首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coordinated interaction of kinases, phosphatases and other regulatory molecules with scaffolding proteins is emerging as a major theme in intracellular signaling networks. In this report we show that a cDNA isolated from a rat testis expression library by interactive cloning using the regulatory subunit (R) of a type-II protein kinase A (PKA) is identical with a previously characterized protein kinase C (PKC)-binding protein termed either clone 72 [Chapline, C., Mousseau, B., Ramsay, K., Duddy, S., Li, Y., Kiley, S. C. & Jaken, S. (1996) J. Biol. Chem. 271, 6417-6422] or SSeCKS [Lin, X., Tombler, E., B., Nelson, P.J., Ross, M. & Gelman, I.H. (1996) J. Biol. Chem. 271, 28430-28438]. Deletion mutagenesis demonstrated that amino acids 1495-1524 of clone 72/SSeCKS had the ability to interact with RII. Antibodies prepared against the recombinant protein recognized a 280/290-kDa doublet and a 240-kDa protein on Western blots of rat testis cytosolic and Triton X-100 extracts. Expression of clone 72/SSeCKS mRNA and protein levels was developmentally regulated in rat testis. Northern-blot analysis showed a dramatic increase in clone 72/SSeCKS-hybridizing mRNA starting 30 days after birth. Immunohistochemical examination showed high expression levels in elongating spermatids. Clone 72/SSeCKS was not detected in mature sperm. These studies suggest a role for clone 72/SSeCKS, a PKA/PKC scaffolding protein, during the process of spermiogenesis.  相似文献   

2.
The abilities of different GTP-binding proteins to serve as phosphosubstrates for the epidermal growth factor (EGF) receptor/tyrosine kinase have been examined in reconstituted phospholipid vesicle systems. During the course of these studies we discovered that a low molecular mass, high affinity GTP-binding protein from bovine brain (designated as the 22-kDa protein) served as an excellent phosphosubstrate for the tyrosine-agarose-purified human placental EGF receptor. The EGF-stimulated phosphorylation of the purified 22-kDa protein occurs on tyrosine residues, with stoichiometries approaching 2 mol of 32Pi incorporated/mol of [35S]guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-binding sites. The EGF-stimulated phosphorylation of the brain 22-kDa protein requires its reconstitution into phospholipid vesicles. No phosphorylation of this GTP-binding protein is detected if it is simply mixed with the purified EGF receptor in detergent solution or if detergent is added back to lipid vesicles containing the EGF receptor and the 22-kDa protein. The EGF-stimulated phosphorylation of this GTP-binding protein is also markedly attenuated by guanine nucleotides, i.e. GTP, GTP gamma S, or GDP, suggesting that maximal phosphorylation occurs when the GTP-binding protein is in a guanine nucleotide-depleted state. Purified preparations of the 22-kDa phosphosubstrate do not cross-react with antibodies against the ras proteins. However, they do cross-react against two different peptide antibodies generated against specific sequences of the human platelet (and placental) GTP-binding protein originally designated Gp (Evans, T., Brown, M. L., Fraser, E. D., and Northrup, J. K. (1986) J. Biol. Chem. 261, 7052-7059) and more recently named G25K (Polakis, P. G., Synderman, R., and Evans, T. (1989) Biochem. Biophys. Res. Commun. 160, 25-32). When highly purified preparations of the human platelet Gp (G25K) protein are reconstituted with the purified EGF receptor into phospholipid vesicles, an EGF-stimulated phosphorylation of the platelet GTP-binding protein occurs with a stoichiometry approaching 2 mol of 32Pi incorporated/mol of [35S]GTP gamma S-binding sites. As is the case for the brain 22-kDa protein, the EGF-stimulated phosphorylation of the platelet GTP-binding protein is attenuated by guanine nucleotides. Overall, these results suggest that the brain 22-kDa phosphosubstrate for the EGF receptor is very similar, if not identical, to the Gp (G25K) protein. Although guanine nucleotide binding to the brain 22-kDa protein or to the platelet. GTP-binding protein inhibits phosphorylation, the phosphorylated GTP-binding proteins appear to bind [35S]GTP gamma S slightly better than their nonphosphorylated counterparts.  相似文献   

3.
It has previously been shown that 9S, untransformed progestin, estrogen, androgen, and glucocorticoid receptor complexes in rabbit uterine and liver cytosols contain a 59-kDa protein [Tai, P. K., Maeda, Y., Nakao, K., Wakim, N. G., Duhring, J. L., & Faber, L. E. (1986) Biochemistry 25, 5269-5275]. In this work we show that the monoclonal antibody KN 382/EC1 raised against the rabbit 59-kDa protein reacts with 9S, untransformed glucocorticoid receptor complexes in cytosol prepared from human IM-9 lymphocytes but not with 4S salt-transformed receptors. The human protein recognized by the EC1 antibody is a 56-kDa protein (p56) of moderate abundance located predominantly in the cytoplasm by indirect immunofluorescence. There are at least six isomorphs of p56 by two-dimensional gel analysis. N-Terminal sequencing (20 amino acids) shows that p56 is a unique human protein. When p56 is immunoadsorbed from IM-9 cell cytosol, both the 70- and 90-kDa heat shock proteins are coadsorbed in an immune-specific manner. Neither heat shock protein reacts directly with the EC1 antibody. We conclude that p56 exists in cytosol in a higher order complex containing hsp70 and hsp90, both of which in turn have been found to be associated with untransformed steroid receptors.  相似文献   

4.
Neuronal Cdc2-like protein kinase (NCLK), a approximately 58-kDa heterodimer, was isolated from neuronal microtubules (Ishiguro, K., Takamatsu, M., Tomizawa, K., Omori, A., Takahashi, M., Arioka, M., Uchida, T. and Imahori, K. (1992) J. Biol. Chem. 267, 10897-10901). The biochemical nature of NCLK-microtubule association is not known. In this study we found that NCLK is released from microtubules upon microtubule disassembly as a 450-kDa species. The 450-kDa species is an NCLK.tau complex, and NCLK-bound tau is in a nonphosphorylated state. Tau phosphorylation causes NCLK.tau complex dissociation, and phosphorylated tau does not bind to NCLK. In vitro, the Cdk5 subunit of NCLK binds to the microtubule-binding region of tau and NCLK associates with microtubules only in the presence of tau. Our data indicate that in brain extract NCLK is complexed with tau in a tau phosphorylation-dependent manner and that tau anchors NCLK to microtubules. Recently NCLK has been suggested to be aberrantly activated and to hyperphosphorylate tau in Alzheimer's disease brain (Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P, and Tsai, L.-H. (1999) Nature 402, 615-622). Our findings may explain why in Alzheimer's disease NCLK specifically hyperphosphorylates tau, although this kinase has a number of protein substrates in the brain.  相似文献   

5.
An improved procedure is reported for large-scale preparation of photosystem I (PS-I) vesicles from thylakoid membranes of barley (Hordeum vulgare L.). The PS-I vesicles contain polypeptides of molecular masses 82, 18, 16, 14, and 9 kDa in an apparent molar ratio of 4:2:2:1:2. The 18-, 16-, and 9-kDa polypeptides were purified to homogeneity after exposure of the PS-I vesicles to chaotropic agents. The isolated 9-kDa polypeptide binds 65-70% of the zero-valence sulfur of denatured PS-I vesicles, and the remaining 30-35% is bound to P700-chlorophyll a-protein 1. The N-terminal amino acid sequence (29 residues) of the 9-kDa polypeptide was determined. Comparison with the nucleotide sequence of the chloroplast genome of Marchantia polymorpha (Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S.-i., Inokuchi, H., and Ozeki, H. (1986) Nature 322, 572-574) and of Nicotiana tabacum (Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, W., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H., and Sugiura, M. (1986) EMBO J. 5, 2043-2049) identified the chloroplast gene encoding the 9-kDa polypeptide. We designate this gene psaC. The complete amino acid sequence deduced from the psaC gene identifies the 9-kDa PS-I polypeptide as a 2[4Fe-4S] protein. Since P700-chlorophyll a-protein 1 carries center X, the 9-kDa polypeptide carries centers A and B. A hydropathy plot permits specific identification of the cysteine residues which coordinate centers A and B, respectively. Except for the loss of the N-terminal methionine residue, the primary translation product of the psaC gene is not proteolytically processed. P700-chlorophyll a-protein 1 binds 4 iron atoms and 4 molecules of acid-labile sulfide/molecule of P700. Each of the two apoproteins of P700-chlorophyll a-protein 1 contains the sequence Phe-Pro-Cys-Asp-Gly-Pro-Gly-Arg-Gly-Gly-Thr-Cys (Fish, L. E., Kück, U., and Bogorad, L. (1985) J. Biol. Chem. 260, 1413-1421). The stoichiometry of the component polypeptides of PS-I indicates the presence of four copies of this sequence per molecule of P700. Center X may be composed of two [2Fe-2S] centers bound to the 8 cysteine residues contained in these four segments.  相似文献   

6.
The 100-kDa heat shock protein, HSP100, was purified from mouse lymphoma cells. Amino acid sequences of three peptide fragments which were obtained from the purified protein by lysylendopeptidase digestion were completely or nearly identical with those of a mouse endoplasmic reticulum protein, ERp99, of a hamster glucose-regulated protein, GRP94, and of a chicken heat shock protein, HSP108, all of which have been known to have strong homology with the 90-kDa heat shock protein, HSP90. HSP100 bound to actin filaments and an apparent Kd for the binding was determined to be 8 x 10(-7) M in 2 mM MgCl2 + 100 mM KCl. Calmodulin inhibited the binding in a Ca2+-dependent manner. Equilibrium gel filtration demonstrated that HSP100 has an ability to bind to calmodulin only in the presence of Ca2+. Moreover, HSP100 competed with HSP90 for binding to actin filaments. These results together with our previous findings that HSP90 and HSP100 have similar physicochemical properties (Koyasu, S., Nishida, E., Kadowaki, T., Matsuzaki, F., Iida, K., Harada, F., Kasuga, M., Sakai, H., and Yahara, I. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 8054-8058) and HSP90 is a calmodulin-regulated actin-binding protein (Nishida, E., Koyasu, S., Sakai, H., and Yahara, I. (1986) J. Biol. Chem. 261, 16033-16036), strongly suggest that HSP100 is structurally and functionally related to HSP90.  相似文献   

7.
We investigated the biochemical characteristics of the 51-kDa protein that is a major mitotic apparatus-associated basic protein of sea urchin eggs (Toriyama, M., Ohta, K., Endo, S., and Sakai, H. (1988) Cell Motil. Cytoskeleton 9, 117-128). The amino acid composition of the 51-kDa protein was apparently different from those of tubulin, actin, histones, and myelin basic protein; yet it was similar to those of polypeptide elongation factors 1 alpha (EF-1 alpha). In addition, antibody to EF-1 alpha from yeast cross-reacted with the 51-kDa protein. [3H] GTP binding activity was detected in the phosphocellulose-purified fraction (PC fraction) which predominantly contained the 51-kDa protein and was shown to be specific to GTP, GDP, guanylyl imidodiphosphate, and ITP. Photo-affinity labeling using [alpha-32P]8-azidoguanosine triphosphate (8-azido-GTP) demonstrated that a 51-kDa polypeptide in the PC fraction specifically bound 8-azido-GTP. This GTP-binding polypeptide was bound to a GTP affinity column, could be eluted by the addition of GTP, and was immunoreactive with anti-51-kDa protein antibodies. When the PC fraction was applied to a gel filtration chromatography column, GTP binding activity was completely coeluted with the 51-kDa protein. Furthermore, the PC fraction and the gel filtration-purified fraction had EF-1 alpha activity: [14C]Phe-tRNA transferring activity to ribosomes in the presence of poly(U) and ribosome-dependent GTPase activity. The results indicate that the mitotic apparatus-associated 51-kDa protein is a GTP-binding protein and suggest that it is structurally and functionally related to yeast EF-1 alpha.  相似文献   

8.
Pasteurella multocida toxin, either native or recombinant (rPMT), is an extremely effective mitogen for Swiss 3T3 cells and acts at picomolar concentrations (Rozengurt, E., Higgins, T. E., Chanter, N., Lax, A. J., and Staddon, J. M. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 123-127). Here, we show that similar concentrations of rPMT markedly stimulated the phosphorylation of an acidic 80-kDa protein in [32P]Pi-labeled Swiss 3T3 cells. Co-migration on one- and two-dimensional gels and phosphopeptide analysis indicated that this phosphoprotein was indistinguishable from 80K, a known protein kinase C substrate. In parallel cultures, the stimulation of 80K phosphorylation by rPMT (5-10-fold) was comparable to that induced by bombesin or phorbol dibutyrate (PBt2). However, the increase in phosphorylation by rPMT occurred after a pronounced lag period (1-3 h, depending upon the concentration of rPMT) in contrast to the relatively immediate stimulation by PBt2 or bombesin. Early, but not late, addition of either PMT antiserum or the lysosomotrophic agent methylamine selectively inhibited 80K phosphorylation in response to rPMT. 80K phosphorylation persisted after removal of free toxin and was not inhibited by cycloheximide. It appears that rPMT enters the cells via an endocytotic pathway to initiate and perpetuate events leading to 80K phosphorylation. rPMT, like PBt2, also stimulated the phosphorylation of 87-kDa and 33-kDa proteins in Swiss 3T3 cells. Phosphorylation of the 80K and 87-kDa proteins by rPMT or PBt2 were greatly attenuated in cells depleted of protein kinase C. In contrast, phosphorylation of the 33-kDa protein by rPMT, but not by PBt2, persisted in the absence of protein kinase C. rPMT, like bombesin, caused a translocation of protein kinase C to the cellular particulate fraction. The toxin enhanced the cellular content of diacylglycerol. rPMT also caused a time- and dose-dependent decrease in the binding of 125I-epidermal growth factor to its receptor which was blocked by methylamine and dependent only in part upon the presence of protein kinase C. We conclude that rPMT stimulates protein kinase C-dependent and -independent protein phosphorylation in Swiss 3T3 cells.  相似文献   

9.
The results of this investigation show that the 59-kDa protein synthesis initiation factor from wheat germ, designated eukaryotic initiation factor (eIF)-4G by Browning et al. (Browning, K.S., Maia, D.M., Lax, S.R., and Ravel, J.M. (1987) J. Biol. Chem. 262, 539-541), cross-links to the 5'-terminal cap of oxidized mRNA in the presence of eIF-4A, eIF-4F, and ATP, stimulates the RNA-dependent ATPase activities of eIF-4A and a mixture of eIF-4A and eIF-4F, and stimulates the unwinding activities of eIF-4A, eIF-4F, and a mixture of eIF-4A and eIF-4F. These findings strongly suggest that the 59-kDa factor from wheat germ is the functional equivalent of the 80-kDa protein synthesis initiation factor, eIF-4B, from mammalian cells. Recent reports indicate that the wheat germ initiation factor which contains two subunits of 80 and 28 kDa and which was given the designation "eIF-4B" by Lax et al. (Lax, S.R., Lauer, S.J., Browning, K. S., and Ravel, J.M. (1986) Methods Enzymol. 118, 109-128) is an isozyme form of eIF-4F and not the functional equivalent of mammalian eIF-4B. On the basis of functional characteristics we propose that the designation for the wheat germ factor containing the 80- and 28-kDa polypeptides be changed from eIF-4B to eIF-(iso)4F and the designation for the 59-kDa factor be changed from eIF-4G to eIF-4B.  相似文献   

10.
The alpha 2-macroglobulin (alpha 2M) receptor complex as purified by affinity chromatography contains three polypeptides: a 515-kDa heavy chain, an 85-kDa light chain, and a 39-kDa associated protein. Previous studies have established that the 515/85-kDa components are derived from a 600-kDa precursor whose complete sequence has been determined by cDNA cloning (Herz, J., Hamann, U., Rogne, S., Myklebost, O., Gassepohl, H., and Stanley, K. (1988) EMBO J. 7,4119-4127). We have now determined the primary structure of the human 39-kDa polypeptide, termed alpha 2M receptor-associated protein, by cDNA cloning. The deduced amino acid sequence contains a putative signal sequence that precedes the 323-residue mature protein. Comparative sequence analysis revealed that alpha 2M receptor-associated protein has 73% identity with a rat protein reported to be a pathogenic domain of Heymann nephritis antigen gp 330 and 77% identity to a mouse heparin-binding protein termed HBP-44. The high overall identity suggests that these molecules are interspecies homologues and indicates that the pathogenic domain, previously thought to be a portion of gp 330, is in fact a distinct protein. Further, the 120-residue carboxyl-terminal region of alpha 2M receptor-associated protein has 26% identity with a region of apolipoprotein E containing the low density lipoprotein receptor binding domain. Pulse-chase experiments revealed that the newly formed alpha 2M receptor-associated protein remains cell-associated, while surface labeling experiments followed by immunoprecipitation suggest that this protein is present on the cell surface forming a complex with the alpha 2M receptor heavy and light chains.  相似文献   

11.
In purified preparations of human erythrocyte GTP-binding proteins, we have identified a new substrate for pertussis toxin, which has an apparent molecular mass of 43 kDa by silver and Coomassie Blue staining. Pertussis toxin-catalyzed ADP-ribosylation of the 43-kDa protein is inhibited by Mg2+ ion and this inhibition is relieved by the co-addition of micromolar amounts of guanine nucleotides. GTP affects the ADP-ribosylation with a K value of 0.8 microM. Addition of a 10-fold molar excess of purified beta gamma subunits (Mr = 35,000 beta; and Mr = 7,000 gamma) of other GTP-binding proteins results in a significant decrease in the pertussis toxin-mediated ADP-ribosylation of the 43-kDa protein. Treatment of the GTP-binding proteins with guanosine 5'-O-(thiotriphosphate) and 50 mM MgCl2 resulted in shifting of the 43-kDa protein from 4 S to 2 S on sucrose density gradients. Immunoblotting analysis of the 43-kDa protein with the antiserum A-569, raised against a peptide whose sequence is found in the alpha subunits of all of the known GTP-binding, signal-transducing proteins (Mumby, S. M., Kahn, R. A., Manning, D. R., and Gilman, A. G. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 265-259) showed that the 43-kDa protein is specifically recognized by the common peptide antiserum. A pertussis toxin substrate of similar molecular weight was observed in human erythrocyte membranes, bovine brain membranes, membranes made from the pituitary cell line GH4C1, in partially purified GTP-binding protein preparations of rat liver, and in human neutrophil membranes. Treatment of neutrophils with pertussis toxin prior to preparation of the membranes resulted in abolishment of the radiolabeling of this protein. From these data, we conclude that we have found a new pertussis toxin substrate that is a likely GTP-binding protein.  相似文献   

12.
Previously we reported that chymotryptic fragments of bovine adrenal 190-kDa microtubule-associated proteins (27-kDa fragment) and bovine brain tau (14-kDa fragment) contained microtubule-binding domain (Aizawa, H., Murofushi, H., Kotani, Hisanaga, S., Hirokawa, N., and Sakai, H. (1987) J. Biol. Chem. 262, 3782-3787; Aizawa, H., Kawasaki, H., Murofushi, H., Kotani, S., Suzuki, K., and Sakai, H. (1988) J. Biol. Chem. 263, 7703-7707). In order to study the structure of microtubule-binding domain of the two microtubule-associated proteins, we analyzed the amino acid sequence of the 27-kDa fragment and compared the sequence with that of the 14-kDa fragment. This revealed that 190-kDa microtubule-associated protein and tau contained at least one common sequence of 20 amino acid residues in their microtubule-binding domains. A synthetic polypeptide corresponding to the common sequence (Lys-Asn-Val-Arg-Ser-Lys-Val-Gly-Ser-Thr-Glu-Asn-Ile-Lys- His-Gln-Pro-Gly-Gly-Gly-Arg-Ala-Lys) was bound to microtubules competitively with the 190-kDa MAP. The apparent dissociation constant (KD) for the binding of the polypeptide to microtubules was estimated to be 1.8 x 10(-4) M, and the maximum binding reached 1.2 mol of the synthetic polypeptide/mol of tubulin dimer. This synthetic polypeptide increased the rate and extent of tubulin polymerization and decreased the critical concentration of tubulin for polymerization. The polypeptide-induced tubulin polymers were morphologically normal microtubules and were disassembled by cold treatment. The common sequence (termed assembly-promoting sequence) was thus identified as the active site of 190-kDa microtubule-associated protein and tau for the promotion of microtubule assembly. The reconstitution system of microtubules with this synthetic polypeptide with assembly-promoting sequence may be useful to elucidate detailed molecular mechanism of the promotion of microtubule assembly by microtubule-associated proteins.  相似文献   

13.
Previously, we showed that strains which have been deleted for the 21K gene (hereafter called yfjA), of the trmD operon, encoding a 21-kDa protein (21K protein) have an approximately fivefold-reduced growth rate in rich medium. Here we show that such mutants show an up to sevenfold reduced growth rate in minimal medium, a twofold-lower cell yield-to-carbon source concentration ratio, and a reduced polypeptide chain growth rate of beta-galactosidase. Suppressor mutations that increased the growth rate and translational efficiency of a delta yfjA mutant were localized to the 3' part of rpsM, encoding ribosomal protein S13. The 21K protein was shown to have affinity for free 30S ribosomal subunits but not for 70S ribosomes. Further, the 21K protein seems to contain a KH domain and a KOW motif, both suggested to be involved in binding of RNA. These findings suggest that the 21K protein is essential for a proper function of the ribosome and is involved in the maturation of the ribosomal 30S subunits or in translation initiation.  相似文献   

14.
A cDNA encoding a previously unknown G protein alpha-subunit lacking the site for pertussis toxin-catalyzed ADP-ribosylation was recently cloned and its putative protein product named Gz (Fong, H. K. W., Yoshimoto, K. K., Eversole-Cire, P., and Simon, M. I. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 3066-3070) or Gx (Matsuoka, M., Itoh, H. Kozasa, T., and Kaziro, Y. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5384-5388). A synthetic peptide corresponding to the deduced carboxyl-terminal decapeptide of this putative protein (alpha z) has been synthesized and used to prepare a polyclonal rabbit antiserum directed against the protein. The specificity and cross-reactivity of this antiserum was assessed using bacterially expressed recombinant G protein alpha-subunit fusion proteins (r alpha). The crude antiserum strongly recognizes r alpha z in immunoblots. Pretreatment of antiserum with antigen peptide greatly reduces the interaction of the antiserum with r alpha z. Affinity purified antiserum strongly recognizes expressed r alpha z, does not recognize r alpha s1, r alpha s1, r alpha o, or r alpha i3, and very weakly interacts with r alpha i1 and r alpha i2. In contrast, the alpha-subunits of purified bovine brain Gi1 and human erythrocyte Gi2 and Gi3 did not react with the alpha z-antiserum. Partially purified mixtures of human erythrocyte G proteins contain a 41-kDa protein that reacts specifically in immunoblots with both crude and affinity purified alpha z-specific antiserum. Quantitative immunoblotting using r alpha z as a standard indicates that there is 60-100 ng of alpha z/micrograms of 40/41-kDa alpha-subunit protein in partially purified human erythrocyte G protein preparations. We conclude that we have identified the alpha z gene product as a 41-kDa trace protein in human erythrocytes.  相似文献   

15.
We have purified from rat peritoneal exudates a 37-kDa protein that inhibits phospholipase A2 activity. It is the predominant phospholipase inhibitor protein in these preparations and also is detected in a wide variety of cell lines. Levels of expression range from 0 to 0.5% of total protein. In the peritoneal preparations, the inhibitor is partially proteolyzed into a series of lower mass forms, including species at 30, 24, and 15 kDa. These fragments all are immunoreactive with an antibody raised against the 37-kDa protein. The rat protein also is immunoreactive with an antibody developed against a 6-kDa phospholipase inhibitor protein from snake venom. The primary structure of more than half of the rat inhibitor has been deduced by protein microsequence analysis. These sequences are closely related to sequences from its human analogue, which we recently cloned and expressed (Wallner, B. P., Mattaliano, R. J., Hession, C., Cate, R. L., Tizard, R., Sinclair, L. K., Foeller, C., Chow, E. P., Browning, J. L., Ramachandran, K. L., and Pepinsky, R. B. (1986) Nature, in press), and thus we infer that the inhibitor is highly conserved evolutionarily. Properties of the molecule suggest that it is a member of a family of steroid-induced anti-inflammatory proteins collectively referred to as lipocortin.  相似文献   

16.
Protein 4.1, a multifunctional structural protein originally described as an 80-kDa component of the erythroid membrane skeleton, exhibits tissue- and development-specific heterogeneity in molecular weight, subcellular localization, and primary amino acid sequence. Earlier reports suggested that some of this impressive heterogeneity is generated by alternative RNA splicing (Conboy, J. G., Chan, J., Mohandas, N., and Kan, Y. W. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 9062-9065; Tang, T. K., Leto, T., Marchesi, V. T., and Benz, E. J. (1990) J. Cell Biol. 110, 617-624). We have now completed a systematic analysis of 4.1 mRNA isoforms expressed in erythroid cells, and have generated an "alternative splicing map" which summarizes diagrammatically a multitude of polypeptide isoforms potentially generated by combinatorial splicing of nine alternative exons. Complex 5' splicing events yield mRNA isoforms that may initiate translation at different sites and thus generate elongated or truncated NH2 termini; elongated approximately 135-kDa and prototypical approximately 80-kDa species were detected in both erythrocytes and T-lymphocytes, but in very different ratios. Among the functional domains of 4.1 responsible for interaction with other membrane skeletal elements, four variants of the 10-kDa spectrin-actin-binding region and four variants of the putative 30-kDa glycophorin-binding region are predicted. Developmentally controlled alternative RNA splicing in the spectrin-actin-binding region may help regulate remodeling of membrane architecture and mechanical properties that occur during erythropoiesis.  相似文献   

17.
We have previously shown that bradykinin-induced production of second messengers such as inositol trisphosphate and diacylglycerol in neurotumor cells is inhibited by raising cellular cyclic AMP levels, which in turn inhibit phospholipase C. A monoclonal antibody to phospholipase C-II immunoprecipitated the 140-kDa form of phospholipase C-II from [35S]methionine/[3H]eucine-labeled cells, but not [32P]orthophosphate-labeled phospholipase C-II, following treatment with either forskolin or dibutyryl cyclic AMP. This suggested that phospholipase C is not the target for cyclic AMP-dependent protein kinase-mediated phosphorylation. In vitro studies confirmed that phospholipase C activity was inhibited by raising cellular cAMP levels, and partial sensitivity to Bordetella pertussis toxin suggested the involvement of a GTP-binding protein which could be the target for protein kinase A. The involvement of a GTP-binding protein in coupling the bradykinin receptor to phospholipase C was further suggested by the ability of both guanosine 5'-O-(thio-triphosphate) and fluoride (NaF) to release inositol phosphates from NCB-20 cell membranes previously labeled with [3H]inositol. Both effects were blocked by pretreatment of the cells with protein kinase A activators, further suggesting a GTP-binding protein as the target for protein kinase A-mediated phosphorylation. When whole NCB-20 cell extracts were blotted onto nitrocellulose and incubated with [alpha- 32P]GTP, a major 24-kDa band plus minor bands at 22 and 20 kDa were revealed by autoradiography. A pH 3.0/6.0 soluble (basic protein) NCB-20 cell extract revealed the major 24-kDa band plus the 20-kDa band, and similar basic proteins were shown to be heavily phosphorylated following [32P]orthophosphate labeling and pretreatment with forskolin. The size and ability to bind GTP on Western blots are characteristic of the ras, rho, smg, etc. family of GTP-binding proteins recently suggested to be the much sought after GPLC (Lapetina, E.G., Lacal, J. C., Reep, B. R., and Molina y Vedia, L. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 3131-3134; Wang, P., Nishihata, J., Takabori, E., Yamamoto, K., Toyoshima, S., and Osawa, T. (1989) J. Biochem. (Tokyo) 105, 461-466; Nagata, K.-I., Nagao, S., and Nozawa, Y. (1989) Biochem. Biophys. Res. Commun. 160, 235-242). We propose that GPLC is uniquely sensitive to protein kinase A-mediated phosphorylation and that phosphorylation inhibits stimulus-secretion coupling in these cells.  相似文献   

18.
Cytochrome b558 in phagocytes is a transmembrane protein composed of large and small subunits and considered to play a key role in O2- generation during the respiratory burst. The COOH-terminal regions of the cytochrome subunits protrude to the cytoplasmic side and are assumed to be the sites for association with cytosolic components to form an active O(2-)-generating complex (Imajoh-Ohmi, S., Tokita, K., Ochiai, H., Nakamura, M., and Kanegasaki, S. (1992) J. Biol. Chem. 267, 180-184). We show here that two synthetic peptides corresponding to the COOH-terminal region of each subunit inhibit NADPH-dependent oxygen uptake induced by sodium dodecyl sulfate (SDS) in a cell-free system consisting of plasma membrane and cytosol. The inhibition was observed when either peptide was added to the system before, but not after, the activation with SDS suggesting that interaction between the COOH-terminal regions of the cytochrome subunits and cytosolic components is important for the assembly and the activity of the O(2-)-generating system. Using the cross-linking reagent dimethyl 3,3'-dithiobis-propionimidate, we found that the cytosolic 47-kDa protein, an essential component of the O(2-)-generating system, interacted with the synthetic peptides in the presence of SDS. In addition to the 47-kDa protein, a 17-kDa protein was found to be associated with the peptide corresponding to the COOH-terminal region of the small subunit. These results indicate that the cytosolic COOH-terminal regions of cytochrome b558 subunits are the binding sites for both the cytosolic 47-kDa protein and the 17-kDa protein and that the binding takes place during activation of the system.  相似文献   

19.
The delta-isoform of Ca(2+)/calmodulin-activated protein kinase II (CaMK II) is abundantly expressed in vascular smooth muscle, but relatively little is known about its regulation or its potential cellular substrates. There are few, if any, known substrates of CaMK II that are physiologically relevant in vascular smooth muscle cells. Studies presented earlier (Mishra-Gorur, K., Singer, H. A., and Castellot, J. J., Jr. (2002) Am. J. Pathol., in press) by our laboratory show an inhibitory effect of heparin on CaMK II phosphorylation and activity. During these studies we observed the specific co-immunoprecipitation of a 20-kDa protein with CaMK II. Purification and sequence analysis indicate that this protein is the S18 protein of the 40 S ribosome. S18 was found to be abundantly phosphorylated in response to serum treatment, and this effect was strongly inhibited by heparin. In addition, KN-93, a specific CaMK II inhibitor, blocks S18 phosphorylation in vascular smooth muscle cells; a concomitant 24% reduction in protein synthesis was observed. Taken together these data support the idea that S18 could be a novel substrate for CaMK II, thus providing a potential link between Ca(2+)-mobilizing agents and protein translation.  相似文献   

20.
The influence of the insulin secretagogues, carbachol and glucose, on protein kinase C activation in isolated pancreatic islets has been examined by determination of the phosphorylation state of an endogenous 80-kDa protein substrate of protein kinase C. The islet 80-kDa protein was identified as the myristoylated alanine-rich C kinase substrate previously described (Stumpo D. J., Graff, J. M., Albert, K. A., Greengard, P., and Blackshear, P. J. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 4012-4016) by immunoprecipitation studies. The muscarinic agonist, carbachol (500 microM), induced insulin secretion and a time-dependent increase in the phosphorylation state of this protein in islets. This phosphorylation was maximal (220 +/- 24% of control) at 5 min and was suppressed by the protein kinase C inhibitor, staurosporine. Concentrations of glucose (28 mM) which induce maximal insulin secretion did not induce a statistically significant increase in 80-kDa phosphorylation. The combination of carbachol and a submaximally stimulatory concentration of glucose (10 mM), when added simultaneously, exerted a marked synergistic effect on insulin secretion and a synergistic effect on the phosphorylation of the 80-kDa protein kinase C substrate. These data suggest that the activation of protein kinase C may play an important role in carbachol-induced insulin secretion and in the potentiation by carbachol of insulin secretion induced by glucose. However, the activation of protein kinase C does not appear to be a primary determinant of insulin secretion induced by glucose alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号