首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chalkbrood disease in Apis mellifera is a fungal disease affecting developing brood, infested larvae become mummified. As it is a factorial disease, studies on this pathology are obstructed by the need of some predisposing conditions which must occur for such disease to develop. Thus, many questions are yet to be answered about which treatments to apply. The aim of this work is to evaluate the efficacy of the Apimicos-B, a treatment against chalk brood. To induce the disease, some pieces of combs containing susceptible worker brood both from infected and treated colonies and from infected and untreated colonies were cooled. No significant differences were registered (53.12% and 59.58% of mummification respectively).  相似文献   

2.
This study experimentally examines the relationship between colony state and the behaviour of individual pollen and nectar foragers in the honey bee, Apis mellifera L. In the first experiment we test the prediction that individual pollen foragers from colonies with higher brood quantities should exhibit a greater work effort for pollen resources than individual pollen foragers from colonies with low brood quantities. Eight colonies were assigned into two treatment groups; HIGH brood colonies were manipulated to contain 9600±480 cm2 brood area; LOW brood colonies were manipulated to contain 1600±80 cm2 brood area. We measured colony brood levels over the course of the experiment and collected individual pollen loads from returning pollen foragers. We found that, while colonies remained significantly different in brood levels, individual pollen foragers from HIGH brood colonies collected larger loads than individuals from LOW brood colonies. In the second experiment we investigated the influence of colony size on the behaviour of individual nectar foragers. We assigned eight colonies to two treatment groups; LARGE colonies were manipulated to contain 35000±1700 adult workers with 3500±175 cm2 brood area, and SMALL colonies were manipulated to contain 10000±500 adult workers with 1000±50 cm2 brood area. We observed foraging trips of individually marked workers and found that individuals from LARGE colonies made longer foraging trips than those from SMALL colonies (LARGE: 1666.7±126.4 seconds, SMALL: 1210.8±157.6 seconds), and collected larter nectar loads (LARGE: 19.2±1.0 l, SMALL: 14.6±0.8 l). These results indicate that individual nectar foragers from LARGE colonies tend to work harder than individuals from SMALL colonies. Both experiments indicate that the values of nectar and pollen resources to a colony change depend on colony state, and that individual foragers modify their behaviour accordingly.  相似文献   

3.
The longevity and reproductive success of newly emerged, unfed adult Aethina tumida Murray assigned different diets (control = unfed; honey-pollen; honey; pollen; empty brood comb; bee brood; fresh Kei apples; and rotten Kei apples) were determined. Longevity in honey-fed small hive beetle adults (average maximum: 167 d) was significantly higher than on other diets. Small hive beetles fed empty brood comb lived significantly longer (average maximum: 49.8 d) than unfed beetles (average maximum: 9.6 d). Small hive beetle offspring were produced on honey-pollen, pollen, bee brood, fresh Kei apples, and rotten Kei apples but not on honey alone, empty brood comb, or in control treatments. The highest reproductive success occurred in pollen fed adults (1773.8 +/- 294.4 larvae per three mating pairs of adults). The data also show that A. tumida can reproduce on fruits alone, indicating that they are facultative parasites. The pupation success and sex ratio of small hive beetle offspring were also analyzed. Larvae fed pollen, honey-pollen, or brood had significantly higher pupation success rates of 0.64, 0.73, and 0.65 respectively than on the other diets. Sex ratios of emerging adults fed diets of pollen or brood as larvae were significantly skewed toward females. Because small hive beetle longevity and overall reproductive success was highest on foodstuffs located in honey bee colonies, A. tumida are efficient at causing large-scale damage to colonies of honey bees resulting in economic injury for the beekeeper. Practical considerations for the control of A. tumida are briefly discussed.  相似文献   

4.
Honeybees, Apis mellifera, adjust their pollen foraging activity according to the need for pollen within the colony, determined by the amount of stored pollen and young brood present in the hive. To clarify how pollen foragers detect the supply of pollen, we followed individual honeybees while they were returning with pollen. Pollen foragers deposited their loads on the frame where most of the unsealed brood was, independent of the position of this frame within the hive. They also inspected more cells on that frame and spent most of their time there, indicating that pollen foragers may individually evaluate the pollen requirements of the colony. In 18 normal-sized colonies we also tested whether olfactory cues provided by a frame of hungry young brood or an additional pollen frame covered by cages affect foraging activity. These experiments showed that olfactory stimulation within the colony is insufficient to increase or decrease the foraging effort, but suggest that foragers must have direct contact with the brood and pollen area to regulate their foraging activity according to the conditions in the colony. The different mechanisms by which foragers may gather the information about pollen supply are discussed. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

5.
Four hundred and thirty records of the numbers of bees in honeybee colonies and of the amounts of brood and pollen present have been kept during various months of the years 1945-53, and the data have been used to calculate total and partial regression coefficients showing the influence of stored pollen and of colony size on brood rearing throughout the year.
It was found that pollen storage and colony size were correlated but that, even allowing for this, colony size and pollen both independently influenced brood rearing.
The annual distribution of the total regression coefficients of brood on pollen was somewhat similar to the brood curve itself, rising from a minimum in October and November to a maximum in midsummer, while the partial regression coefficients showed less clearly marked but similar features.
Both total and partial regression coefficients showing the influence of colony size on the amount of brood reared were also at a minimum in October and November, but reached their peaks in May.
The quantities of brood present in these colonies at Aberdeen, Scotland, followed a pattern similar to that given by Nolan for colonies near Washington, D.C.  相似文献   

6.
We observed the impact of bad pollen supply (non-foraging due to artificial rain and pollen removal under poor-foraging conditions) on the survival of honey bee larvae, and on the total development time from egg-laying to the capping of a larval cell. Five days of non-foraging led to cannibalism of larvae younger than 3 days old and to a shortening of the time until larvae were sealed, but 4- and 5-day-old larvae survived even worse pollen supply situations. Manual pollen removal and reduction of income (pollen trap) induced cannibalism of younger larvae. The larvae's mean capping age significantly correlated with the mean pollen income: the less pollen was stored by the hive during the larvae's development, the earlier the larvae were capped. Both behavioral patterns lead to a quick reduction in the amount of unsealed older brood in response to a shortage of available protein. Older larvae have the highest pollen demand, so this strategy compensates for a shortage of supply by reducing demand. Additionally worker jelly gets enriched by protein gained from cannibalism, and the early capping of older larvae saves the oldest part of the brood, which represents the highest broodcare investment.  相似文献   

7.
The present work was carried out to study the relationship between brood rearing activity, bee density and stored pollen grains. Fifteen colonies, 1st. Carniolan hybrid nearly in equal strength were put under investigation from June 1994 to May 1995.

The results revealed that the major peak of brood activity and higher rate of stored pollen were in May, consequently the maximum number of house bees was recorded during June and July. However no correlation existed, the lowest production of brood, bees and gathered pollen occurred during February. It was found that high significant differences were in quantity of brood and house bees, while low significant differences were in quantity of stored pollen. Correlations between brood activity, house bees density and stored pollen were observed in winter.  相似文献   

8.
Foraging for pollen is an important behavior of the honey bee because pollen is their sole source of protein. Through nurse bees, larvae are the principal consumers of pollen. Fatty acid esters extractable from the surface of larvae, called brood pheromone, release multiple colony-level and individual foraging behaviors increasing pollen intake. In this study pollen forager turnaround time was measured in observation hives supplemented with brood pheromone versus a blank control treatment. Treatment with brood pheromone significantly decreased pollen forager turnaround time in the hive between foraging bouts by approximately 72%. Concurrently, brood pheromone increased the ratio of pollen to non-pollen foragers entering colonies. Brood pheromone has been shown to release most of the mechanisms known to increase pollen intake by colonies acting as an important regulator of colony foraging decisions and growth.  相似文献   

9.
We studied pollen consumption, head weight, hypopharyngeal gland (HPG) acini diameter, and protein synthesis and transfer in honeybee workers reared in colonies with normal and with decreasing amounts of brood. We found that head fresh weight is correlated with size of the glands and that pollen consumption is positively correlated with gland development. An effect of brood on size of the glands could be confirmed, but was not as profound as in previous studies. Similarly, no difference in the amount of protein synthesized or transferred in workers living under the two brood conditions was found. We suspect this is due to the fact that HPGs also supply food to young bees and in our study young bees were always present while in previous studies, colonies often lacked both brood and young bees.  相似文献   

10.
(1) In midgut dry weight (tissue plus contents) of worker bees we found a representative parameter for pollen consumption. Midguts of bees of successive ages were analyzed and correlated with various parameters. The relative proportions of sugar, protein and water were either constant or negatively correlated with midgut weight. Only the relative pollen weight (percent of midgut dry weight) increased. (2) To investigate the influence of different levels of brood on pollen consumption of individual bees, midgut dry weights from 2 normally breeding control colonies and 2 brood-reduced experimental colonies were analyzed. In bees from control colonies the pollen consumption increased up to the nursing age (3-10d), remained on an elevated level in middle-aged-bees (10-18d) and decreased relatively sharply towards the foraging ages (>21d). When queens were caged in the experimental colonies, the following decline of brood cells affected the consumption of pollen differently. After 6 days of caging, with a reduction of open brood only, no effect was seen. After 15 days, and even more pronounced after 23 days when no brood was present, the pollen consumption in young and middle-aged (10, 14, 18d) worker bees was significantly reduced, while it was clearly elevated in older bees. We discuss pollen consumption as an adaptation to reduced necessity to nurse brood in young and middle-aged bees, and to enhance life span in older animals.  相似文献   

11.
The effects of changes in spring pollen diet on the development of honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies were examined in a 3-yr study (2002-2004). Pollen-supplemented and pollen-limited conditions were created in colonies every spring, and brood rearing and honey yields were subsequently monitored throughout the summer. In all 3 yr, colonies that were supplemented with pollen or a pollen substitute in the spring started rearing brood earlier than colonies in other treatment groups and produced the most workers by late April or early May. In 2002, these initial differences were reflected by a two-fold increase in annual honey yields by September for colonies that were pollen-supplemented during the spring compared with pollen-limited colonies. In 2003 and 2004, differences between treatment groups in the cumulative number of workers produced by colonies disappeared by midsummer, and all colonies had similar annual honey yields (exception: in one year, productivity was low for colonies supplemented with pollen before wintering). Discrepancies between years coincided with differences in spring weather conditions. Colonies supplemented with pollen or a substitute during the spring performed similarly in all respects. These results indicate that an investment in supplementing the pollen diet of colonies would be returned for situations in which large spring populations are important, but long-term improvement in honey yields may only result when spring foraging is severely reduced by inclement weather. Beekeepers should weigh this information against the nutritional deficiencies that are frequently generated in colonies by the stresses of commercial management.  相似文献   

12.
Honey bee, Apis mellifera L. (Hymenoptera: Apidae), nutrition is vital for colony growth and maintenance of a robust immune system. Brood rearing in honey bee colonies is highly dependent on protein availability. Beekeepers in general provide protein supplement to colonies during periods of pollen dearth. Honey bee brood pheromone is a blend of methyl and ethyl fatty acid esters extractable from cuticle of honey bee larvae that communicates the presence of larvae in a colony. Honey bee brood pheromone has been shown to increase protein supplement consumption and growth of honey bee colonies in a subtropical winter climate. Here, we tested the hypothesis that synthetic brood pheromone (SuperBoost) has the potential to increase protein supplement consumption during fall in a temperate climate and thus increase colony growth. The experiments were conducted in two locations in Oregon during September and October 2009. In both the experiments, colonies receiving brood pheromone treatment consumed significantly higher protein supplement and had greater brood area and adult bees than controls. Results from this study suggest that synthetic brood pheromone may be used to stimulate honey bee colony growth by stimulating protein supplement consumption during fall in a northern temperate climate, when majority of the beekeepers feed protein supplement to their colonies.  相似文献   

13.
This study was conducted in the Assir region of southwestern Saudi Arabia to compare the activities of honeybee colonies of indigenous Apis mellifera jemenitica (AMJ) and imported Apis mellifera carnica (AMC) during the late summer and autumn of 2009 and 2010. The results showed that the workers of the two races exhibited relatively similar forage timings throughout the period of study (August–November). The highest numbers of foraged workers were recorded at 6:00 am, 10:00 am and 6:00 pm, while the lowest numbers were recorded at 8:00 am, 12:00 pm and 4:00 pm. Although foraging activity was negatively affected by decreased temperature, AMJ was more resistant to cold than AMC. In the first season, the smallest amount of worker brood rearing was recorded in August, and the highest amount of rearing occurred in November in both races. In the second season, the smallest amount of brood was observed in October, and the largest amount of brood was observed in November. Brood rearing and pollen collecting was significantly (P < 0.05) higher in AMJ compared with AMC, while AMC stored significantly (P < 0.05) more honey than AMJ during the tested periods. In AMJ colonies, a positive significant correlation was observed between the area of the sealed worker brood and stored pollen, while a negative but nonsignificant correlation was observed between the area of the sealed worker brood and surplus honey. In the AMC colonies, a positive significant correlation was observed between the area of the sealed brood and the stored pollen and surplus honey.  相似文献   

14.
Strips coated with conidia of Metarhizium anisopliae (Metschinkoff; Deuteromycetes: Hyphomycetes) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in colonies of honey bees, Apis mellifera (Hymenoptera: Apidae) were compared against the miticide, tau-fluvalinate (Apistan) in field trials in Texas and Florida (USA). Apistan and the fungal treatments resulted in successful control of mite populations in both locations. At the end of the 42-day period of the experiment in Texas, the number of mites per bee was reduced by 69-fold in bee hives treated with Apistan and 25-fold in hives treated with the fungus; however mite infestations increased by 1.3-fold in the control bee hives. Similarly, the number of mites in sealed brood was 13-fold and 3.6-fold higher in the control bee hives than in those treated with Apistan and with the fungus, respectively. Like the miticide Apistan, the fungal treatments provided a significant reduction of mite populations at the end of the experimental period. The data from the broodless colonies treated with the fungus indicated that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. In established colonies in Florida, honey bee colony development did not increase under either Apistan or fungal treatments at the end of the experimental period, suggesting that other factors (queen health, food source, food availability) play some major role in the growth of bee colonies. Overall, microbial control of Varroa mites with fungal pathogens could be a useful component of an integrated pest management program for the honey bee industry.  相似文献   

15.
Antibiotic extender patties, pollen patties, and sugar solutions containing oxytetracycline hydrochloride (OTC) were incubated at freezer (−9°C), refrigerator (4°C), room (25°C), and brood nest temperature (34°C) for 1, 2, 3, 7, and 11 weeks to determine the stability of the antibiotic. The OTC in antibiotic extender patties and pollen patties was stable at brood nest temperature for at least 11 weeks. The OTC in sugar solutions degraded within 1 week at brood nest temperature.  相似文献   

16.
Sucrose syrup is less satisfactory than honey as a winter and spring food for bees: a mixture of approximately equal parts of honey and syrup is of almost the same value as honey alone.
Feeding confined to early autumn induced the strongest spring development of colonies; syrup feeding in the spring may retard colony development, and food supplied at this time is apparently wasted. Feeding with syrup and pollen is advantageous only when a colony is lacking in stores of carbohydrate and protein.
A total of four British Standard brood combs full of pollen provides sufficient protein for a colony on B.S. equipment from autumn until April: the best results were obtained by providing colonies on eleven B.S. combs, in early autumn, with 35-40 lb. of honey, or honey and concentrated sucrose syrup, and four brood combs full of pollen.  相似文献   

17.
We present a simplified version of a previously presented model (Camazine et al. (1990)) that generates the characteristic pattern of honey, pollen and brood which develops on combs in honey bee colonies. We demonstrate that the formation of a band of pollen surrounding the brood area is dependent on the assumed form of the honey and pollen removal terms, and that a significant pollen band arises as the parameter controlling the rate of pollen input passes through a bifurcation value. The persistence of the pollen band after a temporary increase in pollen input can be predicted from the model. We also determine conditions on the parameters which ensure the accumulation of honey in the periphery and demonstrate that, although there is an important qualitative difference between the simplified and complete models, an analysis of the simplified version helps us understand many biological aspects of the more complex complete model. Corresponding author  相似文献   

18.
Abstract.  1. Each autumn in northern regions, honeybee colonies shift from populations of short-lived workers that actively rear brood to broodless populations of long-lived winter bees. To determine if dwindling pollen resources trigger this transition, the natural disappearance of external pollen resources was artificially accelerated or delayed and colonies were monitored for effects on the decline in brood-rearing activity and the development of populations of long-lived winter bees.
2. Delaying the disappearance of pollen resources postponed the decline in brood rearing in colonies. Colonies with an extended supply of pollen reared workers longer into October before brood rearing ended than control colonies or colonies for which pollen supply was cut short artificially in autumn.
3. Colonies with extended pollen supply produced more workers throughout autumn than colonies with less pollen, but the development of the population of long-lived winter bees was delayed until relatively later in autumn. Colonies produced similar numbers of winter bees, regardless of the timing of the disappearance of pollen resources.
4. Mean longevity of autumn-reared workers was inversely related to the amount of brood remaining to be reared in colonies when workers eclosed. Consequently, long-lived workers did not appear in colonies until brood rearing declined, which in turn was controlled by the availability of pollen.
5. Dwindling pollen resources provide a powerful cue that initiates the transition to populations of broodless winter bees because it directly affects the brood-rearing capacity of colonies and indirectly indicates deteriorating environmental conditions associated with the approach of winter.  相似文献   

19.
This paper aims to assess to what degree and in what way the brood chamber affects the pollen content of the honey. Twenty-nine pieces of comb containing only honey were cut from different frames of hives. The percentage of cells in each frame occupied by the brood chamber and the distance between these cells and the cut piece were recorded. A honey sample was extracted from each comb piece, avoiding any contamination with pollen, its sediment examined under the microscope and its botanical constituents identified and counted. The results show that the pollen content of honey was higher in samples from frames containing brood or pollen cells; in these samples the pollen content was positively correlated with the amount of these cells in the frame and the proximity of the honey to them. The proportion of pollen grains from principally nectariferous plants was lower in honeys with a high pollen content.  相似文献   

20.
Fungus-growing ants (Myrmicinae: Attini) live in an obligate symbiotic relationship with a fungus that they rear for food, but they can also use the fungal mycelium to cover their brood. We surveyed colonies from 20 species of fungus-growing ants and show that brood-covering behavior occurs in most species, but to varying degrees, and appears to have evolved shortly after the origin of fungus farming, but was partly or entirely abandoned in some genera. To understand the evolution of the trait we used quantitative phylogenetic analyses to test whether brood-covering behavior covaries among attine ant clades and with two hygienic traits that reduce risk of disease: mycelial brood cover did not correlate with mutualistic bacteria that the ants culture on their cuticles for their antibiotics, but there was a negative relationship between metapleural gland grooming and mycelial cover. A broader comparative survey showed that the pupae of many ant species have protective cocoons but that those in the subfamily Myrmicinae do not. We therefore evaluated the previously proposed hypothesis that mycelial covering of attine ant brood evolved to provide cocoon-like protection for the brood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号