首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The checkpoint protein Chfr delays entry into mitosis, in the presence of mitotic stress (Scolnick, D.M., and T.D. Halazonetis. 2000. Nature. 406:430-435). We show here that Chfr is a ubiquitin ligase, both in vitro and in vivo. When transfected into HEK293T cells, Myc-Chfr promotes the formation of high molecular weight ubiquitin conjugates. The ring finger domain in Chfr is required for the ligase activity; this domain auto-ubiquitinates, and mutations of conserved residues in this domain abolish the ligase activity. Using Xenopus cell-free extracts, we demonstrated that Chfr delays the entry into mitosis by negatively regulating the activation of the Cdc2 kinase at the G2-M transition. Specifically, the Chfr pathway prolongs the phosphorylated state of tyrosine 15 in Cdc2. The Chfr-mediated cell cycle delay requires ubiquitin-dependent protein degradation, because inactivating mutations in Chfr, interference with poly-ubiquitination, and inhibition of proteasomes all abolish this delay in mitotic entry. The direct target of the Chfr pathway is Polo-like kinase 1 (Plk1). Ubiquitination of Plk1 by Chfr delays the activation of the Cdc25C phosphatase and the inactivation of the Wee1 kinase, leading to a delay in Cdc2 activation. Thus, the Chfr pathway represents a novel checkpoint pathway that regulates the entry into mitosis by ubiquitin-dependent proteolysis.  相似文献   

2.
Proper activation of checkpoint during mitotic stress is an important mechanism to prevent genomic instability. Chfr (Check point protein with FHA (Forkhead-associated domain) and RING domains) is a ubiquitin-protein isopeptide ligase (E3) that is important for the control of an early mitotic checkpoint, which delays entry into metaphase in response to mitotic stress. Because several lines of evidence indicate that Chfr is a potential tumor suppressor, it is critically important for us to identify Chfr substrates and understand how Chfr may regulate these substrates, control mitotic transitions, and thus, act as a tumor suppressor in vivo. Here, we report the discovery of a new Chfr-associated protein Kif22, a chromokinesin that binds to both DNA and microtubules. We demonstrated that Kif22 is a novel substrate of Chfr. We showed that Chfr-mediated Kif22 down-regulation is critical for the maintenance of chromosome stability. Collectively, our results reveal a new substrate of Chfr that plays a role in the maintenance of genome integrity.Chfr (Check point protein with FHA and RING domains) is an early mitotic checkpoint protein that delays entry into metaphase in response to mitotic stress (1, 2). The checkpoint function of Chfr requires both of its FHA3 and RING domains. The exact role of FHA domain in Chfr function is largely unknown. Chfr via its RING domain transfers both lysine 48-linked and lysine 63-linked polyubiquitin chains to its target proteins, which either promotes the degradation of target proteins or alters their function (3, 4). Recently, a PAR-binding zinc finger motif, which binds directly to polyADP-ribosylated substrates catalyzed by PARP1, was identified at the C-terminal region of Chfr (5). This PAR-binding zinc finger motif was reported to be required for Chfr function in antephase checkpoint (2, 5).Chfr delays the cell cycle progression at mitosis by inactivating cyclin B1-bound Cdc2 and then exporting them from nucleus (6). Further, mechanistic studies have suggested that the inactivation of Cdc2 may be due to a negative regulation of Plk1 by Chfr (3). Polyubiquitination of Plk1 by Chfr negatively regulates the Plk1 protein levels, which delay the inactivation of Cdc2 inhibitory Wee1 kinase and the activation of Cdc25 phosphatase and thus maintain Cdc2 at its inactive state.Several lines of evidence indicate that Chfr is a potential tumor suppressor. Loss or down-regulation of Chfr has been reported in several types of cancers including primary breast, lung, esophagus, colon, and gastric carcinomas (1, 7, 8). To investigate directly whether Chfr loss contributes to tumorigenesis, our laboratory has generated Chfr knock-out mice, which were cancer-prone and developed spontaneous tumors (9). The increased tumor incidence in Chfr null mice is likely due to a failure in maintaining chromosomal stability, which occurs at least partially due to the overexpression of a key mitotic kinase Aurora A (9). Chfr physically interacts with Aurora A and promotes its ubiquitination and degradation; thus, higher protein levels of Aurora A in Chfr null mice may contribute to chromosomal instability and eventually tumorigenesis. Therefore, our current hypothesis is that Chfr may regulate the stability of several of its substrates including Aurora A, and thus, control mitotic progression and prevent chromosomal instability. In this study, we reported the identification of another Chfr substrate as chromokinesin protein Kif22 and revealed that Kif22 overexpression also contributes to chromosomal instability observed in Chfr-deficient cells.  相似文献   

3.
The E3 ubiquitin-protein ligase Chfr is a mitotic stress checkpoint protein that delays mitotic entry in response to microtubule damage; however, the molecular mechanism by which Chfr accomplishes this remains elusive. Here, we show that Chfr levels are elevated in response to microtubule-damaging stress. Moreover, G2/M transition is associated with cell cycle-dependent turnover of Chfr accompanied by high autoubiquitylation activity, suggesting that regulation of Chfr levels and auto-ubiquitylation activity are functionally significant. To test this, we generated Chfr mutants Chfr-K2A and Chfr-K5A in which putative lysine target sites of auto-ubiquitylation were replaced with alanine. Chfr-K2A did not undergo cell cycle-dependent degradation, and its levels remained high during G2/M phase. The elevated levels of Chfr-K2A caused a significant reduction in phosphohistone H3 levels and cyclinB1/Cdk1 kinase activities, leading to mitotic entry delay. Notably, polo-like kinase 1 levels at G2 phase, but not at S phase, were ∼2–3-fold lower in cells expressing Chfr-K2A than in wild-type Chfr-expressing cells. Consistent with this, ubiquitylation of Plk1 at G2 phase was accelerated in Chfr-K2A-expressing cells. In contrast, Aurora A levels remained constant, indicating that Plk1 is a major target of Chfr in controlling the timing of mitotic entry. Indeed, overexpression of Plk1 in Chfr-K2A-expressing cells restored cyclin B1/Cdk1 kinase activity and promoted mitotic entry. Collectively, these data indicate that Chfr auto-ubiquitylation is required to allow Plk1 to accumulate to levels necessary for activation of cyclin B1/Cdk1 kinase and mitotic entry. Our results provide the first evidence that Chfr auto-ubiquitylation and degradation are important for the G2/M transition.  相似文献   

4.
Chfr, a checkpoint with FHA and RING finger domains, plays an important role in cell cycle progression and tumor suppression. Chfr possesses the E3 ubiquitin ligase activity and stimulates the formation of polyubiquitin chains by Ub-conjugating enzymes, and induces the proteasome-dependent degradation of a number of cellular proteins, including Plk1 and Aurora A. While Chfr is a nuclear protein that functions within the cell nucleus, how Chfr is localized in the nucleus has not been clearly demonstrated. Here, we show that nuclear localization of Chfr is mediated by nuclear localization signal (NLS) sequences. To reveal the signal sequences responsible for nuclear localization, a short lysine-rich stretch (KKK) at amino acid residues 257–259 was replaced with alanine, which completely abolished nuclear localization. Moreover, we show that nuclear localization of Chfr is essential for its checkpoint function but not for its stability. Thus, our results suggest that NLS-mediated nuclear localization of Chfr leads to its accumulation within the nucleus, which may be important in the regulation of Chfr activation and Chfr-mediated cellular processes, including cell cycle progression and tumor suppression.  相似文献   

5.
Proper transmission of genetic information requires correct assembly and positioning of the mitotic spindle, responsible for driving each set of sister chromatids to the two daughter cells, followed by cytokinesis. In case of altered spindle orientation, the spindle position checkpoint inhibits Tem1-dependent activation of the mitotic exit network (MEN), thus delaying mitotic exit and cytokinesis until errors are corrected. We report a functional analysis of two previously uncharacterized budding yeast proteins, Dma1 and Dma2, 58% identical to each other and homologous to human Chfr and Schizosaccharomyces pombe Dma1, both of which have been previously implicated in mitotic checkpoints. We show that Dma1 and Dma2 are involved in proper spindle positioning, likely regulating septin ring deposition at the bud neck. DMA2 overexpression causes defects in septin ring disassembly at the end of mitosis and in cytokinesis. The latter defects can be rescued by either eliminating the spindle position checkpoint protein Bub2 or overproducing its target, Tem1, both leading to MEN hyperactivation. In addition, dma1Delta dma2Delta cells fail to activate the spindle position checkpoint in response to the lack of dynein, whereas ectopic expression of DMA2 prevents unscheduled mitotic exit of spindle checkpoint mutants treated with microtubule-depolymerizing drugs. Although their primary functions remain to be defined, our data suggest that Dma1 and Dma2 might be required to ensure timely MEN activation in telophase.  相似文献   

6.
In most cells, mitosis is dependent upon completion of DNA replication. The feedback mechanisms that prevent entry into mitosis by cells with damaged or incompletely replicated DNA have been termed checkpoint controls. Studies with the fission yeast Schizosaccharomyces pombe and Xenopus egg extracts have shown that checkpoint controls prevent activation of the master regulatory protein kinase, p34cdc2, that normally triggers entry into mitosis. This is achieved through inhibitory phosphorylation of the Tyr-15 residue of p34cdc2. However, studies with the budding yeast Saccharomyces cerevisiae have shown that phosphorylation of this residue is not essential for checkpoint controls to prevent mitosis. We have investigated the basis for checkpoint controls in this organism and show that these controls can prevent entry into mitosis even in cells which have fully activated the cyclin B (Clb)-associated forms of the budding yeast homolog of p34cdc2, p34CDC28, as assayed by histone H1 kinase activity. However, the active complexes in checkpoint-arrested cells are smaller than those in cycling cells, suggesting that assembly of mitosis-inducing complexes requires additional steps following histone H1 kinase activation.  相似文献   

7.
The mitotic checkpoint gene CHFR (checkpoint with forkhead-associated (FHA) and RING finger domains) is silenced by promoter hypermethylation or mutated in various human cancers, suggesting that CHFR is an important tumor suppressor. Recent studies have reported that CHFR functions as an E3 ubiquitin ligase, resulting in the degradation of target proteins. To better understand how CHFR suppresses cell cycle progression and tumorigenesis, we sought to identify CHFR-interacting proteins using affinity purification combined with mass spectrometry. Here we show poly(ADP-ribose) polymerase 1 (PARP-1) to be a novel CHFR-interacting protein. In CHFR-expressing cells, mitotic stress induced the autoPARylation of PARP-1, resulting in an enhanced interaction between CHFR and PARP-1 and an increase in the polyubiquitination/degradation of PARP-1. The decrease in PARP-1 protein levels promoted cell cycle arrest at prophase, supporting that the cells expressing CHFR were resistant to microtubule inhibitors. In contrast, in CHFR-silenced cells, polyubiquitination was not induced in response to mitotic stress. Thus, PARP-1 protein levels did not decrease, and cells progressed into mitosis under mitotic stress, suggesting that CHFR-silenced cancer cells were sensitized to microtubule inhibitors. Furthermore, we found that cells from Chfr knockout mice and CHFR-silenced primary gastric cancer tissues expressed higher levels of PARP-1 protein, strongly supporting our data that the interaction between CHFR and PARP-1 plays an important role in cell cycle regulation and cancer therapeutic strategies. On the basis of our studies, we demonstrate a significant advantage for use of combinational chemotherapy with PARP inhibitors for cancer cells resistant to microtubule inhibitors.  相似文献   

8.
In the presence of unattached/weakly attached kinetochores, the spindle assembly checkpoint (SAC) delays exit from mitosis by preventing the anaphase-promoting complex (APC)-mediated proteolysis of cyclin B, a regulatory subunit of cyclin-dependent kinase 1 (Cdk1). Like all checkpoints, the SAC does not arrest cells permanently, and escape from mitosis in the presence of an unsatisfied SAC requires that cyclin B/Cdk1 activity be inhibited. In yeast , and likely Drosophila, this occurs through an "adaptation" process involving an inhibitory phosphorylation on Cdk1 and/or activation of a cyclin-dependent kinase inhibitor (Cdki). The mechanism that allows vertebrate cells to escape mitosis when the SAC cannot be satisfied is unknown. To explore this issue, we conducted fluorescence microscopy studies on rat kangaroo (PtK) and human (RPE1) cells dividing in the presence of nocodazole. We find that in the absence of microtubules (MTs), escape from mitosis occurs in the presence of an active SAC and requires cyclin B destruction. We also find that cyclin B is progressively destroyed during the block by a proteasome-dependent mechanism. Thus, vertebrate cells do not adapt to the SAC. Rather, our data suggest that in normal cells, the SAC cannot prevent a slow but continuous degradation of cyclin B that ultimately drives the cell out of mitosis.  相似文献   

9.
Successful mitosis requires the right protein be degraded at the right time. Central to this is the spindle checkpoint that prevents the destruction of securin and cyclin B1 when there are improperly attached chromosomes. The principal target of the checkpoint is Cdc20, which activates the anaphase-promoting complex/cyclosome (APC/C). A Drosophila Cdc20/fizzy mutant arrests in mitosis with high levels of cyclins A and B, but paradoxically the spindle checkpoint does not stabilize cyclin A. Here, we investigated this paradox and found that Cdc20 is rate limiting for cyclin A destruction. Indeed, Cdc20 binds efficiently to cyclin A before and in mitosis, and this complex has little associated Mad2. Furthermore, the cyclin A complex must bind to a Cks protein to be degraded independently of the checkpoint. Thus, we identify a crucial role for the Cks proteins in mitosis and one mechanism by which the APC/C can target substrates independently of the spindle checkpoint.  相似文献   

10.
Failure of cells to cleave at the end of mitosis is dangerous to the organism because it immediately produces tetraploidy and centrosome amplification, which is thought to produce genetic imbalances. Using normal human and rat cells, we reexamined the basis for the attractive and increasingly accepted proposal that normal mammalian cells have a "tetraploidy checkpoint" that arrests binucleate cells in G1, thereby preventing their propagation. Using 10 microM cytochalasin to block cleavage, we confirm that most binucleate cells arrest in G1. However, when we use lower concentrations of cytochalasin, we find that binucleate cells undergo DNA synthesis and later proceed through mitosis in >80% of the cases for the hTERT-RPE1 human cell line, primary human fibroblasts, and the REF52 cell line. These observations provide a functional demonstration that the tetraploidy checkpoint does not exist in normal mammalian somatic cells.  相似文献   

11.
Cell-cycle progression without an intact microtuble cytoskeleton   总被引:1,自引:0,他引:1  
Uetake Y  Sluder G 《Current biology : CB》2007,17(23):2081-2086
For mammalian somatic cells, the importance of microtubule cytoskeleton integrity during interphase cell-cycle progression is uncertain. The loss, suppression, or stabilization of the microtubule cytoskeleton has been widely reported to cause a G1 arrest in a variable, and often high, proportion of cell populations, suggesting the existence of a "microtubule damage," "microtubule integrity," or "postmitotic" checkpoint in G1 or G2. We found that when normal human cells (hTERT RPE1 and primary fibroblasts) are continuously exposed to nocodazole, they remain in mitosis for 10-48 hr before they slip out of mitosis and arrest in G1; this finding is consistent with previous reports. To eliminate the persistent effects of prolonged mitosis, we isolated anaphase-telophase cells that were just finishing a mitosis of normal duration, then we rapidly and completely disassembled microtubules by chilling the preparations to 0 degrees C for 10 minutes in the continuous presence of nocodazole or colcemid treatment to ensure that the cells entered G1 without a microtubule cytoskeleton. Without microtubules, cells progressed from anaphase to a subsequent mitosis with essentially normal kinetics. Similar results were obtained for cells in which the microtubule cytoskeleton was partially diminished by lower nocodazole doses or augmented and stabilized with taxol. Thus, after a preceding mitosis of normal duration, the integrity of the microtubule cytoskeleton is not subject to checkpoint surveillance, nor is it required for the normal human cell to progress through G1 and the remainder of interphase.  相似文献   

12.
Chfr, a mitotic stress checkpoint, plays an important role in cell cycle progression, tumor suppression and the processes that require the E3 ubiquitin ligase activity mediated by the RING finger domain. Chfr stimulates the formation of polyubiquitin chains by ub-conjugating enzymes, and induces the proteasome-dependent degradation of a number of cellular proteins including Plk1 and Aurora A. In this study, we identified USP7 (also known as HAUSP), which is a member of a family of proteins that cleave polyubiquitin chains and/or ubiquitin precursors, as an interacting protein with Chfr by immunoaffinity purification and mass spectrometry, and their interaction greatly increases the stability of Chfr. In fact, USP7 can remove ubiquitin moiety from the autoubiquitinated Chfr both in vivo and in vitro, which results in the accumulation of Chfr in the cell. Thus, our finding suggests that USP7-mediated deubiquitination of Chfr leads to its accumulation, which might be a key regulatory step for Chfr activation and that USP7 may play an important role in the regulation of Chfr-mediated cellular processes including cell cycle progression and tumor suppression.  相似文献   

13.
Microtubule targeting drugs are successful in chemotherapy because they indefinitely activate the spindle assembly checkpoint. The spindle assembly checkpoint monitors proper attachment of all kinetochores to microtubules and tension between the kinetochores of sister chromatids to prevent premature anaphase entry. To this end, the activated spindle assembly checkpoint suppresses the E3 ubiquitin ligase activity of the anaphase-promoting complex (APC). In the continued presence of conditions that activate the spindle assembly checkpoint, cells eventually escape from mitosis by "slippage". It has not been directly tested whether APC activation accompanies slippage. Using cells blocked in mitosis with the microtubule assembly inhibitor nocodazole, we show that mitotic APC substrates are degraded upon mitotic slippage. To confirm that APC is normally activated upon mitotic slippage we have found that knockdown of Cdc20 and Cdh1, two mitotic activators of APC, prevents the degradation of APC substrates during mitotic slippage. Knockdown of Cdc20 and Cdh1 prevents the degradation of APC substrates during mitotic slippage. We provide the first direct demonstration that despite conditions that activate the spindle checkpoint, APC is indeed activated upon mitotic slippage of cells to interphase cells. Activation of the spindle checkpoint by microtubule targeting drugs used in chemotherapy may not indefinitely prevent APC activation.  相似文献   

14.
When early prophase PtK(1) or Indian muntjac cells are exposed to topoisomerase II (topo II) inhibitors that induce little if any DNA damage, they are delayed from entering mitosis. We show that this delay is overridden by inhibiting the p38, but not the ATM, kinase. Treating early prophase cells with hyperosmotic medium or a histone deacetylase inhibitor similarly delays entry into mitosis, and this delay can also be prevented by inhibiting p38. Together, these results reveal that agents or stresses that induce global changes in chromatin topology during G2 delay entry into mitosis, independent of the ATM-mediated DNA damage checkpoint, by activating the p38 MAPK checkpoint. The presence of this pathway obviates the necessity of postulating the existence of multiple "chromatin modification" checkpoints during G2. Lastly, cells that enter mitosis in the presence of topo II inhibitors form metaphase spindles that are delayed in entering anaphase via the spindle assembly, and not the p38, checkpoint.  相似文献   

15.
The Schizosaccharomyces pombe checkpoint protein Dma1 couples mitotic progression with cytokinesis and is important in delaying mitotic exit and cytokinesis when kinetochores are not properly attached to the mitotic spindle. Dma1 is a ubiquitin ligase and potential functional relative of the human tumor suppressor Chfr. Dma1 delays mitotic exit and cytokinesis by ubiquitinating a scaffold protein (Sid4) of the septation initiation network, which, in turn, antagonizes the ability of the Polo-like kinase Plo1 to promote cell division. Here we identify Dnt1 as a Dma1-binding protein. Several lines of evidence indicate that Dnt1 inhibits Dma1 function during metaphase. First, Dnt1 interacts preferentially with Dma1 during metaphase. Second, Dma1 ubiquitin ligase activity and Sid4 ubiquitination are elevated in dnt1 cells. Third, the enhanced mitotic defects in dnt1Δ plo1 double mutants are partially rescued by deletion of dma1(+), suggesting that the defects in dnt1 plo1 double mutants are attributable to excess Dma1 activity. Taken together, these data show that Dnt1 acts to restrain Dma1 activity in early mitosis to allow normal mitotic progression.  相似文献   

16.
G1 tetraploidy checkpoint and the suppression of tumorigenesis   总被引:9,自引:0,他引:9  
Checkpoints suppress improper cell cycle progression to ensure that cells maintain the integrity of their genome. During mitosis, a metaphase checkpoint requires the integration of all chromosomes into a metaphase array in the mitotic spindle prior to mitotic exit. Still, mitotic errors occur in mammalian cells with a relatively high frequency. Metaphase represents the last point of control in mitosis. Once the cell commits to anaphase there are no checkpoints to sense segregation defects. In this context, we will explore our recent finding that non-transformed mammalian cells have a checkpoint that acts subsequent to mitotic errors to block the proliferation of cells that have entered G1 with tetraploid status. This arrest is dependent upon both p53 and pRb, and may represent an important function of both p53 and pRb as tumor suppressors. Further, we discuss the possibility that this mechanism may similarly impose G1 arrest in cells that become aneuploid through errors in mitosis.  相似文献   

17.
Timing and checkpoints in the regulation of mitotic progression   总被引:14,自引:0,他引:14  
Accurate chromosome segregation relies on the precise regulation of mitotic progression. Regulation involves control over the timing of mitosis and a spindle assembly checkpoint that links anaphase onset to the completion of chromosome-microtubule attachment. In this paper, we combine live-cell imaging of HeLa cells and protein depletion by RNA interference to examine the functions of the Mad, Bub, and kinetochore proteins in mitotic timing and checkpoint control. We show that the depletion of any one of these proteins abolishes the mitotic arrest provoked by depolymerizing microtubules or blocking chromosome-microtubule attachment with RNAi. However, the normal progress of mitosis is accelerated only when Mad2 or BubR1, but not other Mad and Bub proteins, are inactivated. Moreover, whereas checkpoint control requires kinetochores, the regulation of mitotic timing by Mad2 and BubR1 is kinetochore-independent in fashion. We propose that cytosolic Mad2-BubR1 is essential to restrain anaphase onset early in mitosis when kinetochores are still assembling.  相似文献   

18.
DNA replication depends on a preceding licensing event by Cdt1 and Cdc6. In animal cells, relicensing after S phase but before mitosis is prevented by the Cdt1 inhibitor geminin and mitotic cyclin activity. Here, we show that geminin, like cyclin B1 and securin, is a bona fide target of the spindle checkpoint and APC/CCdc20. Cyclin B1 and geminin are degraded simultaneously during metaphase, which directs Cdt1 accumulation on segregating sister chromatids. Subsequent activation of APC/CCdh1 leads to degradation of Cdc6 well before Cdt1 becomes unstable in a replication-coupled manner. In mitosis, the spindle checkpoint supports Cdt1 accumulation, which promotes S phase onset. We conclude that the spindle checkpoint, APC/CCdc20, and APC/CCdh1 act successively to ensure that the disappearance of licensing inhibitors coincides exactly with a peak of Cdt1 and Cdc6. Whereas cell cycle entry from quiescence requires Cdc6 resynthesis, our results indicate that proliferating cells use a window of time in mitosis, before Cdc6 is degraded, as an earlier opportunity to direct S phase.  相似文献   

19.
Cyclin A is a stable protein in S and G2 phases, but is destabilized when cells enter mitosis and is almost completely degraded before the metaphase to anaphase transition. Microinjection of antibodies against subunits of the anaphase-promoting complex/cyclosome (APC/C) or against human Cdc20 (fizzy) arrested cells at metaphase and stabilized both cyclins A and B1. Cyclin A was efficiently polyubiquitylated by Cdc20 or Cdh1-activated APC/C in vitro, but in contrast to cyclin B1, the proteolysis of cyclin A was not delayed by the spindle assembly checkpoint. The degradation of cyclin B1 was accelerated by inhibition of the spindle assembly checkpoint. These data suggest that the APC/C is activated as cells enter mitosis and immediately targets cyclin A for degradation, whereas the spindle assembly checkpoint delays the degradation of cyclin B1 until the metaphase to anaphase transition. The "destruction box" (D-box) of cyclin A is 10-20 residues longer than that of cyclin B. Overexpression of wild-type cyclin A delayed the metaphase to anaphase transition, whereas expression of cyclin A mutants lacking a D-box arrested cells in anaphase.  相似文献   

20.
BACKGROUND: In fission yeast, the Wee1 kinase delays entry into mitosis until a critical cell size has been reached; however, a similar role for Wee1-related kinases has not been reported in other organisms. SWE1, the budding yeast homolog of wee1, is thought to function in a morphogenesis checkpoint that delays entry into mitosis in response to defects in bud morphogenesis. RESULTS: In contrast to previous studies, we found that budding yeast swe1 Delta cells undergo premature entry into mitosis, leading to birth of abnormally small cells. Additional experiments suggest that conditions that activate the morphogenesis checkpoint may actually be activating a G2/M cell size checkpoint. For example, actin depolymerization is thought to activate the morphogenesis checkpoint by inhibiting bud morphogenesis. However, actin depolymerization also inhibits bud growth, suggesting that it could activate a cell size checkpoint. Consistent with this possibility, we found that actin depolymerization fails to induce a G2/M delay once daughter buds pass a critical size. Other conditions that activate the morphogenesis checkpoint block bud formation, which could also activate a size checkpoint if cell size at G2/M is monitored in the daughter bud. Previous work reported that Swe1 is degraded during G2, which was proposed to account for failure of large-budded cells to arrest in response to actin depolymerization. However, we found that Swe1 is present throughout G2 and undergoes hyperphosphorylation as cells enter mitosis, as found in other organisms. CONCLUSIONS: Our results suggest that the mechanisms known to coordinate entry into mitosis in other organisms have been conserved in budding yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号