首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human growth hormone (hGH), a pituitary-derived polypeptide, evidences a wide range of biological functions, including protein synthesis, cell proliferation, and metabolism. A synthetic hGH gene (shGH) has been synthesized on the basis of plant-optimized codon usage via an overlap PCR strategy and located in a plant expression vector under the control of the rice amylase 3D (Ramy3D) promoter, which is induced by sugar starvation. The plant expression vector was introduced into rice calli (Oryza sativa L. cv. Donjin) via particle bombardment transformation methods. The integration of the shGH gene into the chromosome of the transgenic rice callus was verified via genomic DNA PCR amplification and shGH expression in transgenic rice suspension cells was confirmed via Northern blot analysis. The shGH protein was detected in the transgenic rice cell suspension culture medium following induction with sugar starvation, using Western blot analysis. The quantity of shGH that accumulated in the transgenic rice cell suspension medium was 57 mg/l. The shGH accumulated in the transgenic rice cell suspension culture medium evidenced a biological activity similar to that of Escherichia coli-derived recombinant hGH. These results indicate that the shGH was generated and accumulated in the transgenic rice cell suspension culture medium, and manifested biological activity.  相似文献   

2.
Robert A. Aldredge 《Ibis》2016,158(1):16-27
For many animals, adult size is an important determinant of fitness. Thus, after a period of food restriction, offspring often grow quickly to approach an optimal size. Offspring can approach an optimal size by increasing mass faster than the peak growth of offspring that do not delay development (compensatory growth) or by extending the period of rapid growth to reach an optimal size (catch‐up growth). Unfortunately, the most common statistical techniques make it difficult to differentiate alternative growth patterns among developing offspring. Here, I show how random effect estimates can be used to uncover important variation in growth in a short‐lived passerine, the House Sparrow Passer domesticus. Specifically, I show that much of the variation in offspring growth can be explained by differences in the timing of peak growth and in final adult size, both within a single population and within treatments of an experimental manipulation. These results suggest that much of the variation in offspring growth may be explained by factors other than growth rate. I also show that offspring that delay development either maintain slow but steady growth across development and reach a small adult size, or extend the period of rapid growth to reach an optimal size, indicative of catch‐up growth. This pattern of extending the period of rapid growth may allow offspring to minimize the cellular damage caused by compensatory growth but still maximize size‐related fitness benefits (e.g. increased survival and fecundity) prior to fledging.  相似文献   

3.
Summary Laboratory experiments were conducted to study the effect of algal growth on the change of (I) pH, (II) available phosphorus and (III) solubility of iron and manganese content in five waterlogged alluvial rice soils of West Bengal, India. The results showed that the algal growth initially caused an increase in the soil pH, which later declined to the original value in some of the soils. The available phosphorus content decreased upto 90 days of their growth and began to increase towards the later period of incubation. The drastic fall of water soluble plus exchaneable manganese content of the soils due to algal growth was accompanied by similar increase in reducible manganese content. No appreciable change in water soluble plus exchangeable ferrous iron content was encountered but theN-NH4OAC(pH 3) extractable iron due to algal growth progressively decreased with the progress of the incubation period.  相似文献   

4.
Analysis of logistic growth models   总被引:10,自引:0,他引:10  
A variety of growth curves have been developed to model both unpredated, intraspecific population dynamics and more general biological growth. Most predictive models are shown to be based on variations of the classical Verhulst logistic growth equation. We review and compare several such models and analyse properties of interest for these. We also identify and detail several associated limitations and restrictions.A generalized form of the logistic growth curve is introduced which incorporates these models as special cases. Several properties of the generalized growth are also presented. We furthermore prove that the new growth form incorporates additional growth models which are markedly different from the logistic growth and its variants, at least in their mathematical representation. Finally, we give a brief outline of how the new curve could be used for curve-fitting.  相似文献   

5.
邱胜荣 《生态学报》2020,40(3):1015-1020
中国自然保护区建设已由数量扩张型进入质量效益型的新阶段,运用自然保护区统计年鉴数据,基于logistic模型,借助R语言,对自然保护区发展上限进行了估算。同时,运用高等数据曲线曲率求导方法,对发展阶段进行划分,对持续时长和增长速度进行了测算。结果表明:①面积理论饱和值为15470.00万hm2;②将自然保护区发展历程分为缓慢起步期(1956—1989年)、快速发展期(1990—2008年)和稳定完善期(2009—至今);③目前则处于稳定完善期,面积已渐近饱和值,数量仍在小幅度增加。希望本研究结果能为自然保护区主管部门制定管理政策、规划以及整合组建以国家公园为主体的自然保护地体系提供参考。  相似文献   

6.
Hypocotyl and root growth elongation of etiolated seedlings was measured non-destructively for the wild tomato accessions LA 460 ( Lycopersicon chilense Dun.), PI 126435, PI 127831 and PI 127832 ( L. peruvianum Mill.) and controls PI 120256 and T3 ( L. esculentum Mill.) on slant boards at 10, 15 and 20°C. Both hypocotyl and root elongation over time were fitted by a logistic growth function with three parameters estimated for each seedling by non-linear least squares regression. Analysis of variance of these equation parameters indicated linear decreases of both hypocotyl and root growth rate parameters with temperature. All four wild accessions maintained greater hypocotyl growth rate parameters at 10°C than the fast-germinating cultivated accession PI 120256, but not significantly greater than T3. Hypocotyl growth rates of the wild accessions were less inhibited at 10°C relative to 20°C than were either cultivated accession. These results suggest that these wild accessions have greater chilling tolerance than cultivated controls for early seedling growth, and may have potential use for genetically improving emergence times for tomatoes sown in cold soil.  相似文献   

7.
Daily increase in fresh weight was recorded for apterous and alate nymphs of S. avenae at 20°C. Comparison with a control group indicated that daily disturbance and weighing of nymphs did not affect significantly their growth, developmental time or survival. The increase in fresh weight of apterous and alate virginoparae at 20°C was best described by logistic equations. Alate virginoparae were significantly heavier than apterous virginoparae at birth and throughout most of their nymphal life, but they experienced a weight loss at the final ecdysis. The relative growth rate did not remain constant, but declined during development. The decline is associated with a decline in honeydew production per unit body weight. The implications of an inconstant relative growth rate and the marked loss in weight at the adult moult in alates are discussed.
Résumé L'enregistrement de l'augmentation quotidienne du poids frais à 20°C des larves ailées et aptères de S. avenae a montré que des perturbations quotidiennes n'affectent pas significativement la croissance, la durée du développement et la survie. Les équations logistiques décrivent plus exactement l'augmentation de poids frais des aptères et des ailés virginipares à 20°C. Les virginipares ailés étaient significativement plus lourds que les virginipares aptères à la naissance et pendant la plus grande partie de la vie larvaire, mais présentaient une perte de poids à la mue finale. Le taux de croissance relative ne restait pas constant, mais diminuait au cours du développement. La diminution était associée à une diminution de la production de miellat par unité de poids du corps. La discussion porte sur les conséquences de la variation de l'augmentation du poids relatif et de la perte marquée de poids à la mue imaginale.
  相似文献   

8.
携有白化苗性状的水稻品种金龙与不含有白化苗性状的其它九个水稻品种杂交,F_1苗期表现全绿,F_2苗期绿叶苗与白叶苗的分离比经 X~2测验完全符合3:1的遗传模式,从 F_2中选出的白苗 F_3仍表现为白化苗,从 F_2中选出的绿苗 F_3里面有的株系表现为全绿(即绿苗纯合体),有的株系表现为分离,仍符合3:1的分离比。水稻白化苗性状由隐性单基因控制,不受细胞质的影响。结合两系杂交制种及杂交稻生产,利用杂交手段,已经成功地转育出含有纯合白化苗基因的不育系。  相似文献   

9.
Submergence of the stem induces rapid internodal elongation in deepwater rice (Oryza sativa L. cv. Habiganj Aman II). A comparative anatomical study of internodes isolated from airgrown and partially submerged rice plants was undertaken to localize and characterize regions of growth and differentiation in rice stems. Longitudinal sections were examined by light and scanning-electron microscopy. Based on cell-size analysis, three zones of internodal development were recognized: a zone of cell division and elongation at the base of the internode, designated the intercalary meristem (IM); a zone of cell elongation without concomitant cell division; and a zone of cell differentiation where neither cell division nor elongation occur. The primary effects of submergence on internodal development were a threefold increase in the number of cells per cell file resulting from a decrease in the cell-cycle time from 24 to 7 h within the IM; an expansion of the cell-elongation zone from 5 to 15 mm leading to a threefold greater final cell length; and a suppression of tissue differentiation as indicated by reduced chlorophyll content and a lack of secondary wall formation in xylem and cortical sclerenchyma. These data indicate that growth of deepwater-rice internoes involves a balance between elongation and differentiation of the stem. Submergence shifts this balance in favor of growth.Abbreviations GA gibberellin - IM intercalary meristem  相似文献   

10.
L. Sun  L. H. Wu  T. P. Ding  S. H. Tian 《Plant and Soil》2008,304(1-2):291-300
Silicon (Si) isotope composition and Si distribution among different rice plant organs and different parts of rice leaf at maturity were studied, which may provide new insights into the mechanism of Si accumulation in plants and biogeochemical Si cycle. An isotope ratio mass spectrometer (IRMS) was used to examine Si isotope fractionation by rice plant grown in a hydroponic system. The observed 30Si-depletion (about 0.3‰) of whole plant relative to external nutrient solutions suggested biologically mediated Si isotope fractionation occurred during uptake. However, it was not possible to judge the Si uptake mechanism with the data. For δ30Si variation within plant, there was a consistent increasing trend from lower to upper tissues (stem < leaf < husk < grain; leaf sheath < leaf blade base <leaf blade middle < leaf blade top). The phenomenon, reflecting kinetic isotope effects, could be explained that isotope fractionation during Si deposition in rice plant was a Rayleigh-like behavior. The range (−2.7‰ to 2.3‰) of δ30Si variation among rice plant tissues in present experiment exceeded that (−1.7‰ to 2.5‰) of phytoliths observed previously in continents, which would enhance understanding the role of phytoliths on globe Si isotope balance.  相似文献   

11.
BACKGROUND AND AIMS: High night temperatures are more harmful to grain weight in rice than high day temperatures. Grain growth rate and growth duration were investigated to determine which was the cause of the decrease in final grain weight under high night temperatures. Endosperm cell number and cell sizes were also examined to determine which might cause the decrease in final grain weight. METHODS: Rice plants were grown outdoors in plastic pots and moved at heading time to three temperature-controlled glasshouses under high night temperature (HNT; 22/34 degrees C), high day temperature (HDT; 34/22 degrees C) and control conditions (CONT; 22/22 degrees C). Grains were sampled periodically, and the time-course of grain growth was divided into rate and duration by logistic regression analysis. Endosperm cell numbers and cell sizes were analysed by digitalized hand-tracing images of endosperm cross-sections. KEY RESULTS: The duration of grain growth was reduced by high temperature both day and night. However, the rate of grain growth was lower in HNT than in HDT. The number of cells in endosperm cross-sections in HNT was similar to that in HDT, and higher than that in CONT. The average cell area was smaller in HNT than in either CONT or HDT. The differences in average cell areas between HNT and HDT were greater at distances 60-80 % from the central point of endosperm towards the endosperm surface. CONCLUSIONS: The results show that HNT compared with HDT reduced the final grain weight by a reduction in grain growth rate in the early or middle stages of grain filling, and also reduced cell size midway between the central point and the surface of endosperm.  相似文献   

12.
13.
A total of 1035 yeast isolates, obtained from rice and sugar cane leaves, were screened primarily for indole-3-acetic acid (IAA) production. Thirteen isolates were selected, due to their IAA production ranging from 1.2 to 29.3 mg g1 DCW. These isolates were investigated for their capabilities of calcium phosphate and ZnO3 solubilisation, and also for production of NH3, polyamine, and siderophore. Their 1-aminocyclopropane-1-carboxylate (ACC) deaminase, catalase and fungal cell wall-degrading enzyme activities were assessed. Their antagonism against rice fungal pathogens was also evaluated. Strain identification, based on molecular taxonomy, of the thirteen yeast isolates revealed that four yeast species – i.e. Hannaella sinensis (DMKU-RP45), Cryptococcus flavus (DMKU-RE12, DMKU-RE19, DMKU-RE67, and DMKU-RP128), Rhodosporidium paludigenum (DMKU-RP301) and Torulaspora globosa (DMKU-RP31) – were capable of high IAA production. Catalase activity was detected in all yeast strains tested. The yeast R. paludigenum DMKU-RP301 was the best IAA producer, yielding 29.3 mg g1 DCW, and showed the ability to produce NH3 and siderophore. Different levels of IAA production (7.2–9.7 mg g1 DCW) were found in four strains of C. flavus DMKU-RE12, DMKU-RE19, and DMKU-RE67, which are rice leaf endophytes, and strain DMKU-RP128, which is a rice leaf epiphyte. NH3 production and carboxymethyl cellulase (CMCase) activity was also detected in these four strains. Antagonism to fungal plant pathogens and production of antifungal volatile compounds were exhibited in T. globosa DMKU-RP31, as well as a moderate level of IAA production (4.9 mg g1 DCW). The overall results indicated that T. globosa DMKU-RP31 might be used in two ways: enhancing plant growth and acting as a biocontrol agent. In addition, four C. flavus were also found to be strains of interest for optimal IAA production.  相似文献   

14.
Episodic whole plant growth patterns in Ligustrum   总被引:1,自引:0,他引:1  
Episodic growth of Ligustrum japonicum Thunb. plants was determined by measuring total shoot and root fresh weight nondestructively. Episodic growth patterns were apparent in shoot elongation, shoot and root fresh weight as a percent of total fresh weight, shoot and root relative growth rates (RGRs and RGRr) and two-dimensional measurements of the root system. Increases in root growth and initiation of lateral root branching were coincident with changes in percent of total fresh weight in the root and RGRr. The rate of fresh weight gain of roots, shoots and the whole plant increased continuously throughout two experiments and thus episodic growth patterns were not apparent from these values. Alternating episodes of shoot and root growth, which is shown by percent fresh weight allocation and RGR, did not directly correspond to shoot elongation and cessation of elongation. Continuous, nondestructive measurement of total shoot and root growth reveals important changes in growth which may be obscured by other measurement techniques.  相似文献   

15.
A combination of a dynamic energy budget (DEB) model, field data on Atlantic salmon Salmo salar and brown trout Salmo trutta and laboratory data on Atlantic salmon was used to assess the underlying assumptions of three different metrics of growth including specific growth rate (G), standardized mass‐specific growth rate (GS) and absolute growth rate in length (GL) in salmonids. Close agreement was found between predictions of the DEB model and the assumptions of linear growth in length and parabolic growth in mass. Field data comparing spring growth rates of age 1+ year and 2+ year Atlantic salmon demonstrated that in all years the larger age 2+ year fish exhibited a significantly lower G, but differences in growth in terms of GS and GL depended on the year examined. For brown trout, larger age 2+ year fish also consistently exhibited slower growth rates in terms of G but grew at similar rates as age 1+ year fish in terms of GS and GL. Laboratory results revealed that during the age 0+ year (autumn) the divergence in growth between future Atlantic salmon smolts and non‐smolts was similar in terms of all three metrics with smolts displaying higher growth than non‐smolts, however, both GS and GL indicated that smolts maintain relatively fast growth into the late autumn where G suggested that both smolts and non‐smolts exhibit a sharp decrease in growth from October to November. During the spring, patterns of growth in length were significantly decoupled from patterns in growth in mass. Smolts maintained relatively fast growth though April in length but not in mass. These results suggest GS can be a useful alternative to G as a size‐independent measure of growth rate in immature salmonids. In addition, during certain growth stanzas, GS may be highly correlated with GL. The decoupling of growth in mass from growth in length over ontogeny, however, may necessitate a combination of metrics to adequately describe variation in growth depending on ontogenetic stage particularly if life histories differ.  相似文献   

16.
The effects of AlCl3 on growth and polyamine levels of rice roots were investigated. When rice roots were treated with AlCl3, root growth was markedly inhibited. AlCl3 treatment resulted in a higher putrescine content and lower spermidine and spermine contents in rice roots. d-Argnine and α-methylornithine, inhibitors of putrescine biosynthesis, caused a reduced content of putrescine in rice roots under Al stress. AlCl3 treatment also resulted in a decrease in diamine oxidase activity in rice roots. The growth of rice roots in the presence of AlCl3 was recovered after the addition of d-arginine or α-methylornithine. The protective effect of d-arginine or α-methylornithine in counteracting AlCl3-inhibited growth of rice roots is unlikely caused by reduction of Al uptake. Furthermore, the effect of the growth recovery in AlCl3-treated rice roots by d-arginine or α-methylornithine was reversed by the addition of putrescine. Our results strongly suggest that putrescine accumulation is a factor causing growth inhibition of rice roots under Al tress. Evidence is also presented to show that lignification is responsible for putrescine- and AlCl3-inhibited growth of rice roots.  相似文献   

17.
Isoelectrofocusing, product analysis, thermal denaturation studies and affinity chromatography on cycloheptaamylose-Sephadex were used to identify the amylolytic enzymes in internodes of deepwater rice (Oryza sativa L.). Amylolytic activity in internodes of deepwater rice consists of -amylase (sometimes separated into two isoforms) and of -amylase. During submergence of whole plants, -amylase activity increases in young, growing internodes, but -amylase activity declines. Although non-growing, mature internodes contain higher levels of -amylase than do the elongating younger internodes, the effect of submergence on amylase activities in both tissues follows the same trend. Submergence, gibberellic acid (GA3) and ethylene all promote -amylase activity in growing and non-growing internodes of excised deepwater-rice stem sections. Inhibitor studies showed that submergence and ethylene promote -amylase activity in the absence of endogenous gibberellin (GA), and GA3 enhances -amylase activity when ethylene action is inhibited. Therefore, ethylene and GA appear to increase -amylase activity independently of each other. Enhanced -amylase activities are probably responsible for the mobilization of carbohydrates which are needed to support internode elongation during submergence of deepwater rice.Abbreviations CHA cycloheptaamylose - GA3 gibberellic acid - NBD 2,5-norbornadiene - TCY tetcyclacis  相似文献   

18.
Deeper Rooting 1 (DRO1) gene identified from a major QTL on chromosome 9 increases the root growth angle (RGA) and thus facilitates survival under drought and hence is an excellent candidate for rice improvement. Twenty-four major Indian upland and lowland genotypes including the ‘yield under drought’ (DTY) QTL donors were subjected to allele mining of DRO1 (3058 bp) using four pairs of overlapping primers. A total of 216 and 52 SNPs were identified across all genotypes in the gene and coding region (756 bp) respectively with transversions 3.6 fold more common than transitions in the gene and 2.5 times in the CDS. In 251 amino acid long protein, substitutions were found in 19 positions, wherein change in position 92 was the most frequent. Based on allele mining, the 24 genotypes can be classified into 16 primary structure variants ranging from complete functional allele (Satti, IR36 and DTY 3.1 donor, IR81896-B-B-195) to truncated non-functional alleles in PMK2, IR64, IR20 and Swarna. All the DTY donors, other than IR81896-B-B-195, and most of the upland drought tolerant cultivars (Nagina 22, Vandana and Dhagaddeshi) had accumulated 6–19 SNPs and 4–8 amino acid substitutions resulting in substantial differences in their protein structure. The expression analysis revealed that all the genotypes showed upregulation under drought stress though the degree of upregulation varied among genotypes. The information on structural variations in DRO1 gene will be very useful for the breeders, especially in the light of recent breeding programmes on improving drought tolerance using several DTY donors and upland accessions.Supplementary InformationThe online version of this article (10.1007/s12298-021-00950-2).  相似文献   

19.
《Zoology (Jena, Germany)》2015,118(3):213-219
The analysis of horn growth may provide important information about the allocation of metabolic resources to secondary sexual traits. Depending on the selective advantages offered by horn size during intra- and inter-specific interactions, ungulates may show different investment in horn development, and growth variations within species may be influenced by several parameters, such as sex, age, or resource availability. We investigated the horn growth patterns in two hunted populations of Alpine chamois (Rupicapra r. rupicapra) in the Central Italian Alps. We tested the role of individual heterogeneity on the growth pattern and explored the variation in annulus length as a function of different factors (sex, age, hunting location, cohort). We then investigated the mechanisms underlying horn growth trajectories to test for the occurrence of compensatory or recovery growth and their potential differences between sexes and populations. Annulus length varied as a function of sex, age of individuals and, marginally, hunting location; no effect of cohort or individual heterogeneity was detected. Male and female chamois showed compensatory horn growth within the first 5½ years of life, though the partial convergence of horn trajectories in chamois suggests that this mechanisms would best be described as ‘recovery growth’. Compensation rates were greater in males than in females, while only compensatory growth rates up to 2½ years of age were different in the two populations. Besides confirming the sex- and age-dependent pattern of horn development, our study suggests that the mechanism of recovery growth supports the hypothesis of horn size as a weakly selected sexual trait in male and female chamois. Furthermore, the greater compensation rates in horn growth shown by male chamois possibly suggest selective effects of hunting on age at first reproduction, while different compensation rates between populations may suggest the occurrence of some plasticity in resource allocation to sexual traits in relation to different environments.  相似文献   

20.
Dissolved organic C (DOC) plays important roles in nutrient cycling and methane production in flooded rice ecosystem. The microcosm experiment was carried out to measure directly the contribution of photosynthates to DOC by using a 13C pulse-chase labeling technique. DOC was operationally divided into water-extractable organic C (WEOC) and salt-extractable organic C (SEOC) by successive extraction firstly with deionized water and then with 0.25 M K2SO4. Total WEOC increased with plant growth, whereas SEOC concentration did not change significantly over the growing season. About 0.037–0.36% (mean 0.16%) of the assimilated 13C was incorporated into WEOC immediately after 13CO2 assimilation (Day 0), but only 0–0.025% (mean 0.01%) was incorporated into SEOC. At the end of the growing season, the 13C amounts of WEOC substantially decreased, while those of SEOC slightly increased. The estimated net plant C contribution was 21 mg C plant–1 to WEOC and 6 mg C plant–1 to SEOC, corresponding to 33.8% of total WEOC and 20.2% of total SEOC at the end of the growing season, respectively. The results suggest that the incorporation and decomposition of the photosynthesized C occurred rapidly in rice soil which significantly affected the WEOC dynamics, but SEOC appeared to be in equilibrium with the native soil organic matter, receiving less effect from the plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号