首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The acyl-CoA-binding protein (ACBP) is a 10-kDa intracellular lipid-binding protein that transports acylCoA esters. The protein is expressed in most cell types at low levels; however, expression is particularly high in cells with a high turnover of fatty acids. Here we confirm a previous observation that ACBP expression in rodent liver is down-regulated by fasting, and we show that insulin but not glucose is the inducer of ACBP expression in primary rat hepatocytes. In keeping with the regulation by insulin, we show that ACBP is a sterol regulatory element-binding protein 1c (SREBP-1c) target gene in hepatocytes. Members of the SREBP family activate the rat ACBP gene through binding sites for SREBP and the auxiliary factors Sp1 and nuclear factor Y in the proximal promoter. In addition, we show that ACBP is a peroxisome proliferator-activated receptor (PPAR) alpha target gene in cultured hepatocytes and is induced in the liver by fibrates in a PPARalpha-dependent manner. Thus, ACBP is a dual PPARalpha and SREBP-1c target gene in hepatocytes. Fasting leads to reduced activity of SREBP but increased activity of PPARalpha in hepatocytes, and in keeping with ACBP being a dual target gene, we show that ACBP expression is significantly lower in livers from PPARalpha knock-out mice than in livers from wild type mice. In conclusion, expression of ACBP in rodent hepatocytes is subject to dual metabolic regulation by PPARalpha and SREBP-1c, which may reflect the need for ACBP during lipogenic as well as lipo-oxidative conditions.  相似文献   

5.
6.
7.
Cholesterol 7alpha-hydroxylase (CYP7A1) catalyzes the rate-limiting step in the classic pathway of hepatic bile acid biosynthesis from cholesterol. During fasting and in type I diabetes, elevated levels of peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1alpha) induce expression of the Cyp7A1 gene and overexpression of PGC-1alpha in hepatoma cells stimulates bile acid synthesis. Using Ad-PGC-1alpha-RNA interference to induce acute disruption of PGC-1alpha in mice, here we show that PGC-1alpha is necessary for fasting-mediated induction of CYP7A1. Co-immunoprecipitation and promoter activation studies reveal that the induction of CYP7A1 is mediated by direct interaction between PGC-1alpha and the AF2 domain of liver receptor homolog-1 (LRH-1). In contrast, the very similar PGC-1beta could not substitute for PGC-1alpha. We also show that transactivation of PGC-1alpha and LRH-1 is repressed by the small heterodimer partner (SHP). Treatment of mice with GW4064, a synthetic agonist for farnesoid X receptor, induced SHP expression and decreased both the recruitment of PGC-1alpha to the Cyp7A1 promoter and the fasting-induced expression of CYP7A1 mRNA. These data suggest that PGC-1alpha is an important co-activator for LRH-1 and that SHP targets the interaction between LRH-1 and PGC-1alpha to inhibit CYP7A1 expression. Overall, these studies provide further evidence for the important role of PGC-1alpha in bile acid homeostasis and suggest that pharmacological targeting of farnesoid X receptor in vivo can be used to reverse the increase in CYP7A1 associated with adverse metabolic conditions.  相似文献   

8.
9.
10.
In a screen for sterol regulatory element-binding protein (SREBP)-1c target genes in the liver, we identified long chain fatty acyl-CoA synthetase 5 (ACS-5). Hepatic ACS-5 mRNA is poorly expressed during fasting and diabetes and strongly induced by carbohydrate refeeding and insulin treatment. In cultured hepatocytes, insulin and a high glucose concentration induce ACS-5 mRNA. Adenoviral overexpression of a nuclear form of SREBP-1c in liver of diabetic mice or in cultured hepatocytes mimics the effect of insulin to induce ACS-5. By contrast, a dominant negative form of SREBP-1c abolishes the effect of insulin on ACS-5 expression. The dietary and SREBP-1c-mediated insulin regulation of ACS-5 expression indicate that ACS-5 is involved in the anabolic fate of fatty acids.  相似文献   

11.
12.
13.
14.
15.
16.
17.
The recently discovered apolipoprotein AV (apoAV) gene has been reported to be a key player in modulating plasma triglyceride levels. Here we identify the hepatocyte nuclear factor-4alpha (HNF-4alpha) as a novel regulator of human apoAV gene. Inhibition of HNF-4alpha expression by small interfering RNA resulted in down-regulation of apoAV. Deletion, mutagenesis, and binding assays revealed that HNF-4alpha directly regulates human apoAV promoter through DR1 [a direct repeat separated by one nucleotide (nt)], and via a novel element for HNF-4alpha consisting of an inverted repeat separated by 8 nt (IR8). In addition, we show that the coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha was capable of stimulating the HNF-4alpha-dependent transactivation of apoAV promoter. Furthermore, analyses in human hepatic cells demonstrated that AMP-activated protein kinase (AMPK) and the MAPK signaling pathway regulate human apoAV expression and suggested that this regulation may be mediated, at least in part, by changes in HNF-4alpha. Intriguingly, EMSAs and mice with a liver-specific disruption of the HNF-4alpha gene revealed a species-distinct regulation of apoAV by HNF-4alpha, which resembles that of a subset of HNF-4alpha target genes. Taken together, our data provide new insights into the binding properties and the modulation of HNF-4alpha and underscore the role of HNF-4alpha in regulating triglyceride metabolism.  相似文献   

18.
19.
In previous work, we showed that the binding of the liver x receptor α:peroxisome proliferator-activated receptor α (LXRα:PPARα) heterodimer to the murine Cyp7a1 gene promoter antagonizes the stimulatory effect of their respective ligands. In this study, we determined if LXRα:PPARα can also regulate human CYP7A1 gene promoter activity. Co-expression of LXRα and PPARα in McArdle RH7777 hepatoma cells decreased the activity of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol. In vitro, the human CYP7A1 Site I bound LXRα:PPARα, although with substantially less affinity compared with the murine Cyp7a1 Site I. The binding of LXRα:PPARα to human CYP7A1 Site I was increased in the presence of either LXRα or PPARα ligands. In HepG2 hepatoblastoma cells, fibrates and 25-hydroxycholesterol inhibited the expression of the endogenous CYP7A1 gene as well as the human CYP7A1 gene promoter when co-transfected with plasmids encoding LXRα and PPARα. However, a derivative of the human CYP7A1 gene promoter that contains a mutant form of Site I that does not bind LXRα:PPARα was not inhibited by WY 14,643 or 25-hydroxycholesterol in both McArdle RH7777 and HepG2 cells. The ligand-dependent recruitment of LXRα:PPARα heterodimer onto the human CYP7A1 Site I can explain the inhibition of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号