首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. As in two "lower" vertebrates, the lamprey and the eel, single intravascular injections of physiological doses (2.5 micrograms/kg) of epinephrine (E) into the rat immediately increased levels of plasma dopamine (DA) and norepinephrine (NE). 2. Single doses of DA (5 micrograms/kg) enhanced circulating NE and E, while NE (5 micrograms/kg) had no clear impact on the plasma levels of the other two catecholamines (CAs). 3. These data are at variance with findings in the eel, where all three CAs are mutually stimulatory; and in the lamprey, where only E stimulates release of the other two CAs. 4. It appears that E-stimulated CA release is widespread or ubiquitous among vertebrates, and that complex interactions between circulating CAs must be considered under experimental, physiological, and clinical conditions. 5. None of the injections had a significant hyperglycemic effect.  相似文献   

2.
Neutrophils of vertebrates undergo respiratory burst activity (RBA) as a defense mechanism against bacterial infections. We report here that ayu (Plecoglossus altivelis) have unusually high RBAs even when they are in a healthy condition. Kidney and blood leukocytes were obtained from ayu, rainbow trout (Oncorhynchus mykiss), carp (Cyprinus carpio), eel (Anguilla japonica), and pond smelt (Hypomesus nipponensis). Neutrophil RBA was measured by flow cytometry using dihydrorhodamine after stimulation with phorbol myristate acetate. The amount of RBA of neutrophils from both blood and kidney was significantly higher in ayu than in the other species (e.g. the fluorescence intensity of ayu blood neutrophils was about 3-7 times higher than that from trout and carp, and that of ayu kidney neutrophils was 2-19 times higher than that of rainbow trout, carp, eel, and pond smelt). This unique character of ayu neutrophils was invariable even at different ages, locations, and sex-maturation stages.  相似文献   

3.
In fish like in mammals, dopamine (DA) is a major catecholaminergic neurotransmitter that contributes to many functions of the nervous system like sensory perception, tuning of sensori-motor cues, and hypothalamic and pituitary functions. In the eel, DA inhibits gonadal development, and juvenile silver eels remain blocked at a prepubertal stage if their reproductive migration does not occur. From data in other teleosts and vertebrates, it is suggested that DA would be involved also in the last steps of eel reproduction (oocyte maturation, ovulation, and spermiation) as well as in eel reproductive migration (locomotion and olfaction). Investigating dopaminergic systems in the eel may help in understanding the mechanisms of its complex life cycle and provide new data for its conservation and reproduction. In this article we review the biosynthesis and catabolism of catecholamines and discuss available methods to investigate brain dopaminergic systems in vertebrates and their application to the eel. Immunocytochemistry, in situ hybridization, and different tracing methods are used to map dopaminergic neurons and projections in the brain and pituitary and infer their potential functions. Moreover, variations in dopaminergic activity may be approached by means of quantitative methods like quantitative real-time RT-PCR and HPLC. These tools are currently used to study dopaminergic systems in the eel brain, their anatomy, regulation, and potential roles with special emphasis on the regulation of reproduction and reproductive migration. Guest editors: S. Dufour, E. Prévost, E. Rochard & P. Williot Fish and diadromy in Europe (ecology, management, conservation)  相似文献   

4.
To determine if vascular smooth muscle from teleost and agnathan fishes expresses receptors for signaling agents that are important in vascular tension in other vertebrates, we exposed rings of aortic vascular smooth muscle from the eel (Anguilla rostrata), the hagfish (Myxine glutinosa), and the lamprey (Petromyzon marinus) to a suite of putative agonists, including: acetylcholine, endothelin, nitric oxide, natriuretic peptides, and prostanoids. Acetylcholine constricted aortic rings from the eel, but had no effect on the rings from lamprey. On the other hand, endothelin constricted rings from all three species. Use of receptor-specific ET agonists demonstrated that only ET(A) receptors are expressed in the eel and lamprey aorta. The nitric oxide donor sodium nitroprusside or nitric oxide itself dilated rings from the eel, but both agonists constricted rings from the hagfish and NO produced a biphasic response (constriction followed by dilation) in the lamprey. Two natriuretic peptides, eel ANP and porcine CNP, produced marginally significant dilation in the eel aorta, human ANP dilated the hagfish rings, and pCNP and eANP dilated the lamprey rings. The prostanoids PGE(1) and PGE(2) both dilated the eel aortic rings, and PGE(1) and carbaprostacyclin (stable PGI(2) agonist) dilated the hagfish and lamprey rings. Our results suggest that receptors for a variety of vasoactive signaling agents are expressed in the aortic smooth muscle of the earliest vertebrates (lamprey and hagfish), as well as the more advanced teleosts (eel).  相似文献   

5.
Single physiological doses of epinephrine did not affect the blood sugar level of human volunteers though they caused a marked tachycardia that was accompanied by a strong transient sensation, typically described as fullness in the chest. Epinephrine did not cause the release of norepinephrine and/or dopamine in man, in contrast to three other vertebrates (lamprey, eel, and rat). In the human, as in the rat and cyclostomes, the glycemic effect of epinephrine occurs only during stress and/or unphysiological conditions, while the chronotropic effects are probably physiological from cyclostomes to man.  相似文献   

6.
Between bacteria and the higher vertebrate animals there are close chemocommunicational connections that are realized via signal molecules secreted by bacteria, on the hand, and vertebrate hormones and hormone-like substances, on the other hand. The review presents data on regulatory effects of biogenic amines (catecholamines and serotonin), peptide hormones, and immunoregulator of the higher vertebrates on the vitally important functions of bacterial cells, their virulence and survivability. It has been shown that some bacterial signal molecules, such as N-acylated derivatives of homoserine lactones, also are able to regulate fundamental cellular processes in the higher vertebrates. Deciphering of molecular mechanisms of information exchange between bacteria and the higher vertebrates is both of theoretical significance for studies on pathways of evolution of chemosignal systems in proand eukaryote organism and of practical significance for development of new approaches for treatment of bacterial infections.  相似文献   

7.
Summary Injections of physiological and supraphysiological doses of epinephrine (E) into cardiaccannulated eels cause a dose-related increase of plasma dopamine (DA) and norepineprine (NE) within 3 min. Likewise, both exogenous DA and NE increase the plasma titers of the respective other two catecholamines (CAs). The baseline titers of NE and E are closely correlated. Lack of a correlation of the baseline titers of NE and E with that of DA appears to be due to a faster disappearance rate of DA from the circulation. E is strongly hyperglycemic, and the weaker glycemic action of NE may be mediated via E release. The effects of E seem to depend on a spurt-like increase rather than its titer per se. The ability of the eel to cope with very fast, excessive increases of plasma CAs raises the question of the underlying mechanisms.Abbreviations CA(s) catecholamine(s) - DA dopamine - NE norepinephrine - E epinephrine  相似文献   

8.
Evidence is presented from fluorescence histochemistry studies that blood vessels in the viscera of octopus vulgaris are innervated by nerve fibres containing catecholamines. This, with other evidence, suggests that cephalopods, like vertebrates, may be capable of regulating their peripheral vasculature by central neural control.  相似文献   

9.
Summary In this review, we have provided evidence that elevated levels of circulating catecholamines are not a significant factor in the control of ventilation in fishes, but rather that this critical physiological function is controlled primarily by the external and/or internal respiratory status. This view, which opposes the more traditional consensus (review: Randall and Taylor, 1991), is based upon numerous experimental observations, theoretical considerations, and a re-evaluation of previous studies.First, circulating catecholamine levels become elevated in fish only as a final survival strategy during severe stress, whereas hyperventilatory responses begin with very slight alterations in blood/water chemistry. Thus, except during extreme stress, plasma catecholamine levels and gill ventilation volume (V w) do not co-vary. Second, with the notable exception of the European eel (Anguilla anguilla; Peyraud-Waitzenegger, 1979), experimental elevations of circulating catecholamine levels by injection/infusion of adrenalin or noradrenalin either do not alter ventilation in a physiologically significant manner or may occasionally even depress ventilation. Further, the sudden release of endogenous catecholamines during severe stress does not appear to modify the pre-existing hyperventilatory response. Third, although treatment of fish with selective adrenoceptor antagonists has yielded conflicting results to both support and reject a role for circulating catecholamines in the control of ventilation, it is nonetheless clear that such as experimental protocol cannot adequately differentiate between central and peripheral adrenergic phenomena.We suggest that there is no basis to support a role for circulating catecholamines in the regulation of breathing in fishes, and contend that discrepancies in the literature reflect the inherent difficulties associated with separating neural and humoral adrenergic phenomena.  相似文献   

10.
The ZW sex chromosomes of the European eel, Anguilla anguilla, and the American eel, A. rostrata, were examined with C-band and fluorescent staining to demonstrate the C-band heterochromatin. The W as well as Z chromosomes in both species are C-band negative except for a small amount of C-band heterochromatin in the centromeric region, in contrast to the W or Y elements of most other vertebrates. No fluorescing W-associated body is evident either in interphase nuclei or in metaphase plates. The ZW chromosomes of the two species have substantially similar size, morphology, and patterns of C-band heterochromatin. Karyologic and evolutionary implications are discussed.  相似文献   

11.
《Zoology (Jena, Germany)》2015,118(6):413-423
The life cycle of the European eel (Anguilla anguilla) remained a mystery until the 20th century, when Schmidt discovered that the Sargasso Sea was its spawning area. However, many aspects of the eel's life cycle remain poorly understood. Among these is the bimodal distribution in head shape, with broad- and narrowheaded phenotypes reported in the yellow eel stage. Although this has been linked to dietary preferences of the yellow eels, very little is known about why, how and when this dimorphism arises during their ontogeny. To determine whether this dimorphism indeed appears in relation to trophic niche segregation, we examined head shape variation at an earlier ontogenetic stage, the glass eel stage, as at this stage eels are considered to be non-feeding. Head shape was studied in a large dataset, containing glass eels captured from the Yser river mouth, the Leopold Canal (Belgium) and from the rivers Severn, Trent and Parret (UK), by both taking measurements (head width/head length) and using an outline analysis. Our results show that there is already considerable variation in broadness and bluntness of the head at the glass eel stage. In most cases, equal support for a unimodal and bimodal head shape distribution is found, whereas some cases support head shape bimodality in glass eels, suggesting that glass eel head shape might be shifting from a unimodal to a bimodal distribution. This, in combination with the observation that variation in head width/head length ratios in non-feeding glass eels shows a similar range as in feeding yellow eels, indicates that head shape in European eel might be at least partially determined through other mechanisms than trophic segregation.  相似文献   

12.
黄鳝Hprt基因的克隆及表达分析   总被引:2,自引:0,他引:2  
何焱  商璇  程汉华  周荣家 《遗传》2006,28(6):677-682
次黄嘌呤鸟嘌呤磷酸核糖转移酶(Hprt)参与嘌呤核苷酸的补救合成。采用RACE技术克隆了黄鳝的次黄嘌呤鸟嘌呤磷酸核糖转移酶基因,它的全长cDNA 为1 452 bp,预测编码218个氨基酸,与人类、小鼠、鸡和斑马鱼等脊椎动物Hprt氨基酸序列之间的同源性超过76.7%。基于该基因氨基酸序列构建了进化树,显示与斑马鱼Hprt基因更同源。RT-PCR表明黄鳝Hprt基因在多种组织中广谱表达,表明黄鳝该基因在功能和进化上的保守性。   相似文献   

13.
This review focuses on recent developments in the molecular biology of ion and water transporter genes in fish and the potential role of their products in osmoregulation in both freshwater and seawater environments. In particular details of isoforms of various ATPases, co-transporters, exchangers and ion channels in the eel as well as other teleost species are described. Many of the teleost transporter isoforms discovered so far, appear to occur as twin or duplicate copies compared to their homologous counterparts in higher vertebrates, although these duplicate isoforms often have distinct tissue-specific and developmental stage-dependent expression patterns. The possible meaning of this information will be examined in relation to the fish genome duplication debate.  相似文献   

14.
Ding, W.-G., H. Kimura, M. Fujimura and M. Fujimiya. Neuropeptide Y and peptide YY immunoreactivities in the pancreas of various vertebrates. Peptides 18(10) 1523–1529, 1997.—NPY-like immunoreactivity was observed in nerve fibers and endocrine cells in pancreas of all species examined except the eel, which showed no NPY innervation. The density of NPY-positive nerve fibers was higher in mammals than in the lower vertebrates. These nerve fibers were distributed throughout the parenchyma, and were particularly associated with the pancreatic duct and vascular walls. In addition, the density of NPY-positive endocrine cells was found to be higher in lower vertebrates than mammals; in descending order; eel = turtle = chicken > bullfrog > mouse = rat = human > guinea pig = dog. These NPY-positive cells in the eel and certain mammals tended to be localized throughout the islet region, whereas in the turtle and chicken they were mainly scattered in the exocrine region. PYY-immunoreactivity was only present in the pancreatic endocrine cells of all species studied, and localized similarly to NPY. Thus these two peptides may play endocrine or paracrine roles in the regulation of islet hormone secretion in various vertebrate species.  相似文献   

15.
The catecholamine-producing chromaffin cells of the American eel are strongly innervated by fibers, which, by ultrastructural criteria, seem to be cholinergic. However, neither removal of the brain nor removal of the brain combined with extirpation of the anterior spinal cord prevents the release of catecholamines into the circulation by catecholamines. It appears that the chromaffin cells are controlled by both nervous and humoral stimuli, and that at least some of the latter do not require the presence of "preganglionic" innervation.  相似文献   

16.
Commercial rearing conditions expose teleost fish to numerous acute and chronic stressors that may precipitate dramatic production losses due to infectious diseases. Chemical mediators released in response to acute stress include the catecholamines, epinephrine and norepinephrine. Mammalian lymphocytes and macrophages express beta-adrenergic receptors (AR) that can bind catecholamines, leading to changes in cell function. In this study, radioligand binding assays demonstrated the presence of β-AR in membranes isolated from head kidney and spleen leukocytes of the channel catfish, Ictalurus punctatus. Competition with subtype selective antagonists CGP-20,712 (β1) and ICI-118,551 (β2) suggested that the β2-adrenergic receptor is the primary receptor subtype present on these membranes. These data along with the HPLC-quantification of catecholamines in plasma of I. punctatus lend further support to the contention that crosstalk between the neuroendocrine and immune systems in lower vertebrates is mediated in part by stress-related biogenic amines like epinephrine and norepinephrine.  相似文献   

17.
Sexual development in vertebrates is a complex process. Vertebrates use several mechanisms to determine the development of a male or female organism. The genes for determination of sequential hermaphrodite sex are unknown. We identified a homologue of human osteoclast-stimulating factor (OSF) in the rice field eel, a teleost that undergoes natural sex transformation from female, via intersex, to male during its lifetime. The rice field eel OSF-like gene cDNA encoded a peptide of 214 amino acids that contains a c-Src homology 3 domain, proline-rich region, and ankyrin repeats, suggesting potential involvement in cell signaling. The gene was clustered into the OSF gene group of all the other vertebrates. Although expressed in the three kinds of gonads and in other tissues, OSF-like gene expression in gonads of all the three sexes was restricted to the gonadal germinal epithelium, from where bipotential gonia (oogonia or spermatogonia) will differentiate, suggesting that the OSF-like gene may be involved in sexual differentiation, in addition to its other roles as a regulator in development.  相似文献   

18.
Several mechanisms were used in determination of the development of the male or female of vertebrates. The genes for determination of sequential hermaphrodite sex are unknown. Here, we reported cloning, alternative splicing, and expression patterns of the CYP17 gene of the rice field eel, a teleost fish with a characteristic of nature sex reversal. The CYP17 gene of the rice field eel was clustered into the CYP17 gene group of all the other vertebrates, especially into the fish subgroup. Four isoforms of the CYP17 were generated in gonads by alternative splicing and polyadenylation. Alternative splicing events of all these isoforms occurred in 3(') regions, which encoded three different sizes (517, 512, and 159aa) of proteins. RT-PCR results indicate specific expression in gonads of these isoforms. Northern blot analysis shows that expression patterns of the CYP17 (dominantly expressed in testis, less in ovary, and the least in ovotestis) are consistent with the sex reversal process of the rice field eel. In situ hybridization further shows its specific expression in germinal lamellae, the gonadal epithelium of the gonads. These findings indicate that CYP17 is differentially regulated in a sex- and developmentally specific manner, suggesting that the CYP17 potentially has important roles in gonad differentiation during sex reversal of the rice field eel.  相似文献   

19.
为探讨鱼类抗菌肽基因的生物学功能,研究应用RACE方法克隆获得了日本鳗鲡 (Anguilla japonica) 肝脏表达抗菌肽2基因 (Liver-Expressed Antimicrobial Peptide 2,LEAP-2),即AJLEAP-2的cDNA序列,全长为450 bp,开放阅读框编码89个氨基酸。其成熟肽含有LEAP-2保守基序C-X5-C-X4-C-X4-C。AJLEAP-2基因组结构与其他脊椎动物LEAP-2相同,都包含有三个外显子。利用荧光定量PCR检测了AJLEAP-2在日本鳗鲡不同组织/器官中的表达,发现其转录子在肝脏中表达量最高,是内参基因 (-actin) 的6倍; 其次是肠道,但其表达量仅为肝脏的1/130。此外,还检测了AJLEAP-2在日本鳗鲡玻璃鳗(Glass eel)阶段的转录表达水平,结果显示,玻璃鳗中AJLEAP-2的转录表达量仅低于黑仔期的肝脏,为黑仔鳗肠道表达量的2倍。LPS和迟缓爱德华菌 (Edwardsiella tarda) 刺激能显著上调鳗鲡血液中AJLEAP-2的转录表达,刺激16h后上调倍数最高,分别为对照组的86倍和12倍。此外,LPS刺激72h和E. tarda 刺激8h后,肠道中AJLEAP-2显著上调表达(P0.05),为对照组的8倍。Poly I:C刺激24h后,血液中AJLEAP-2转录表达显著下调。结果表明,AJLEAP-2在日本鳗鲡抗细菌感染过程中起重要的作用。  相似文献   

20.
We report here some unusual properties of ubiquinol: cytochrome c reductase of eel and other fish mitochondria. The turnover rate of the reductase is clearly higher than in mammalian mitochondria and the binding constant for ubiquinone seems to be larger than in other vertebrates. Additionally, the reductase activity of fish mitochondria is resistant to some powerful inhibitors that bind to cytochrome b, in particular to funiculosin. After sequencing most of the gene of eel cytochrome b and comparing the deduced amino acid sequence with that of other fish and animals, we hypothesize that the decreased binding of funiculosin could be due to a few amino acid replacements in the third and fourth transmembrane helix of the protein. In particular, the presence of methionine instead of alanine at position 125 seems to be largely responsible for the strong resistance to funiculosin and also to the partial resistance to myxothiazol in all fish mitochondria. Correlations between some residue substitutions in cytochrome b and the different effects of funiculosin in different species are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号