献   

8.
Photosynthetic responses of sunflower plants grown for 52 d in ambient and elevated CO(2) (A=350 or E=700 micromol mol(-1), respectively) and subjected to no (control), mild or severe water deficits after 45 d were analysed to determine if E modifies responses to water deficiency. Relative water content, leaf water potential (Psi(w)) and osmotic potential decreased with water deficiency, but there were no effects of E. Growth in E decreased stomatal conductance (g(s)) and thereby transpiration, but increased net CO(2) assimilation rate (P(n), short-term measurements); therefore, water-use efficiency increased by 230% (control plants) and 380% (severe stress). Growth in E did not affect the response of P(n) to intercellular CO(2) concentration, despite a reduction of 25% in Rubisco content, because this was compensated by a 32% increase in Rubisco activity. Analysis of chlorophyll a fluorescence showed that changes in energy metabolism associated with E were small, despite the decreased Rubisco content. Water deficits decreased g(s) and P(n): metabolic limitation was greater than stomatal at mild and severe deficit and was not overcome by elevated CO(2). The decrease in P(n) with water deficiency was related to lower Rubisco activity rather than to ATP and RuBP contents. Thus, there were no important interactions between CO(2) during growth and water deficit with respect to photosynthetic metabolism. Elevated CO(2 )will benefit sunflower growing under water deficit by marginally increasing P(n), and by slowing transpiration, which will decrease the rate and severity of water deficits, with limited effects on metabolism.  相似文献   

9.
Xing HT  Guo P  Xia XL  Yin WL 《Planta》2011,234(2):229-241
Water deficiency causes a dramatic reduction in crop production globally. Breeding crop varieties that are more efficient in their water use is one strategy to overcome this predicament. In this study, a member of the LRR-RLKs family, the Populus nigra × (Populus deltoides × Populus nigra) ERECTA (PdERECTA) gene was cloned. To study the biological functions of PdERECTA, transgenic Arabidopsis plants (35S:PdERECTA) that constitutively expressed the PdERECTA gene were constructed. Overexpression of PdERECTA resulted in early seedling establishment, longer primary roots, and larger leaf areas. Notably, transgenic Arabidopsis overexpressing PdERECTA resulted in enhanced long-term water use efficiency (WUEl), as estimated by the analysis of carbon isotopic discrimination. The WUEl results were supported by the physiological and anatomical results, which included improved photosynthetic rate, decreased transpiration rate, and stomatal density. The transgenic lines have significantly more dry-biomass as compared to the wild type. Since the overexpression of PdERECTA can strongly enhance the water use efficiency in transgenic Arabidopsis plants, PdERECTA could potentially be used in transgenic breeding to improve the water use efficiency.  相似文献   

10.
开花期土壤短期干旱和复水对大豆光合作用和产量的影响   总被引:4,自引:0,他引:4  
王磊  张彤  丁圣彦 《植物学报》2009,44(2):185-190
以大豆(Glycine max)为材料, 研究开花期土壤水分变动对叶片光合生理以及产量形成的影响, 以期为大豆的节水栽培和水分高效利用提供理论依据。研究发现, 大豆叶片气孔导度(Gs)对土壤水分的匮缺更加敏感。干旱胁迫降低了叶片的净光合速率(Pn), 但复水后, 叶片水势和净光合速率等在实验过程中都可以得到迅速恢复, 并且蒸腾速率(Tr)、气孔导度和胞间CO2浓度(Ci)在复水后的第3 天与对照相比显著提高, 表现出一定的超补偿效应。研究发现, 在开花期即使短期的土壤干旱, 也会对大豆后期的生物量及其分配产生较大的影响, 开花期干旱和复水, 显著降低了大豆叶片和茎的生物量, 使根茎比提高16.7% (P<0.05), 收获指数增加26.3%(P<0.05)。  相似文献   

11.
Global climate change is expected to increase the length of drought periods in many tropical regions. Although large amounts of potassium (K) are applied in tropical crops and planted forests, little is known about the interaction between K nutrition and water deficit on the physiological mechanisms governing plant growth. A process‐based model (MAESPA) parameterized in a split‐plot experiment in Brazil was used to gain insight into the combined effects of K deficiency and water deficit on absorbed radiation (aPAR), gross primary productivity (GPP), and light‐use efficiency for carbon assimilation and stem biomass production (LUEC and LUEs) in Eucalyptus grandis plantations. The main‐plot factor was the water supply (undisturbed rainfall vs. 37% of throughfall excluded) and the subplot factor was the K supply (with or without 0.45 mol K m?2 K addition). Mean GPP was 28% lower without K addition over the first 3 years after planting whether throughfall was partly excluded or not. K deficiency reduced aPAR by 20% and LUEC by 10% over the whole period of growth. With K addition, throughfall exclusion decreased GPP by 25%, resulting from a 21% decrease in LUEC at the end of the study period. The effect of the combination of K deficiency and water deficit was less severe than the sum of the effects of K deficiency and water deficit individually, leading to a reduction in stem biomass production, gross primary productivity and LUE similar to K deficiency on its own. The modeling approach showed that K nutrition and water deficit influenced absorbed radiation essentially through changes in leaf area index and tree height. The changes in gross primary productivity and light‐use efficiency were, however, driven by a more complex set of tree parameters, especially those controlling water uptake by roots and leaf photosynthetic capacities.  相似文献   

12.
Nitrogen nutrition strongly affected the growth rate of young sunflower (Helianthus annuus L.) leaves. When plants were grown from seed on either of two levels of N availability, a 33% decrease in tissue N of expanding leaves was associated with a 75% overall inhibition of leaf growth. Almost all of the growth inhibition resulted from a depression of the daytime growth rate. Measurements of pressure-induced water flux through roots showed that N deficiency decreased root hydraulic conductivity by about half. Thus, N deficiency lowered the steady-state water potential of expanding leaves during the daytime when transpiration was occurring. As a result, N-deficient leaves were unable to maintain adequate turgor for growth in the daytime. N deficiency also decreased the hydraulic conductivity for water movement into expanding leaf cells in the absence of transpiration, but growth inhibition at night was much less than in the daytime. N nutrition had no detectable effects on plastic extensibility or the threshold turgor for growth.  相似文献   

13.
The significance of soil moisture in relation to aeration and larval emergence from cysts of Heterodera schachtii Schmidt is discussed. The rate of larval emergence increased as oxygen concentration increased. A comparison of the moisture characteristics of a mass of cysts and of sand of about the same particle size showed that water was removed from between both the cysts and the sand particles at 12–16 cm. of water-pressure deficiency. There was an indication that water was removed from between the eggs within the cysts at 100–135 cm - of water-pressure deficiency. The rate of larval emergence showed a gradual decline is suction was increased beyond 20 cm. of water-pressure deficiency, approaching zero at 175 cm. of water-pressure deficiency. Results suggest that egg hatch is not directly dependent on pressure deficiency and that the presence of free larvae within the cyst inhibits further egg hatch. A technique is described for measuring larval motility in sand. There is a decline in motility when most of the water has been removed from the sand pore-spaces. It is suggested that the relatively low rates of larval emergence at high-pressure deficiencies are due to inhibition of larval migration from the cyst by the surface forces of the water film.  相似文献   

14.
Krisztina R. Végh 《Biologia》2013,68(6):1123-1127
The main components of drought tolerance of six maize genotypes were studied to evaluate crop performance in water limiting environments: (1) the postponement of dehydration by reduced transpiration rate (TR) and an increased efficiency of water acquisition from soil; (2) the tolerance of dehydration by effective physiological water use. The aim was to describe the genotype dependent response to drought in leaf and root traits and water relations using data from controlled environment and field experiments, and using dynamic simulation by the Swedish Coup model. High genetic variation was detected in the root density, acquisition efficiency and water use among the genotypes. The female parent lines had the greatest TR with the smallest dry matter accumulation in water deficiency, whereas hybrids could acquire more water from dryer soil while maintaining a lower TR. Hybrid Mv 444 increased water potential more strongly in leaves than hybrid Norma. The postponement of dehydration was observed for Norma, while more tolerance to dehydration characterized Mv 444. Simulation was an effective tool for testing hypotheses considering water acquisition efficiency and for summarizing the results of the measurements in a formalized structure; it helped to quantify the dynamics of water availability and the impact of drought on the growth of the maize genotypes.  相似文献   

15.
There is increasing evidence suggesting that iron (Fe) deficiency induces not only leaf chlorosis and a decline of photosynthesis, but also structural changes in leaf morphology, which might affect the functionality of leaves. In this study, we investigated the effects of Fe deficiency on the water relations of peach ( Prunus persica (L.) Batsch.) leaves and the responses of previously chlorotic leaves to Fe resupply via the root or the leaf. Iron deficiency induced a decline of maximum potential photosystem II (PSII) efficiency (F V/F M), of rates of net photosynthesis and transpiration and of water use efficiency. Iron chlorosis was associated with a reduction of leaf xylem vessel size and of leaf hydraulic conductance. In the course of the day, water potentials in chlorotic leaves remained higher (less negative) than in green leaves. In chlorotic leaves, normal stomatal functioning was disturbed, as evidenced by the lack of opening upon withdrawal of external CO2 and stomatal closure after sudden illumination of previously darkened leaves. We conclude that the Fe deficiency induced limitations of xylem conductivity elicited a water saving strategy, which poses an additional challenge to plant growth on high pH, calcareous soils. Fertilisation with Fe improved photosynthetic performance but the proper xylem structure and water relations of leaves were not fully restored, indicating that Fe must be available at the first stages of leaf growth and development.  相似文献   

16.
氮、磷、钾营养对冬小麦光合作用及水分利用的影响   总被引:8,自引:0,他引:8  
在中国科学院封丘农业生态实验站长期肥料实验的基础上,选择氮磷(T1)、氮钾(T2)、磷钾(T3)和氮磷钾(T4)4个肥料处理,以不施肥为对照(CK),研究了长期施用氮、磷、钾肥对小麦抽穗期和灌浆期净光合速率(Pn)、蒸腾速率(Tr)和水分利用效率(WUE)日变化的影响.结果表明:小麦抽穗期和灌浆期T4处理的Pn日变化值显著高于CK,其他处理与CK未达到显著性差异,各处理Pn日积累量大小为T4>T1>T2>T3>CK;缺氮、缺磷和缺钾均降低了叶片Pn,影响大小依次为缺氮>缺磷>缺钾;小麦抽穗期和灌浆期Tr日变化曲线呈单峰型,处理间日变化值差异不显著;缺氮、缺磷和缺钾均降低了叶片WUE,抽穗期,T1、T4处理的WUE日变化值显著高于CK,而T3、T2与CK差异不显著,说明缺氮、缺磷对WUE的影响最大,灌浆期,T4处理的WUE日变化值显著高于CK;不同肥料处理仅改变了小麦光合日变化的幅度,而未改变其变化规律,氮、磷、钾复合施肥有效地提高了小麦的光合生产和水分利用效率.  相似文献   

17.
An experiment was carried out to study the effect of nitrogen deficiency on the water relations of tea (Camellia sinensis). The plants were grown in sand and nitrogen deficiency induced by witholding the supply of nitrogen. Nitrogen deficiency increased stomatal resistance and reduced transpiration. The capacity of the stomata to open fully in the morning was not impaired by nitrogen deficiency. Leaf water potential and probably root resistance were not affected by nitrogen deficiency. The sensitivity of transpiration and stomatal resistance to sand water stress was increased by nitrogen deficiency.  相似文献   

18.
The rate of photosynthesis and its relation to tissue nitrogen content was studied in leaves and siliques of winter oilseed rape (Brassica napus L.) growing under field conditions including three rates of nitrogen application (0, 100 or 200 kg N ha-1) and two levels of irrigation (rainfed or irrigated at a deficit of 20 mm). The predominant effect of increasing N application under conditions without water deficiency was enhanced expansion of photosynthetically active leaf and silique surfaces, while the rate of photosynthesis per unit leaf or silique surface area was similar in the different N treatments. Thus, oilseed rape did not increase N investment in leaf area expansion before a decline in photosynthetic rate per unit leaf area due to N deficiency could be avoided. Much less photosynthetically active radiation penetrated into high-N canopies than into low-N canopies. The specific leaf area increased markedly in low light conditions, causing leaves in shade to be less dense than leaves exposed to ample light. In both leaves and siliques the photosynthetic rate per unit surface area responded linearly to increasing N content up to about 2 g m-2, thus showing a constant rate of net CO2 assimilation per unit increment in N (constant photosynthetic N use efficiency). At higher tissue N contents, photosynthetic rate responded less to changes in N status. Expressed per unit N, light saturated photosynthetic rate was three times higher in leaves than in silique valves, indicating a more efficient photosynthetic N utilization in leaves than in siliques. Nevertheless, from about two weeks after completion of flowering and onwards total net CO2 fixation in silique valves exceeded that in leaves because siliques received much higher radiation intensities than leaves and because the leaf area declined rapidly during the reproductive phase of growth. Water deficiency in late vegetative and early reproductive growth stages reduced the photosynthetic rate in leaves and, in particular, siliques of medium- and high-N plants, but not of low-N plants.  相似文献   

19.
Soluble phosphatases from wheat leaves have been separated intotwo fractions by CM-cellulose chromatography. The phosphatase(s)in the fraction adsorbed by CM-cellulose (Fraction B) were identicalwith an electrophoretic band of phosphatase activity which increasedwith phosphorus (P) deficiency. The phosphatase activity inthis fraction increased specifically as the concentration ofphosphate in the sampled tissues fell from 0.8% to 0.2% dryweight. Phosphatase activity in Fraction B may be due to anisozyme of acid phosphatase. Phosphatase activity in the fractionnot adsorbed by CM-cellulose (Fraction A) increased with bothP deficiency and water deficit, and was higher in young thanin mature leaves. The Fraction A phosphatase which increasedwith water deficit was probably another isozyme of acid phosphatase:however the Fraction A phosphatase which increased with P deficiencywas probably not an acid phosphatase because it had activityonly against p-nitrophenylphosphate and ATP. In expanding leaves of P deficient plants, phosphatase activitiesin Fractions A and B declined after P was supplied to adequatelevels. However, in fully expanded leaves, high phosphataseactivities persisted after the resupply of P. These resultsare discussed in relation to the use of measurements of phosphataseactivity as a biochemical marker of P deficiency.  相似文献   

20.
The growth rate of the first leaf of eight-day-old wheat plants was measured using a DLT-2 highly sensitive linear displacement transducer. Leaf extensibility was evaluated from the growth rate under the increase in the pulling force by 2 g. An increase in the air temperature resulted in the doubling of the transpiration rate and immediate slowing of the leaf growth followed by the leaf shrinkage. However, growth was later resumed almost completely. Heat treatment did not induce any changes in the leaf extensibility, indicating that cell-wall mechanical properties were not changed. Growth retardation was supposed to result from a decrease in the water content in the leaf tissues because the balance between water influx from roots and its loss through transpiration was shifted toward the water loss. An initial drop in the relative water content (RWC) indicates such a misbalance. Subsequent growth resumption coincided with a decreased water deficiency. Since the rate of transpiration was not reduced, RWC and growth rate restoring evidently occurred due to the activated water uptake by roots, which can be explained by the increased hydraulic permeability detected in our experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号