首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
SUMMARY 1. Each individual planktonic plant or animal is exposed to the hazards of starvation and risk of predation, and each planktonic population is under the control of resource limitation from the bottom up (growth and reproduction) and by predation from the top down (mortality). While the bottom-up and top-down impacts are traditionally conceived as compatible with each other, field population-density data on two coexisting Daphnia species suggest that the nature of the two impacts is different. Rates of change, such as the rate of individual body growth, rate of reproduction, and each species' population growth rate, are controlled from the bottom up. State variables, such as biomass, individual body size and population density, are controlled from the top down and are fixed at a specific level regardless of the rate at which they are produced.
2. According to the theory of functional responses, carnivorous and herbivorous predators react to prey density rather than to the rate at which prey are produced or reproduced. The predator's feeding rate (and thus the magnitude of its effect on prey density) should hence be regarded as a functional response to increasing resource concentration.
3. The disparity between the bottom-up and top-down effects is also apparent in individual decision making, where a choice must be made between accepting the hazards of hunger and the risks of predation (lost calories versus loss of life).
4. As long as top-down forces are effective, the disparity with bottom-up effects seems evident. In the absence of predation, however, all efforts of an individual become subordinate to the competition for resources. Biomass becomes limited from the bottom up as soon as the density of a superior competitor has increased to the carrying capacity of a given habitat. Such a shift in the importance of bottom-up control can be seen in zooplankton in habitats from which fish have been excluded.  相似文献   

2.
Many human influences on the world's ecosystems have their largest direct impacts at either the top or the bottom of the food web. To predict their ecosystem-wide consequences we must understand how these impacts propagate. A long-standing, but so far elusive, problem in this endeavour is how to reduce food web complexity to a mathematically tractable, but empirically relevant system. Simplification to main energy channels linking primary producers to top consumers has been recently advocated. Following this approach, we propose a general framework for the analysis of bottom-up and top-down forcing of ecosystems by reducing food webs to two energy pathways originating from a limiting resource shared by competing guilds of primary producers (e.g. edible vs. defended plants). Exploring dynamical models of such webs we find that their equilibrium responses to nutrient enrichment and top consumer harvesting are determined by only two easily measurable topological properties: the lengths of the component food chains (odd-odd, odd-even, or even-even) and presence vs. absence of a generalist top consumer reconnecting the two pathways (yielding looped vs. branched webs). Many results generalise to other looped or branched web structures and the model can be easily adapted to include a detrital pathway.  相似文献   

3.
Traits affecting ecological interactions can evolve on the same time scale as population and community dynamics, creating the potential for feedbacks between evolutionary and ecological dynamics. Theory and experiments have shown in particular that rapid evolution of traits conferring defense against predation can radically change the qualitative dynamics of a predator–prey food chain. Here, we ask whether such dramatic effects are likely to be seen in more complex food webs having two predators rather than one, or whether the greater complexity of the ecological interactions will mask any potential impacts of rapid evolution. If one prey genotype can be well-defended against both predators, the dynamics are like those of a predator–prey food chain. But if defense traits are predator-specific and incompatible, so that each genotype is vulnerable to attack by at least one predator, then rapid evolution produces distinctive behaviors at the population level: population typically oscillate in ways very different from either the food chain or a two-predator food web without rapid prey evolution. When many prey genotypes coexist, chaotic dynamics become likely. The effects of rapid evolution can still be detected by analyzing relationships between prey abundance and predator population growth rates using methods from functional data analysis.  相似文献   

4.
5.
We investigated the effects of predator diet breadth on the relative importance of bottom-up and top-down control of prey assemblages, using microbial food webs containing bacteria, bacterivorous protists and rotifers, and two different top predators. The experiment used a factorial design that independently manipulated productivity and the presence or absence of two top predators with different diet breadths. Predators included a "specialist" predatory ciliate Euplotes aediculatus, which was restricted to feeding on small prey, and a "generalist" predatory ciliate Stentor coeruleus, which could feed on the entire range of prey sizes. Both total prey biomass and prey diversity increased with productivity in the predator-free control and specialist predator treatments, a pattern consistent with bottom-up control, but both remained unchanged by productivity in the generalist predator treatment, a pattern consistent with top-down control. Linear food chain models adequately described responses in the generalist predator treatment, whereas food web models incorporating edible and inedible prey (which can coexist in the absence of predators) adequately described responses in the specialist predator treatment. These results suggest that predator diet breadth can play an important role in modulating the relative strength of bottom-up and top-down forces in ecological communities.  相似文献   

6.
Human-introduced disease and climatic change are increasingly perturbing natural ecosystems worldwide, but scientists know very little about how they interact to affect ecological dynamics. An outbreak of canine parvovirus (CPV) in the wolf population on Isle Royale allowed us to test the transient effects of an introduced pathogen and global climatic variation on the dynamics of a three-level food chain. Following the introduction of CPV, wolf numbers plummeted, precipitating a switch from top-down to bottom-up regulation of the moose population; consequently, the influence of climate on moose population growth rate doubled. This demonstrates that synergistic interactions between pathogens and climate can lead to shifts in trophic control, and suggests that predators in this system may play an important role in dampening the effects of climate change on the dynamics of their prey.  相似文献   

7.
Biodiversity, productivity and stability in real food webs   总被引:3,自引:0,他引:3  
The global biodiversity crisis has motivated new theory and experiments that explore relationships between biodiversity (species richness and composition in particular), productivity and stability. Here we emphasize that these relationships are often bi-directional, such that changes in biodiversity can be both a cause and a consequence of changes in productivity and stability. We hypothesize that this bi-directionality creates feedback loops, as well as indirect effects, that influence the complex responses of communities to biodiversity losses. Important, but often neglected, mediators of this complexity are trophic interactions. Recent work shows that consumers can modify, dampen or even reverse the directionality of biodiversity-productivity-stability linkages inferred from the plant level alone. Such consumer mediation is likely to be common in many ecosystems. We suggest that merging biodiversity research and food-web theory is an exciting and pressing frontier for ecology, with implications for biodiversity conservation.  相似文献   

8.
9.
Theory predicts that species diversity can enhance stability of community‐level biomass while simultaneously decreasing population‐level stability. Enrichment can theoretically destabilize communities but effects may become weaker with increasing diversity because of the inclusion of consumer‐resistant prey. Few experiments using direct manipulations of species diversity have tested these predictions. We used laboratory‐based aquatic food webs to examine the effects of species composition, diversity and enrichment on temporal variability of population‐ and community‐level biomass. We found weak effects of enrichment on population‐ and community‐level stability. However, diversity enhanced community‐level stability while species composition had no influence. In contrast, composition effects outweighed diversity effects when stability was measured at the population level. We found no negative effects of diversity on population‐level stability, in opposition to theory. Our results indicate that diversity can enhance stability in multitrophic systems, but effects vary with the scale of biological organization at which stability is measured.  相似文献   

10.
Hoekman D 《Oecologia》2011,165(4):1073-1082
The relative importance of resources (bottom-up forces) and natural enemies (top-down forces) for regulating food web dynamics has been debated, and both forces have been found to be critical for determining food web structure. How the relative importance of top-down and bottom-up forces varies between sites with different abiotic conditions is not well understood. Using the pitcher plant inquiline community as a model system, I examine how the relative importance of top-down and bottom-up effects differs between two disparate sites. Resources (ant carcasses) and top predators (mosquito larvae) were manipulated in two identical 4 × 4 factorial press experiments, conducted at two geographically distant sites (Michigan and Florida) within the range of the purple pitcher plant, Sarracenia purpurea, and the aquatic community that resides in its leaves. Overall, top predators reduced the density of prey populations while additional resources bolstered them, and the relative importance of top-down and bottom-up forces varied between sites and for different trophic levels. Specifically, top-down effects on protozoa were stronger in Florida than in Michigan, while the opposite pattern was found for rotifers. These findings experimentally demonstrate that the strength of predator–prey interactions, even those involving the same species, vary across space. While only two sites are compared in this study, I hypothesize that site differences in temperature, which influences metabolic rate, may be responsible for variation in consumer–resource interactions. These findings warrant further investigation into the specific factors that modify the relative importance of top-down and bottom-up effects.  相似文献   

11.
Community assembly is central to ecology, yet ecologists have amassed little quantitative information about how food webs assemble. Theory holds that colonisation rate is a primary driver of community assembly. We present new data from a mesocosm experiment to test the hypothesis that colonisation rate also determines the assembly dynamics of food webs. By manipulating colonisation rate and measuring webs through time, we show how colonisation rate governs structural changes during assembly. Webs experiencing different colonisation rates had stable topologies despite significant species turnover, suggesting that some features of network architecture emerge early and change little through assembly. But webs experiencing low colonisation rates showed less variation in the magnitudes of trophic fluxes, and were less likely to develop coupled fast and slow resource channels – a common feature of published webs. Our results reveal that food web structure develops according to repeatable trajectories that are strongly influenced by colonisation rate.  相似文献   

12.
13.
The dynamics of spatially coupled food webs   总被引:5,自引:2,他引:3  
The dynamics of ecological systems include a bewildering number of biotic interactions that unfold over a vast range of spatial scales. Here, employing simple and general empirical arguments concerning the nature of movement, trophic position and behaviour we outline a general theory concerning the role of space and food web structure on food web stability. We argue that consumers link food webs in space and that this spatial structure combined with relatively rapid behavioural responses by consumers can strongly influence the dynamics of food webs. Employing simple spatially implicit food web models, we show that large mobile consumers are inordinately important in determining the stability, or lack of it, in ecosystems. More specifically, this theory suggests that mobile higher order organisms are potent stabilizers when embedded in a variable, and expansive spatial structure. However, when space is compressed and higher order consumers strongly couple local habitats then mobile consumers can have an inordinate destabilizing effect. Preliminary empirical arguments show consistency with this general theory.  相似文献   

14.
Biodiversity decline causes a loss of functional diversity, which threatens ecosystems through a dangerous feedback loop: This loss may hamper ecosystems’ ability to buffer environmental changes, leading to further biodiversity losses. In this context, the increasing frequency of human‐induced excessive loading of nutrients causes major problems in aquatic systems. Previous studies investigating how functional diversity influences the response of food webs to disturbances have mainly considered systems with at most two functionally diverse trophic levels. We investigated the effects of functional diversity on the robustness, that is, resistance, resilience, and elasticity, using a tritrophic—and thus more realistic—plankton food web model. We compared a non‐adaptive food chain with no diversity within the individual trophic levels to a more diverse food web with three adaptive trophic levels. The species fitness differences were balanced through trade‐offs between defense/growth rate for prey and selectivity/half‐saturation constant for predators. We showed that the resistance, resilience, and elasticity of tritrophic food webs decreased with larger perturbation sizes and depended on the state of the system when the perturbation occurred. Importantly, we found that a more diverse food web was generally more resistant and resilient but its elasticity was context‐dependent. Particularly, functional diversity reduced the probability of a regime shift toward a non‐desirable alternative state. The basal‐intermediate interaction consistently determined the robustness against a nutrient pulse despite the complex influence of the shape and type of the dynamical attractors. This relationship was strongly influenced by the diversity present and the third trophic level. Overall, using a food web model of realistic complexity, this study confirms the destructive potential of the positive feedback loop between biodiversity loss and robustness, by uncovering mechanisms leading to a decrease in resistance, resilience, and potentially elasticity as functional diversity declines.  相似文献   

15.
Plant diversity experiments generally find that increased diversity causes increased productivity; however, primary productivity is typically measured in the presence of a diverse food web, including pathogens, mutualists and herbivores. If food web impacts on productivity vary with plant diversity, as predicted by both theoretical and empirical studies, estimates of the effect of plant diversity on productivity may be biased. We experimentally removed arthropods, foliar fungi and soil fungi from the longest‐running plant diversity experiment. We found that fungi and arthropods removed a constant, large proportion of biomass leading to a greater reduction of total biomass in high diversity plots. As a result, the effect of diversity on measured plant productivity was much higher in the absence of fungi and arthropods. Thus, diversity increases productivity more than reported in previous studies that did not control for the effects of heterotrophic consumption.  相似文献   

16.
The relative importance of top-down and bottom-up control in setting the equilibrium abundances within trophic levels is examined in a comparative study on the litter-based food chain of a temperate deciduous forest. During two consecutive years, we estimated the abundances of macroinvertebrate detritivores and their predators on a natural gradient of annual litterfall. Detritus-based food chains are thought to be classical examples of donor-controlled systems. Indeed, both trophic levels showed higher abundances on sites with higher annual litterfall. Therefore, they appear to be bottom-up controlled. Using the Errors-in-Variables regression technique, we quantitatively compared our data with the equilibrium predictions of a set of simple trophic chain models including bottom-up effects with different types of functional responses (Beddington-DeAngelis, Hassell-Varley, and ratio-dependent). The model with a Hassell-Varley type functional response yielded the best adjustment to the data, although with a very high value of the mutual interference parameter suggesting the existence of overcompensating density dependence. Several changes to the structure of this model were considered. Their adjustment to the data consistently yielded such high values of the interference parameter.  相似文献   

17.
Large, complex networks of ecological interactions with random structure tend invariably to instability. This mathematical relationship between complexity and local stability ignited a debate that has populated ecological literature for more than three decades. Here we show that, when species interact as predators and prey, systems as complex as the ones observed in nature can still be stable. Moreover, stability is highly robust to perturbations of interaction strength, and is largely a property of structure driven by predator–prey loops with the stability of these small modules cascading into that of the whole network. These results apply to empirical food webs and models that mimic the structure of natural systems as well. These findings are also robust to the inclusion of other types of ecological links, such as mutualism and interference competition, as long as consumer–resource interactions predominate. These considerations underscore the influence of food web structure on ecological dynamics and challenge the current view of interaction strength and long cycles as main drivers of stability in natural communities. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The dynamics of multispecies, multi-life-stage models of aquatic food webs   总被引:1,自引:0,他引:1  
We investigated the dynamics of models of aquatic food webs using stability analysis methods previously applied to other types of food web models. Our models expanded traditional Lotka-Volterra models of predator-prey interactions in several ways. We added life history structure to these models in order to investigate its effects. Life history omnivory is different life history stages of a species feeding in trophically different positions in a food web. Such a species might appear omnivorous, integrating across all stages, but the individual stage might not be. Other important additions to the basic models included stock-recruitment relationships between adults and young and food-dependent maturation rates for early life history stages. Complex models of multispecies interactions were built from basic ones by adding new features sequentially. Our analysis revealed five major features of our multispecies, multi-life-stage models. Omnivory reduces stability, as it does in food web models without life history structure. However, life history omnivory reduces stability much less than single life stage omnivory does. Stock recruitment relationships affect the likelihood of finding stable models. If the maturation rate of young varies with their food supply, the chance of finding stable models decreases. Finally, predation loops of the type A eats B, B eats A, or A eats B, B eats C, C eats A greatly reduce model stability. We present both biological and mathematical explanations for these findings. We also discuss their implications for management of marine resources.  相似文献   

19.
Many plant and animal species have higher densities at the centre of their distribution, with a gradual decline in abundance towards the edge of the range, though reasons for this pattern is not well known. We examined the abundance of the leaf miner Cameraria sp. nova over the range of its host plant Quercus myrtifolia in Florida and addressed how bottom-up and top-down factors varied over its whole distribution. Leaf miner densities, plant quality and natural enemy effects on mine survivorship were evaluated in 40 sites and spatially structured models were used to determine the effects of spatial location on the abundance of Cameraria and effects of both bottom-up (tannin concentration, foliar nitrogen, soil nitrogen, and leaf area) and top-down factors (larval parasitism and predation) on abundance and survivorship. Cameraria mines were, on average, three times more abundant on edge/coastal sites compared to centre/inland sites and did not support the hypothesis of higher abundance on the centre of the distribution. Differences in plant quality, larval parasitism and successful emergence of mines on edge versus central sites might be partially responsible for this finding. A trend surface equation with latitude and longitude combined explained almost 52% of the variation in Cameraria density and a trend surface map also revealed peaks of Cameraria abundance on the edges of the plant distribution. Correlograms also indicated a significant spatial structure of Cameraria as mines were positively spatially autocorrelated at small distances (≈122 km). Partial regression analyses indicated that 69% of the variation in Cameraria abundance was explained by the effects of latitude, longitude, elevation and percentage of foliar nitrogen. Our results indicated that variation in Cameraria abundance was mostly explained by spatial position and significant effects of bottom-up and top-down factors were not detected in our large-scale study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号