首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteogenesis and the production of composite osteochondral tissues were investigated using human adult adipose‐derived stem cells and polyglycolic acid (PGA) mesh scaffolds under dynamic culture conditions. For osteogenesis, cells were expanded with or without osteoinduction factors and cultured in control or osteogenic medium for 2 weeks. Osteogenic medium enhanced osteopontin and osteocalcin gene expression when applied after but not during cell expansion. Osteogenesis was induced and mineralized deposits were present in tissues produced using PGA culture in osteogenic medium. For development of osteochondral constructs, scaffolds seeded with stem cells were precultured in either chondrogenic or osteogenic medium, sutured together, and cultured in dual‐chamber stirred bioreactors containing chondrogenic and osteogenic media in separate compartments. After 2 weeks, total collagen synthesis was 2.1‐fold greater in the chondroinduced sections of the composite tissues compared with the osteoinduced sections; differentiation markers for cartilage and bone were produced in both sections of the constructs. The results from the dual‐chamber bioreactor highlight the challenges associated with achieving simultaneous chondrogenic and osteogenic differentiation in tissue engineering applications using a single stem‐cell source. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

2.
We investigated chondrogenesis of cell-mediated sox9 gene therapy as a new treatment regimen for cartilage regeneration. pIRES2-EGFP vector containing a full-length mouse sox9 cDNA was transfected into bone marrow-derived mesenchymal stem cells (MSCs) by lipofection and chondrogenic differentiation of these cells was evaluated. In vitro high density micromass culture of these sox9 transfected MSCs demonstrated that a matrix-rich micromass aggregate with EGFP expressing MSCs was positively stained by Alcian blue and type II collagen. Next, sox9 transfected MSCs were loaded into the diffusion chamber and transplanted into athymic mice to analyze in vivo chondrogenesis. A massive tissue formation in about 2mm diameter was visible in the chamber after 4 weeks transplantation. Histological examinations demonstrated that both Alcian blue and type II collagen were positively stained in the extracellular matrix of the mass while type X collagen was not stained. These results indicated that cell-mediated sox9 gene therapy could be a novel strategy for hyaline cartilage damage.  相似文献   

3.
A new technique for the cultivation of living tissues in the multipurpose culture chamber is described. This procedure employs strips of cellophane as the agent for anchoring tissue explants to the coverslip walls of the chamber and disposes of the time-honored plasma-clot technique. The primary advance embodied in this procedure lies in the fact that cells emigrating from so-cultured explants manifest themselves in a highly differentiated manner comparable to the cells of origin, whereas the outgrowth from the same types of tissue in plasma clots results in a more undifferentiated type of growth. Comparisons of outgrowths from embryonic thyroid, bone, and muscle (chicken) are photographically documented, and attention is called to certain cytochemical methods which further corroborate the differentiated quality obtained with the cellophane-strip technique.  相似文献   

4.
A new technique for the cultivation of living tissues in the multipurpose culture chamber is described. This procedure employs strips of cellophane as the agent for anchoring tissue explants to the coverslip walls of the chamber and disposes of the time-honored plasma-clot technique. The primary advance embodied in this procedure lies in the fact that cells emigrating from so-cultured explants manifest themselves in a highly differentiated manner comparable to the cells of origin, whereas the outgrowth from the same types of tissue in plasma clots results in a more undifferentiated type of growth. Comparisons of outgrowths from embryonic thyroid, bone, and muscle (chicken) are photographically documented, and attention is called to certain cytochemical methods which further corroborate the differentiated quality obtained with the cellophane-strip technique.  相似文献   

5.
Early embryonic stem (EES) cells, which were established from 2 cell stage embryos obtained from ddY mice, had similar characteristics as embryonic stem (ES) cells. These cells were maintained in an undifferentiated stage in growth media supplemented with leukemia inhibitory factor (LIF) and were capable of differentiating into triploblastic tissues under various growth factors. It has been known that normal sized embryoid bodies (EBs) are formed by removing LIF. In this study, large EBs gradually formed along the side wall of a culture dish, particularly at the boundary between the air and the growth medium when cells were cultured for a considerable period of time and without subculturing. We call this method the "wall adhesion culture" procedure. The method itself is simple and do not need any instruments except plastic dishes because only the side walls of the dishes were utilized. The mean thickness of the large EBs was about 1.5 mm 3 months after establishing the static culture. Their surface was covered with a monolayer of cells and they contained an eosinophilic cell matrix. By electron microscopy, some characteristic structures was observed, such as intracisternal A particles which were present inside the swelling of the rough endoplasmic reticulum. Since many tissues derived from ES cells are obtained through EBs, it is expected that efficient acquisition of sufficient quantities of these structures using the wall adhesion culture procedure will be a shortcut for using ES cells in regenerative medicine.  相似文献   

6.
Early embryonic stem (EES) cells, which were established from 2 cell stage embryos obtained from ddY mice, had similar characteristics as embryonic stem (ES) cells. These cells were maintained in an undifferentiated stage in growth media supplemented with leukemia inhibitory factor (LIF) and were capable of differentiating into triploblastic tissues under various growth factors. It has been known that normal sized embryoid bodies (EBs) are formed by removing LIF. In this study, large EBs gradually formed along the side wall of a culture dish, particularly at the boundary between the air and the growth medium when cells were cultured for a considerable period of time and without subculturing. We call this method the “wall adhesion culture” procedure. The method itself is simple and do not need any instruments except plastic dishes because only the side walls of the dishes were utilized. The mean thickness of the large EBs was about 1.5 mm 3 months after establishing the static culture. Their surface was covered with a monolayer of cells and they contained an eosinophilic cell matrix. By electron microscopy, some characteristic structures was observed, such as intracisternal A particles which were present inside the swelling of the rough endoplasmic reticulum. Since many tissues derived from ES cells are obtained through EBs, it is expected that efficient acquisition of sufficient quantities of these structures using the wall adhesion culture procedure will be a shortcut for using ES cells in regenerative medicine.  相似文献   

7.
Summary A system has been developed for the culture of cells that provides conditions favoring the formation of tissues comparable to conditions existing in nature. The culture chamber is a lens-shaped pouch composed of two thin-walled, reinforced, waffled collagen membranes facing each other. The chamber is immersed in immersed in medium in a closed transparent container and incubated on a rocker. On histologic study, after days to weeks in culture, human mammary cancer cell lines BT-20, MCF-7, MDA-231, MDA-468, and T47D grow in the chamber as distinctive structured epithelial tissue. Dog kidney cell line MDCK grows as a papillary adenocarcinoma and rat bladder cancer line NBT-II as an epidermoid carcinoma; cells from clinical effusion tumors produce distinct tissue. Changes in histologic phenotype may be driven by molecular changes at the level of the genome. Resulting alteration of the biochemical functions essential for the integrity of specific durable tissue organization should alter or reset the pattern of tissue organization and of biological behavior, including malignancy and response to cytotoxic chemicals. Lenticular pouch culture promises to be an effective tool for exploring the molecular changes associated with histogenesis and malignancy. This paper is dedicated to the memory of Clyde J. Dawe, who died suddenly on Cape Cod, Massachusetts, in a glider accident on July 5, 1996. We were friends for about 40 years. Clyde was one of the finest scholars in cancer biology I have ever known. I learned many things from him and miss him.  相似文献   

8.
During early embryogenesis cells of several different populations disperse by active cell movement from one location to another. Preexisting extracellular materials are major determinants of these dispersal patterns, but the cells are also able to modify their substrata by synthesizing and secreting extracellular matrix molecules as they move. In order to determine the contribution made by these deposited materials, several tissues from the early chick embryo have been cultured in the presence of inhibitors of extracellular matrix synthesis and secretion. The tissues examined were sclerotome cells from differentiated somites and neural crest cells. For comparison, undifferentiated somites were also cultured. The movement of these cells was compared in type I collagen gel culture and in conventional culture on artificial substrata. Inhibitors of collagen synthesis were used (cis-hydroxy proline and L-azetidine-2-carboxylic acid) in addition to a proteoglycan inhibitor (p-nitrophenyl-xylopyranoside) and a secretion inhibitor (monensin). Results indicate that sclerotome cells require collagen synthesis for movement in a collagen matrix. Reversal of the effects of collagen inhibitors, by proline and type II collagen, suggest that sclerotome cells normally condition the type I matrix in order to move in it. Inhibition of proteoglycan synthesis produced the greatest effect on the movement of neural crest cells regardless of the substratum, confirming an important role for these molecules in the crest migratory routes. The attachment of all cells to collagen was highly sensitive to the presence of monensin, which is known to reduce the deposition of glycosaminoglycans and fibronectin. These results suggest that conditioning of the extracellular matrix by newly synthesized material is required for cell attachment and movement during early development.  相似文献   

9.
A novel pressure chamber system has been developed for the study of living cells under conditions of extremely high hydrostatic pressure up to 100 MPa (1 atm = 0.101325 MPa). The temperature in the chamber is thermostatically controlled in the range from 2 degrees to 80 degrees C. Two high-pressure pumps are employed for continuous perfusion of the chamber with culture medium and a chemical solution under high hydrostatic pressure conditions. The chamber has a 2-mm-thick glass window 2 mm in diameter, with a minimum working distance of 3.8 mm. The chamber system is designed to be adaptable to a variety of microscopic and imaging techniques. Using this chamber system, we successfully carried out real-time observations of elongated Escherichia coli and rounded HeLa cells under pressure.  相似文献   

10.
Summary Histophysiologic gradient culture methods reconstitute important spatial relationships that occur in nature between a parenchyma and its supporting stroma. At the epithelial-stromal interface, epithelia are firmly attached to the stromal substrate, initiation of renewal takes place, and metabolites are exchanged by a process of diffusion between epithelium and substrate. Other spatial imperatives characteristic of stratified epithelium are high density of cells, gradients of maturation, and continuity of epithelia along the entire course of the stromal-parenchymal interface. In radial gradient culture these relationships of epithelial cells, and supporting substrates are reconstituted. The culture chamber consists of a thin-walled cylinder, 2 to 3 mm in diameter and 3 cm long. The wall is a transparent collagen membrane in whose substance is embedded a reinforcing nylon mesh. To prepare a culture, one end of the cylinder is ligated, 1 or 2 particulate inocula are inserted in the open end of the cylinder, guided toward the ligature, and the open end is ligated. Subsequently, during incubation in a container with medium, the explants attach and proliferate. Proliferation and migration result in the cylinder being completely lined by a complex organoid tissue with structural characteristics of the original tissue. The tissue patterns in radial gradient culture of two human cell lines, RT-4, a bladder cancer, and 87×50, and ovarian cancer, are illustrated.  相似文献   

11.
Graft implantation is one of the more popular procedures for repairing cartilage defects; however, sacrifices of the donor site have been an issue. Mesenchymal stem cells (MSCs) are a fascinating source for regenerative medicine because they can be harvested in a less invasive manner and are easily isolated and expanded, with multipotentiality including chondrogenesis. MSCs can be isolated from various adult mesenchymal tissues including synovium. Here, we attempted to form cartilage from the composites of synovium-derived MSCs with collagen gel in vitro. After 21 days of culture, the composites had increased their cartilage matrix, as demonstrated by toluidine blue staining and immunohistochemistry for type II collagen. The composites consisting of 5×107 and 108 cells/ml in gel were richer in proteoglycans than those consisting of lower cell densities. After 1 day, MSCs/gel composites contracted and the diameter decreased by 30%; however, they were stable thereafter. Round cells with short processes producing collagen fibrils showing a similar morphology to that of chondrocytes were seen in the composites by transmission electron microscopy. During composite culture, chondroitin sulfate and mRNA expression for cartilage-related genes increased, demonstrating cartilage maturation. Using an optimized method, we obtained cartilage discs with a diameter of 7 mm and a thickness of 500 μm. Our procedure should thus make it possible to produce a large cartilage matrix in vitro. The tissue engineering of autologous cartilage from the composites of synovium-derived MSCs with collagen gel in vitro for transplantation may be a future alternative to graft implantation for patients with cartilage defects. This study is supported in part by grants from the Japanese Society for the Promotion of Science (16591478), the Japanese Orthopaedics and Traumatology Foundation, and the Nakatomi Foundation to I.S., and the Japanese Society for the Promotion of Science (16591477), the Japanese Sports Medicine Foundation, the Japanese Latest Osteoarthritis Society, and the Center of Excellence Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone in Tokyo Medical and Dental University to T.M.  相似文献   

12.
This work describes an approach to monitor chondrogenesis of stage-24 chick limb mesodermal cells in vitro by analyzing the onset of type II collagen synthesis with carboxymethyl-cellulose chromatography, immunofluorescence, and radioimmunoassay. This procedure allowed specific and quantitative determination of chondrocytes in the presence of fibroblasts and myoblasts, both of which synthesize type I collagen. Chondrogenesis was studied in high-density cell preparations on tissue culture plastic dishes and on agar base. It was found that stage-24 limb mesenchymal cells initially synthesized only type I collagen. With the onset of chondrogenesis, a gradual transition to type II collagen synthesis was observed. In cell aggregates formed over agar, type II collagen synthesis started after 1 day in culture and reached levels of 80-90 percent of the total collagen synthesis at 6-8 days. At that time, the cells in the center of the aggregates had acquired the typical chondrocyte phenotype and stained only with type II collagen antibodies, whereas the peripheral cells had developed into a "perichondrium" and stained with type I and type II collagen antibodies. On plastic dishes plated with 5 X 10(6) cells per 35mm dish, cartilage nodules developed after 4-6 days, but the type II collagen synthesis only reached levels of 10-20 percent of the total collagen. The majority of the cells differentiated into fibroblasts and myoblasts and synthesized type I collagen. These studies demonstrate that analysis of cell specific types of collagen provides a useful method for detailing the specific events in the differentiation of mesenchymal cells in vitro.  相似文献   

13.
血管内皮细胞和心脏组织块的立体培养   总被引:1,自引:0,他引:1  
Wang MJ  Cai WJ  Yao T  Zhu YC 《生理学报》2005,57(2):259-269
本文旨在对比研究二维平面与三维立体培养模式下,内皮细胞和心脏组织形态学的差异。采用胶内、胶上、三明治模式、玻片培养小室模型等多种I型胶原立体培养模型,通过免疫荧光技术及显微形态学观察组织和细胞的生长情况。在二维平面培养中,原代心脏血管内皮细胞呈铺路石样排列;而在三维胶原培养模式中,内皮细胞呈长梭状形态,并迁入胶原培养介质中,和体内血管新生及血管生成过程中的内皮细胞活化表型相似。加入血管内皮生长因子(vascular endo- thelial growth factor VEGF)能增强内皮细胞管状结构的形成。在三维胶原中,心脏组织块生长良好,迁出的细胞将相邻组织块连接起来,组织块有自发的搏动。本工作表明,改进的薄层胶原培养、玻片培养小室模型和动脉条模型是较好的研究血管生成和血管新生的工具。在三维培养的情况下,内皮细胞通过空间增殖、迁移和锚定,可形成管状结构,比二维平面培养更适合用于血管新生的研究。不同的立体培养模型可用于不同目的的研究。  相似文献   

14.
The engineering of functional smooth muscle (SM) tissue is critical if one hopes to successfully replace the large number of tissues containing an SM component with engineered equivalents. This study reports on the effects of SM cell (SMC) seeding and culture conditions on the cellularity and composition of SM tissues engineered using biodegradable matrices (5 x 5 mm, 2-mm thick) of polyglycolic acid (PGA) fibers. Cells were seeded by injecting a cell suspension into polymer matrices in tissue culture dishes (static seeding), by stirring polymer matrices and a cell suspension in spinner flasks (stirred seeding), or by agitating polymer matrices and a cell suspension in tubes with an orbital shaker (agitated seeding). The density of SMCs adherent to these matrices was a function of cell concentration in the seeding solution, but under all conditions a larger number (approximately 1 order of magnitude) and more uniform distribution of SMCs adherent to the matrices were obtained with dynamic versus static seeding methods. The dynamic seeding methods, as compared to the static method, also ultimately resulted in new tissues that had a higher cellularity, more uniform cell distribution, and greater elastin deposition. The effects of culture conditions were next studied by culturing cell-polymer constructs in a stirred bioreactor versus static culture conditions. The stirred culture of SMC-seeded polymer matrices resulted in tissues with a cell density of 6.4 +/- 0.8 x 10(8) cells/cm3 after 5 weeks, compared to 2.0 +/- 1.1 x 10(8) cells/cm3 with static culture. The elastin and collagen synthesis rates and deposition within the engineered tissues were also increased by culture in the bioreactors. The elastin content after 5-week culture in the stirred bioreactor was 24 +/- 3%, and both the elastin content and the cellularity of these tissues are comparable to those of native SM tissue. New tissues were also created in vivo when dynamically seeded polymer matrices were implanted in rats for various times. In summary, the system defined by these studies shows promise for engineering a tissue comparable in many respects to native SM. This engineered tissue may find clinical applications and provide a tool to study molecular mechanisms in vascular development.  相似文献   

15.
A flow diffusion chamber designed for studying cells and tissues in culture is described. The chamber contains a plate with a great number of isolated holes, which enables one to perform the cultivation of cells at different distances from the porous membrane separating the cells from the perfused medium. An individual porous membrane can be placed above each hole. Evidence for the selective permeability of domestic membranes under the conditions of cell culture in chamber is presented. The chamber makes possible a simultaneous cultivation of a great number of various cultures with different conditions of mass exchange with common perfused medium, which contributes to intensification of studies.  相似文献   

16.
This study presents the design and validation of a pulsatile flow perfusion bioreactor able to provide a suitable environment for 3D high cell density cultures for tissue engineering applications. Our bioreactor system is mobile, does not require the use of traditional cell culture incubators and is easy to sterilize. It provides real‐time monitoring and stable control of pH, dissolved oxygen concentration, temperature, pressure, pulsation frequency, and flow rate. In this bioreactor system, cells are cultured in a gel within a chamber perfused by a culture medium fed by hollow fibers. Human umbilical vein endothelial cells (HUVEC) suspended in fibrin were found to be living, making connections and proliferating up to five to six times their initial seeding number after a 48‐h culture period. Cells were uniformly dispersed within the 14.40 mm × 17.46 mm × 6.35 mm chamber. Cells suspended in 6.35‐mm thick gels and cultured in a traditional CO2 incubator were found to be round and dead. In control experiments carried out in a traditional cell culture incubator, the scarcely found living cells were mostly on top of the gels, while cells cultured under perfusion bioreactor conditions were found to be alive and uniformly distributed across the gel. Biotechnol. Bioeng. 2009; 104: 1215–1223. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
The interactions between adult rat cardiac myocytes and the basement membrane components collagen type IV and laminin were investigated in attachment experiments and biosynthesis studies and by immunofluorescence staining. Adult myocytes attached equally well to native collagen type IV and laminin but did not attach to collagen type IV solubilized with pepsin (P-CIV) or to collagen type I. However, when laminin was used to coat P-CIV, attachment was enhanced. Affinity-purified antibodies against laminin inhibited the attachment of myocytes to dishes coated with native collagen type IV, indicating that cell surface-bound laminin mediated attachment of the cells to this substrate. Immunofluorescence staining of freshly isolated myocytes, using antibodies against laminin or collagen type IV, revealed the presence of laminin but not of collagen type IV on the surface of freshly isolated cells, indicating that during the isolation procedure collagen IV was removed from the cell surface. Metabolic labeling followed by immunoprecipitation demonstrated synthesis of both laminin and collagen type IV in cardiac myocytes as they progressed into culture over a 14-day period. This synthesis was accompanied by the deposition of the collagen type IV and laminin into distinctly different patterns as revealed by immunofluorescence staining. As the cells progressed into culture, newly synthesized laminin formed a network radiating from the center of the reorganizing cell into the pseudopods. The laminin was redistributed and remodeled with time in culture to form a dense layer beneath the cell. Collagen type IV was also synthesized with time in culture, but the pattern was a much finer network as opposed to the denser pattern of laminin staining. These studies demonstrate that adult cardiac myocytes synthesize and remodel the basement membrane as they adapt to the culture environment.  相似文献   

18.
K Yoshizato  A Makino 《Human cell》1988,1(2):150-161
Major cells in skin are epidermal cells in epidermis and fibroblasts in dermis. These cells can be isolated as a relatively pure population from the tissues using proteases and chelating agents. In this review we describe the way of culture where these two kinds of cells express normal function as they do in vivo. 1) It is important to consider the polarity of epidermal cell membranes in the transport of nutrients and metabolites when the cells are to be cultured in a healthy state in a long period. Epidermals cells expressed their normal polarities when cultured on a porous thin film of collagen and bathed on both sides (apical and basal) in culture media. 2) It is important to consider the interactions of fibroblasts with collagen when normal morphology and physiology are expected to be expressed in the cell in culture. Collagen affected the morphology of the cell and profoundly decreased the rate of DNA synthesis. We present a hypothesis which explains the fibronectin-independent interaction of fibroblasts with collagen. 3) It is important to consider the interactions between fibroblasts and epidermal cells when normal physiology of the skin as a whole is expected to be expressed in vitro, because exchange of information between them control their metabolic activities and functions. In this review, two examples for this exchange are presented: cell growth and collagenolysis.  相似文献   

19.
Development of regenerative therapies for damaged tendons remains a great challenge, largely because of lack of information regarding the mechanisms responsible for differentiation of tenocytes. Mouse tenocytes have not been fully characterized owing to the absence of efficient and reproducible methods for their in vitro expansion without losing phenotypic features. The objective of the study was to establish an improved and reliable method for stable primary culture of mouse tenocytes by using collagen gel. Achilles and tail tendon tissues were harvested and embedded in collagen gel. After 10 days of continuous culture, the gel was digested and cells were passaged on tissue culture-treated plastic dishes. Mouse tenocytes cultured in collagen gel exhibited significantly shorter doubling time and higher numbers of proliferation when maintained on the plastic dishes compared with those cultured without using gel. Transmission electron microscopic analyses showed that cultured tenocytes retained some morphological features of tenocytes in tendon tissues, such as cell–cell junctional complex formation, well-developed rough endoplasmic reticulum, and mitochondria in their cytoplasm. mRNA expression of tenocyte markers (tenomodulin, type I collagen, periostin, and scleraxis) was higher in cells cultured in collagen gel than in those cultured in the absence of gel. Our results show that tenocytes cultured using the collagen gel method express typical lineage markers and exhibit improved growth characteristics, thus providing a stable platform for studying molecular mechanisms that control their differentiation.  相似文献   

20.
High-density cell culture is pivotal for the chondrogenic differentiation of human mesenchymal stem cells (hMSCs). Two high-density cell culture systems, micromass and pellet culture, have been used to induce chondrogenic differentiation of hMSCs. In micromass culture, the induced-cartilage tissues were larger, more homogenous and enriched in cartilage-specific collagen II but the fibrocartilage-like feature, collagen I, and hypertrophic chondrocyte feature, collagen X, were markedly decreased compared to those in pellet culture. Furthermore, real time RT-PCR analysis demonstrated that collagen II and aggrecan mRNA were up-regulated while collagen X and collagen I mRNA were down-regulated in micromass culture. Thus, the micromass culture system is a promising tool for in vitro chondrogenic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号