首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Black spruce [ Picea mariana (Mill.) B.S.P.] and tamarack [ Larix laricina (Du Roi) K. Koch] are the predominant tree species in boreal peatlands. The effects of 34 days of flooding on morphological and physiological responses were investigated in the greenhouse for black spruce and tamarack seedlings in their second growing season (18 months old). Flooding resulted in reduced root hydraulic conductance, net assimilation rate and stomatal conductance and increased needle electrolyte leakage in both species. Flooded tamarack seedlings maintained a higher net assimilation rate and stomatal conductance compared to flooded black spruce. Flooded tamarack seedlings were also able to maintain higher root hydraulic conductance compared to flooded black spruce seedlings at a comparable time period of flooding. Root respiration declined in both species under flooding. Sugar concentration increased in shoots while decreasing in roots in both species under flooding. Needles of flooded black spruce appeared necrotic and electrolyte leakage increased over time with flooding and remained significantly higher than in flooded tamarack seedlings. No visible damage symptoms were observed in flooded tamarack seedlings. Flooded tamarack seedlings developed adventitious roots beginning 16 days after the start of flooding treatment. Adventitious roots exhibited significantly higher root hydraulic conductivity than similarly sized flooded tamarack roots. Flooded black spruce lacked any such morphological adaptation. These results suggest that tamarack is better able to adjust both morphologically and physiologically to prolonged soil flooding than black spruce seedlings.  相似文献   

2.
The characteristics of the present tree-line in continental Northern Quebec appear to be related to modern and past ecological conditions. 14C dating of fossil trees and charcoal, and age structure of tree populations are used as evidence of tree-line dynamics over the last 400 yr. As inferred from the reproductive strategies of the two tree species, black spruce Picea mariana (Mill.) BSP, and Tamarack Larix laricina (DuRoi) K. Koch, forming the present tree-line populations, major changes during postglacial time in Northern Quebec are not only concerned with tree-line position, but also with tree-line composition. The present tree-line is made by larch (or tamarack) and corresponds to its natural seed regeneration limit. Black spruce probably reached its northernmost holocene latitudes during a warmer period and it then formed the tree-line. During the Little Ice Age, fires destroyed large tracks of forest and black spruce krummholz (400, and 250–200 yr ago); afterwards, tree species reestablished only in protected sites, and exposed sites were not reseeded. At some places, fires did not burn completely the forest cover, and preserved isolated trees and small groves probably became locus of reafforestation. Differential forest regeneration and tree age structure suggest that fire and climate are intimately associated in controlling tree population dynamics. Favourable and less favourable forest regeneration periods are inferred from these data and it is suggested that tree-line displacements in Northern Quebec during the last 400 yr were less important than in the Northwest Territories.  相似文献   

3.
Extreme climatic events are key factors in initiating gradual or sudden changes in forest ecosystems through the promotion of severe, tree-killing disturbances such as fire, blowdown, and widespread insect outbreaks. In contrast to these climatically-incited disturbances, little is known about the more direct effect of drought on tree mortality, especially in high-elevation forests. Therefore projections of drought-induced mortality under future climatic conditions remain uncertain. For a subalpine forest landscape in the Rocky Mountains of northern Colorado (USA), we quantified lag effects of drought on mortality of Engelmann spruce Picea engelmannii , subalpine fir Abies lasiocarpa , and lodgepole pine Pinus contorta . For the period 1910–2004, we related death dates of 164 crossdated dead trees to early-season and late-season droughts. Following early-season droughts, spruce mortality increased over five years and fir mortality increased sharply over 11 years. Following late-season droughts, spruce showed a small increase in mortality within one year, whereas fir showed a consistent period of increased mortality over two years. Pine mortality was not affected by drought. Low pre-drought radial growth rates predisposed spruce and fir to drought-related mortality. Spruce and fir trees that died during a recent drought (2000–2004) had significantly lower pre-drought growth rates than live neighbour trees. Overall, we found large interspecific differences in drought-related mortality with fir showing the strongest effect followed by spruce and pine. This direct influence of climatic variability on differential tree mortality has the potential for driving large-scale changes in subalpine forests of the Rocky Mountains.  相似文献   

4.
Summary The diurnal patterns of twig xylem water potential, net photosynthesis rate, water use efficiency of photosynthesis, and stomatal and mesophyll conductance to CO2 in tamarack, black spruce and swamp birch growing in a natural peatland in central Alberta, Canada, were examined. The relationships of photosynthesis to other ccophysiological parameters were investigated. Data were collected on three days with different weather and soil moisture conditions in the 1988 growing season. Day 1 was clear and warm and the ground water table was 7 cm above the average peat surface. Day 2 was clear and hot. Day 3 was cloudy but warm. On day 2 and day 3, the water tables were in the normal range for that season. Major findings were: 1) Soil flooding depressed photosynthesis in tamarack and black spruce. 2) Swamp birch was better adapted to flooding than tamarack or black spruce. 3) The trees experienced water stress in the afternoons of the two days with lower water table. 4) Changes in photosynthesis of the three species were primarily affected by changes in mesophyll conductance (gm) and the response of photosynthesis to changes in gm was similar for all three species.  相似文献   

5.
Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature‐induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ?13C responses on a subsample of trees as representative of the wider region. The negative ?13C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ?13C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought‐induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions.  相似文献   

6.
In a world of accelerating changes in environmental conditions driving tree growth, tradeoffs between tree growth rate and longevity could curtail the abundance of large old trees (LOTs), with potentially dire consequences for biodiversity and carbon storage. However, the influence of tree-level tradeoffs on forest structure at landscape scales will also depend on disturbances, which shape tree size and age distribution, and on whether LOTs can benefit from improved growing conditions due to climate warming. We analyzed temporal and spatial variation in radial growth patterns from ~5000 Norway spruce (Picea abies [L.] H. Karst) live and dead trees from the Western Carpathian primary spruce forest stands. We applied mixed-linear modeling to quantify the importance of LOT growth histories and stand dynamics (i.e., competition and disturbance factors) on lifespan. Finally, we assessed regional synchronization in radial growth variability over the 20th century, and modeled the effects of stand dynamics and climate on LOTs recent growth trends. Tree age varied considerably among forest stands, implying an important role of disturbance as an age constraint. Slow juvenile growth and longer period of suppressed growth prolonged tree lifespan, while increasing disturbance severity and shorter time since last disturbance decreased it. The highest age was not achieved only by trees with continuous slow growth, but those with slow juvenile growth followed by subsequent growth releases. Growth trend analysis demonstrated an increase in absolute growth rates in response to climate warming, with late summer temperatures driving the recent growth trend. Contrary to our expectation that LOTs would eventually exhibit declining growth rates, the oldest LOTs (>400 years) continuously increase growth throughout their lives, indicating a high phenotypic plasticity of LOTs for increasing biomass, and a strong carbon sink role of primary spruce forests under rising temperatures, intensifying droughts, and increasing bark beetle outbreaks.  相似文献   

7.
Processes governing tree interspecific interactions, such as facilitation and competition, may vary in strength over time. This study tried to unveil them by performing dendrometrical analyses on black spruce Picea mariana, trembling aspen Populus tremuloides and jack pine Pinus banksiana trees from pure and mixed mature boreal forest stands in the Clay Belt of northwestern Quebec and on the tills of northwestern Ontario. We cored 1430 trees and cut 120 for stem analysis across all stand composition types, tree species and study regions. Aspen annual growth rate was initially higher when mixed with conifers, but then progressively decreased over time compared to pure aspen stands, while jack pine growth rate did not differ with black spruce presence throughout all stages of stand development. When mixed with aspen, black spruce showed a contrary response to aspen, i.e. an initial loss in growth but a positive gain later. On the richer clay soil of the Quebec Clay Belt region, however, both aspen and spruce responses in mixed stands reversed between 37 and 54 years. Overall, our results demonstrate that interspecific interactions were present and tended to change with stand development and among species. Our results also suggest that the nature of interspecific interactions may differ with soil nutrient availability.  相似文献   

8.
Abstract.  1. Operophtera brumata L. (Lepidoptera: Geometridae), a polyphagous herbivore usually associated with deciduous trees such as oak Quercus robur L . , has expanded its host range to include the evergreen species heather Calluna vulgaris (L.) Hull and, most recently, Sitka spruce Picea sitchensis (Bong.) Carrière.
2. Phenology, morphology, and survival of O. brumata were measured at several life-history stages in populations from the three different host plant communities sampled from a range of geographical locations. The data were used to test for population differences, reflecting the marked differences in host-plant secondary chemistry, growth form, and site factors such as climate. The hypothesis that spruce-feeding populations originated from populations feeding on moorland, commonly sites of coniferous afforestation, was also tested.
3. Altitude, not host plant species, was the major influence on the timing of adult emergence. An effect of insect population independent of altitude was found, implying that additional unidentified factors contribute to this phenological variation. Larval survival and adult size varied between populations reared on different host plant species. Survival of larvae was affected negatively when reared on the novel host plant, Sitka spruce, versus the natal plant (oak or heather) but oak and heather-sourced insects did not differ in survivorship on Sitka spruce.
4. Host range extension into novel environments has resulted in population differentiation to the local climate, demonstrating that host shifts pose challenges to the herbivore population greater than those offered by the host plant alone. The hypothesis that Sitka spruce feeding populations have arisen predominantly from moorland feeding populations was not supported.  相似文献   

9.
Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topographic and edaphic variation, but the life-history stage at which habitat associations develop remains poorly understood. This is due, in part, to the fact that previous studies have not accounted for the widely disparate sample sizes (number of stems) that result when trees are divided into size classes. We demonstrate that the observed habitat structuring of a community is directly related to the number of individuals in the community. We then compare the relative importance of habitat heterogeneity to tree community structure for saplings, juveniles and adult trees within seven large (24–50 ha) tropical forest dynamics plots while controlling for sample size. Changes in habitat structuring through tree life stages were small and inconsistent among life stages and study sites. Where found, these differences were an order of magnitude smaller than the findings of previous studies that did not control for sample size. Moreover, community structure and composition were very similar among tree sub-communities of different life stages. We conclude that the structure of these tropical tree communities is established by the time trees are large enough to be included in the census (1 cm diameter at breast height), which indicates that habitat filtering occurs during earlier life stages.  相似文献   

10.
Tropospheric ozone can affect crop yield and has been reported to cause reductions in growth and biomass of forest tree species in laboratory and glasshouse studies. However, linkages between growth and ambient ozone concentrations in the field are not well established for forest trees. Ambient ozone concentrations have been shown to cause foliar injury on a number of tree species throughout much of the eastern USA. Symptom expression is influenced by endogenous and exogenous factors and, therefore, ozone-exposure/tree-response relationships have been difficult to confirm. Clearly defined, cause-effect relationships between visible injury and growth losses due to ozone have not been validated. Generalizations of sensitivity of forest trees to ozone are complicated by tree development stage, microclimate, leaf phenology, compensatory processes, within-species variation and other interacting stresses. In general, decreases in above-ground growth at ambient ozone levels in the eastern USA appear to be in the range of 0–10% per year. However, these conclusions are based on a small number of tree species, with the vast majority of studies involving individual tree seedlings in a non-competitive environment. Comparative studies of small and large trees indicate that seedlings are not suitable surrogates for predicting responses of mature trees to ozone. Process-level modelling is a promising methodology that has been recently utilized to assess ozone effects on a stand to regional scale, indicating that ozone is affecting forest growth in the eastern USA. The extent and magnitude of the response is variable and depends on many edaphic and climatic factors. It is imperative when conducting assessment exercises, however, that forest biologists constantly keep in mind the tremendous variability that exists within natural systems. Scaling of single site/physiological response phenomena from an individual tree to an ecosystem and/or region necessitates further research.  相似文献   

11.
Matti J. Salmela 《Oikos》2021,130(7):1143-1157
Roots constitute a major segment of plant biomass, and variation in belowground traits in situ correlates with environmental gradients at large spatial scales. Local adaptation of populations maintains intraspecific genetic variation in various shoot traits, but the contribution of genetic factors to adaptation to soil heterogeneity remains poorly known. I established a common-garden experiment with three Norway spruce Picea abies populations sampled between 60° and 67° N in Finland, each represented by 13 or 15 maternal families, to determine whether belowground traits are as genetically differentiated among populations as those in the shoot along a collective latitudinal gradient of temperature and soil heterogeneity. Two growing season simulations enabled testing for among-population differences in phenotypic plasticity. I phenotyped 777 first-year seedlings from shoot to root to capture functional traits that may influence survival in the wild: autumn phenology, shoot growth, root system size, root architecture, root morphology and growth allocation. All traits exhibited within-population genetic diversity, but among-population differentiation ranged from strong in shoot traits to nonexistent in root system architecture and morphology that are scaled to root system size. However, latitudinal trends characterised root-to-shoot ratio and root tip-to-shoot ratio that account for among-population differences in aboveground growth. Overall trait variability was multidimensional with variable among- versus within-population trends: for example, phenology and shoot growth covaried across populations, but their association within individual populations was variable. Shoot growth correlated positively with root system size, but not with root architecture or morphology. Finally, the two higher-latitude populations exhibited greater phenotypic plasticity in shoot traits and growth allocation. The results demonstrate varying patterns of genetic variation in functional traits of Norway spruce in the boreal zone, suggesting simultaneous adaptation to multiple environmental factors. Functional traits that exhibit phenotypic plasticity, genetic diversity and little covariation will promote long-term survival of populations in fluctuating environments.  相似文献   

12.
1 In censuses of tree populations in permanent plots, short census intervals and small population size lead to uncertainty in the observed recruitment rate of a minimum size. Increasing the census interval, however, underestimates the rate because of unrecorded 'recruit and die' events.
2 We propose a new Gf procedure for estimation of recruitment rates. Recruitment rate per area is obtained by multiplication of the density in the smallest size class (f) and the average size growth rate in that class (G) divided by the width of the class. This procedure is valid when the size distribution of the population examined is continuous with size.
3 When tree size structure is negative‐exponentially distributed, as is often the case in natural rain forest populations, the Gf estimate of the recruitment rate for a given size class was least biased close to the midpoint size of this class.
4 Gf estimates agreed well with census estimates of recruitment rate from permanent plots in rain forests. A tendency for Gf estimates to be larger than census estimates disappeared when census estimates were corrected for mortality after recruitment.
5 The effects of plot size, census interval and variation in growth rate on estimates of recruitment rate were simulated using model populations. Small plot size caused substantially more among‐plot deviation for the census count of recruitment events than for the Gf estimate. The census recruitment rate also showed larger variation among plots for shorter intervals than the Gf estimate, which was independent of census interval. The Gf estimates were therefore more accurate than census counts in many situations. More than several tens of trees were needed in a size class to allow a reliable Gf estimates.  相似文献   

13.
An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree‐ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree‐ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations.  相似文献   

14.
Porensky LM  Veblen KE 《Oecologia》2012,168(3):749-759
Spatial heterogeneity in woody cover affects biodiversity and ecosystem function, and may be particularly influential in savanna ecosystems. Browsing and interactions with herbaceous plants can create and maintain heterogeneity in woody cover, but the relative importance of these drivers remains unclear, especially when considered across multiple edaphic contexts. In African savannas, abandoned temporary livestock corrals (bomas) develop into long-term, nutrient-rich ecosystem hotspots with unique vegetation. In central Kenya, abandoned corral sites persist for decades as treeless ‘glades’ in a wooded matrix. Though glades are treeless, areas between adjacent glades have higher tree densities than the background savanna or areas near isolated glades. The mechanisms maintaining these distinctive woody cover patterns remain unclear. We asked whether browsing or interactions with herbaceous plants help to maintain landscape heterogeneity by differentially impacting young trees in different locations. We planted the mono-dominant tree species (Acacia drepanolobium) in four locations: inside glades, far from glades, at edges of isolated glades and at edges between adjacent glades. Within each location, we assessed the separate and combined effects of herbivore exclusion (caging) and herbaceous plant removal (clearing) on tree survival and growth. Both caging and clearing improved tree survival and growth inside glades. When herbaceous plants were removed, trees inside glades grew more than trees in other locations, suggesting that glade soils were favorable for tree growth. Different types of glade edges (isolated vs. non-isolated) did not have significantly different impacts on tree performance. This represents one of the first field-based experiments testing the separate and interactive effects of browsing, grass competition and edaphic context on savanna tree performance. Our findings suggest that, by excluding trees from otherwise favorable sites, both herbaceous plants and herbivores help to maintain functionally important landscape heterogeneity in African savannas.  相似文献   

15.
Wills  J. M.  Sundström  E.  Gardiner  J. J.  Keane  M. 《Plant and Soil》1999,217(1-2):79-90
In Ireland much of the land available for plantation establishment requires some degree of soil cultivation and drainage to improve its suitability for tree growth. The method of cultivation and drainage normally varies depending upon the soil type and its drainage characteristics. Little research has been carried out on the impact of practices such as mounding and mole drainage upon rooting and biomass production in young crops. The research reported in this paper was carried out on four sites where the general soil type was surface water gley. Three of the sites studied were afforestations on old farmland, while the fourth site was a reforestation of a windblown stand. The cultivation methods investigated included mounding, mole drainage with mounds, mole drainage only and ripping. Sitka spruce trees ranging in age from five to thirty years were excavated from these experimental sites to describe the impact of different soil cultivation techniques upon root architecture and above and below ground biomass production. The results showed that while the effect of mound drainage upon water table level varied from site to site, the establishment of trees on mounds led to an increase in above and below ground biomass production. Mole drainage of these sites without mounds, did not lead to any increase in root or shoot development when compared with trees growing on uncultivated/undrained ground. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
The boreal ecocline (ca 49°N) between the southern mixedwood (dominated by balsam fir) and the northern coniferous bioclimatic domain (dominated by black spruce) may be explained by a northward decrease of balsam fir regeneration, explaining the gradual shift to black spruce dominance. 7,010 sample plots, with absence of major disturbances, were provided by the Quebec Ministry of Forest, Fauna, and Parks. The regeneration (sapling abundance) of balsam fir and black spruce were compared within and between the two bioclimatic domains, accounting for parental trees, main soil type (clay and till) and climate conditions, reflected by summer growing degree‐days above 5°C (GDD_5), total summer precipitation (May–August; PP_MA). Parental trees and soil type determined balsam fir and black spruce regeneration. Balsam fir and black spruce, respectively, showed higher regeneration in the mixedwood and the coniferous bioclimatic domains. Overall, higher regeneration was obtained on till for balsam fir, and on clay soils for black spruce. GDD_5 and PP_MA were beneficial for balsam fir regeneration on clay and till soils, respectively, while they were detrimental for black spruce regeneration. At a population level, balsam fir required at least 28% of parental tree basal area in the mixedwood, and 38% in the coniferous bioclimatic domains to maintain a regeneration at least equal to the mean regeneration of the whole study area. However, black spruce required 82% and 79% of parental trees basal area in the mixedwood and the coniferous domains, respectively. The northern limit of the mixedwood bioclimatic domain was attributed to a gradual decrease toward the north of balsam fir regeneration most likely due to cooler temperatures, shorter growing seasons, and decrease of the parental trees further north of this northern limit. However, balsam fir still persists above this northern limit, owing to a patchy occurrence of small parental trees populations, and good establishment substrates.  相似文献   

17.
Abstract.  1. Current evidence suggests that seasonal changes in spruce needle sap nutrients have a decisive influence on green spruce aphid ( Elatobium abietinum ) population density, but the mechanisms of population change, the roles of development rate, fertility and mortality, and the existence of density-dependent processes, are not clearly understood.
2. Experimental studies of aphid populations were conducted in controlled environments to estimate seasonal patterns in aphid mean relative growth rate, prenatal development, fertility, and mortality. Studies were also made of the effect of aphid crowding on vital rates.
3. Independent of the degree of aphid crowding, seasonal changes in the amino acid concentration of needle sap were tracked by aphid growth rate, fertility (and adult size), but not by rates of aphid mortality. The most pronounced change in vital rates, and the one most likely to drive seasonal population change, was in fertility. Prenatal development time actually became shorter in periods when nutrients were scarce, but the resulting adult aphids were smaller and less fertile than during periods of improved nutrition.
4. Density dependence of vital rates was only observed during mid-summer when nutrients were least available. Mortality, growth rate, and prenatal development were the most strongly density-dependent processes. In contrast, there was no evidence that fertility rates were likely to respond to crowding.
5. There were no important differences between populations reared on small, potted spruce trees and those on plantation trees aged 25 years. This gives confidence that demographic data from a variety of field and laboratory sources could be used to compile data appropriate for population models.  相似文献   

18.
Treeline, the ecotone where forest transitions to alpine or tundra ecosystems, is considered the thermal limit to tree growth and survival. Despite temperature increases across mountainous areas and high latitudes globally, there has been no ubiquitous change in treeline position. The process of range expansion must initially depend on increased recruitment at, or beyond current range limits and recruitment limitations have been hypothesized as a mechanism for the variable response of treeline position to climate warming. We conducted a unique series of observational and experimental studies to quantify early-life stage constraints, from seed production to seedling establishment, on black spruce Picea mariana and tamarack Larix laricina recruitment at a model alpine treeline in Newfoundland, Canada. We found recruitment at treeline to be simultaneously seed and establishment limited. The treeline population produced fewer seeds than the forest population and black spruce seeds produced at treeline were less viable. Tamarack was more seed limited than black spruce where seed viability was low regardless of altitudinal position. Post-dispersal seed predation greatly constrained recruitment across the altitudinal gradient; however, black spruce seeds experienced the lowest levels of invertebrate seed predation on the lichen mat at treeline. If seeds were not consumed, individuals at treeline were establishment limited where germination and seedling establishment was both less abundant and delayed on lichen substrate. Our study highlights the need for multiple factors to align temporally for significant recruitment at treeline to occur.  相似文献   

19.
McPheron BA  Smith DC  Berlocher SH 《Genetics》1988,119(2):445-451
We examined electrophoretic variability at five enzyme loci in the apple maggot fly, Rhagoletis pomonella, on a microgeographic scale. Treating flies from individual hawthorn trees as separate populations, we estimated F(ST) values from allele frequencies. The results indicate that there is significant allele frequency heterogeneity among fly populations over a small spatial scale at some loci but not at others. This variation among loci in degree of differentiation is itself statistically significant, casting doubt on the role of genetic drift in maintaining the heterogeneity. There is also heterogeneity between years in flies from a given tree. These data provide a baseline with which future work on genetic differentiation among apple maggot populations associated with different species of host plants may be compared.  相似文献   

20.
Tree vigor and height growth in Black Spruce   总被引:1,自引:0,他引:1  
Summary The relationship between tree height and tree vigor was examined in order to test the hypothesis that increased height results in a reduction in photosynthate availability for growth due to an increase in respiratory load of the sapwood. Various vigor indices were measured on black spruce [Picea mariana (Mill.) B. S. P.] trees on a wide range of sites and ages. The relationship between these vigor indices and tree height and site quality were then evaluated through correlation and regression analyses. Vigor indices based on meristematic activity such as specific volume increment and height growth rate were generally more strongly correlated than foliage based indices (i.e. Waring vigor estimates). Both tree height and site index were found to have a significant effect on specific volume increment and height growth rate. However the height effect decreased with a decrease in site quality, and became insignificant (P <0.05) on the poorer sites. The full regression model, allowing the height effect to vary between different site quality groups, explained 82% and 72% of the variability in specific volume increment and height growth rate, respectively. The results support the hypothesis that increases in the ratio of respiration to photosynthesis in trees as they increase in size is largely a function of tree height. Possible explanations for the decreased height effect on poor sites are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号