首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen and nitrogen intermediates can cause damage to many cellular components and have been implicated in a number of diseases. Cells have developed a variety of mechanisms to destroy these reactive molecules or repair the damage once it occurs. In proteins one of the amino acids most easily oxidized is methionine, which is converted to methionine sulfoxide. An enzyme, peptide methionine sulfoxide reductase (MsrA), catalyzes the reduction of methionine sulfoxide in proteins back to methionine. There is growing evidence that MsrA plays an important role in protecting cells against oxidative damage. This paper reviews the biochemical properties and biological role of MsrA.  相似文献   

2.
Methionine sulfoxide reductase A (MsrA) is an enzyme that reverses oxidation of methionine in proteins. Using a MsrA gene knockout (MsrA−/−) mouse model, we have investigated the role of MsrA in the heart. Our data indicate that cellular contractility and cardiac function are not significantly changed in MsrA−/− mice if the hearts are not stressed. However, the cellular contractility, when stressed using a higher stimulation frequency (2 Hz), is significantly reduced in MsrA−/− cardiac myocytes. MsrA−/− cardiac myocytes also show a significant decrease in contractility after oxidative stress using H2O2. Corresponding changes in Ca2+ transients are observed in MsrA−/− cardiomyocytes treated with 2 Hz stimulation or with H2O2. Electron microscope analyses reveal a dramatic morphological change of mitochondria in MsrA−/− mouse hearts. Further biochemical measurements indicate that protein oxidation levels in MsrA−/− mouse hearts are significantly higher than those in wild type controls. Our study demonstrates that the lack of MsrA in cardiac myocytes reduces myocardial cell’s capability against stress stimulations resulting in a cellular dysfunction in the heart.  相似文献   

3.
4.
Many organisms have been shown to possess a methionine sulfoxide reductase (MsrA), exhibiting high specificity for reduction the S form of free and protein-bound methionine sulfoxide to methionine. Recently, a different form of the reductase (referred to as MsrB) has been detected in several organisms. We show here that MsrB is a selenoprotein that exhibits high specificity for reduction of the R forms of free and protein-bound methionine sulfoxide. The enzyme was partially purified from mouse liver and a derivative of the mouse MsrB gene, in which the codon specifying selenocystein incorporation was replaced by the cystein codon, was prepared, cloned, and overexpressed in Escherichia coli. The properties of the modified MsrB protein were compared directly with those of MsrA. Also, we have shown that in Staphylococcus aureus there are two MsrA and one nonselenoprotein MsrB, which demonstrates the same substrate stereospecificity as the mouse MsrB.  相似文献   

5.
Methionine-R-sulfoxide reductases (MsrBs) catalyze a stereospecific reduction of methionine-R-sulfoxides to methionines in proteins. Mammals possess three MsrB genes. MsrB1 (SelR) is a selenoprotein located in the cytosol and nucleus, MsrB2 (CBS-1) is a mitochondrial protein, and MsrB3 is a recently identified protein with an unusual localization pattern. Human MsrB3 occurs in two protein forms, MsrB3A and MsrB3B, which can be targeted to the endoplasmic reticulum (ER) and mitochondria, respectively. These forms are generated by alternative first exon splicing that introduces contrasting N-terminal signal peptides. Herein, we characterized mouse MsrB3 and found no evidence of alternative splicing of its gene. The ER signal was located upstream of the predicted mitochondrial signal sequence in a single coding region, whose product was targeted to the ER. Although the mitochondrial signal could function if placed at the N-terminus, it did not target MsrB3 to mitochondria as part of the entire coding region. In addition, immunoblot assays detected no mitochondrial MsrB3 in examined mouse tissues. The data suggest that, in mice, MsrB3 is largely or exclusively an ER-resident protein, and that the reduction of methionine-R-sulfoxides in different cellular compartments is provided by individual MsrB isozymes.  相似文献   

6.
7.
Methionine oxidation to methionine sulfoxide (MetSo), which results in modification of activity and conformation for many proteins, is reversed by an enzyme present in most organisms and termed as methionine sulfoxide reductase (MSR). On the basis of substrate stereospecificity, two types of MSR, A and B, that do not share any sequence similarity, have been identified. In the present review, we first compare the multigenic MSR families in the three plant species for which the genome is fully sequenced: Arabidopsis thaliana, Oryza sativa, and Populus trichocarpa. The MSR gene content is larger in A. thaliana (five MSRAs and nine MSRBs) compared to P. trichocarpa (five MSRAs and four MSRBs) and O. sativa (four MSRAs and three MSRBs). A complete classification based on gene structure, sequence identity, position of conserved reactive cysteines and predicted subcellular localization is proposed. On the basis of in silico and experimental data originating mainly from Arabidopsis, we report that some MSR genes display organ-specific expression patterns and that those encoding plastidic MSRs are highly expressed in photosynthetic organs. We also show that the expression of numerous MSR genes is enhanced by environmental conditions known to generate oxidative stress. Thioredoxins (TRXs) constitute very likely physiological electron donors to plant MSR proteins for the catalysis of MetSO reduction, but the specificity between the numerous TRXs and methionine sulfoxide reductases (MSRs) present in plants remains to be investigated. The essential role of plant MSRs in protection against oxidative damage has been recently demonstrated on transgenic Arabidopsis plants modified in the content of cytosolic or plastidic MSRA.  相似文献   

8.
A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4′-sulfonyl derivative of l-methionine (dabsyl Met), the product of the enzymatic reactions when either dabsyl l-methionine S-sulfoxide or dabsyl l-methionine R-sulfoxide is used as a substrate. The method provides baseline resolution of the substrates and, therefore, can be used to easily determine the purity of the substrates. The method is rapid (∼20 min sample to sample), requires no column regeneration, and uses very small amounts of buffers. Separation was performed by using a 75-μm internal diameter polyimide-coated fused silica capillary (no inside coating) with 60 cm total length (50 cm to the detector window). Samples were separated at 22.5 kV, and the separation buffer was 25 mM KH2PO4 (pH 8.0) containing 0.9 ml of N-lauroylsarcosine (sodium salt, 30% [w/v] solution) per 100 ml of buffer. Prior to use, the capillary was conditioned with the same buffer that also contained 25 mM sodium dodecyl sulfate. The CE method is compared with high-performance liquid chromatography (HPLC) as determined by comparing results from measurements of hepatic enzyme activities in mice fed either deficient or adequate selenium.  相似文献   

9.
Lead (Pb) poisoning continues to be a significant health risk because of its pervasiveness in the environment, its known neurotoxic effects in children, and potential endogenous exposure from Pb deposited in bone. New information about mechanisms by which Pb enters cells and its organelle targets within cells are briefly reviewed. Toxic effects of Pb on the endoplasmic reticulum (ER) are considered in detail, based on recent evidence that Pb induces the expression of the gene for 78-kD glucose-regulated protein (GRP78) and other ER stress genes. GRP78 is a molecular chaperone that binds transiently to proteins traversing through the ER and facilitates their folding, assembly, and transport. Models are presented for the induction of ER stress by Pb in astrocytes, the major cell type of the central nervous system, in which Pb accumulates. A key feature of the models is disruption of GRP78 function by direct Pb binding. Possible pathways by which Pb-bound GRP78 stimulates the unfolded protein response (UPR) in the ER are discussed, specifically transduction by IRE1/ATF6 and/or IRE1/JNK. The effect of Pb binding to GRP78 in the ER is expected to be a key component for understanding mechanisms of Pb-induced ER stress gene expression.  相似文献   

10.
Almost all forms of reactive oxygen species (ROS) oxidize methionine residues of proteins to a mixture of the R- and S-isomers of methionine sulfoxide. Because organisms contain methionine sulfoxide reductases (Msr's) that can catalyze the thioredoxin-dependent reduction of the sulfoxides back to methionine, it was proposed that the cyclic oxidation/reduction of methionine residues might serve as antioxidants to scavenge ROS, and also to facilitate the regulation of critical enzyme activities. We summarize here results of studies showing that organisms possess two different forms of Msr – namely, MsrA that catalyzes reduction of the S-isomer and MsrB that catalyzes the reduction of the R-isomer. Deletion of the msrA gene in mice leads to increased sensitivity to oxidative stress and to a decrease (40%) in the maximum lifespan. This suggests that elimination of both Msr's would have more serious consequences.  相似文献   

11.
12.
《Free radical research》2013,47(10):1223-1231
Abstract

Curcumin is used anecdotally as an herb in traditional Indian and Chinese medicine. In the present study, the effects and possible mechanism of curcumin in experimental autoimmune myocarditis (EAM) rats were further investigated. They were divided randomly into a treatment and vehicle group, and orally administrated curcumin (50 mg/kg/day) and 1% gum arabic, respectively, for 3 weeks after myosin injection. The results showed that curcumin significantly suppressed the myocardial protein expression of inducible nitric oxide synthase (iNOS) and the catalytic subunit of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase. In addition, curcumin significantly decreased myocardial endoplasmic reticulum (ER) stress signaling proteins and improved cardiac function. Furthermore, curcumin significantly decreased the key regulators or inducers of apoptosis. In summary, our results indicate that curcumin has the potential to protect EAM by modulating cardiac oxidative and ER stress-mediated apoptosis, and provides a novel therapeutic strategy for autoimmune myocarditis.  相似文献   

13.
Methionine sulfoxide reductase A overexpressing WI-38 SV40 human fibroblasts have been previously shown to exhibit higher resistance to oxidative stress by decreasing intracellular reactive oxygen species content and oxidative damage to proteins [C.R. Picot, I. Petropoulos, M. Perichon, M. Moreau, C. Nizard, B. Friguet, Overexpression of MsrA protects WI-38 SV40 human fibroblasts against H(2)O(2)-mediated oxidative stress, Free Radic Biol Med 39 (2005) 1332-1341]. In order to get further insight into the molecular mechanisms underlying this resistance to oxidative stress, proteins that are differentially expressed in methionine sulfoxide reductase A overexpressing cells were identified by 2D gel and Western blot quantitative analyses. Five proteins were shown to be differentially expressed and were identified by mass spectrometry, some of them were related to either cellular protection against oxidative stress, apoptosis or premature ageing.  相似文献   

14.
The redox homeostasis of the endoplasmic reticulum lumen is characteristically different from that of the other subcellular compartments. The concerted action of membrane transport processes and oxidoreductase enzymes maintain the oxidized state of the thiol-disulfide and the reducing state of the pyridine nucleotide redox systems, which are prerequisites for the normal functions of the organelle. The powerful thiol-oxidizing machinery allows oxidative protein folding but continuously challenges the local antioxidant defense. Alterations of the cellular redox environment either in oxidizing or reducing direction affect protein processing and may induce endoplasmic reticulum stress and unfolded protein response. The activated signaling pathways attempt to restore the balance between protein loading and processing and induce apoptosis if the attempt fails. Recent findings strongly support the involvement of this mechanism in brain ischemia, neuronal degenerative diseases and traumatic injury. The redox changes in the endoplasmic reticulum are integral parts of the pathomechanism of neurological diseases, either as causative agents, or as complications.  相似文献   

15.
《Autophagy》2013,9(4):622-623
Eukaryotic cells have developed sophisticated strategies to contend with environmental stresses faced in their lifetime. Endoplasmic reticulum (ER) stress occurs when the accumulation of unfolded proteins within the ER exceeds the folding capacity of ER chaperones. ER stress responses have been well characterized in animals and yeast, and autophagy has been suggested to play an important role in recovery from ER stress. In plants, the unfolded protein response signaling pathways have been studied, but changes in ER morphology and ER homeostasis during ER stress have not been analyzed previously. Autophagy has been reported to function in tolerance of several stress conditions in plants, including nutrient deprivation, salt and drought stresses, oxidative stress, and pathogen infection. However, whether autophagy also functions during ER stress has not been investigated. The goal of our study was to elucidate the role and regulation of autophagy during ER stress in Arabidopsis thaliana.  相似文献   

16.
内质网应激(endoplasmic reticulum stress,ERs)是内质网腔内错误折叠蛋白聚积的一种适应性反应,适度ERs通过激活未折叠蛋白反应起适应性的细胞保护作用,而过高和持久的ERs则通过诱导转录因子CHOP表达、激活caspase-12和c—Jun氨基末端激酶(JNK)等导致细胞凋亡。近年来,越来越多的研究提示内质网应激是神经退行性病变、2型糖尿病以及肥胖等疾病发生过程中的重要环节。对内质网应激的细胞效应分子机制进行综述。随着对ERs机制理解的深入,有可能会发现新的分子标志物或新的诊疗策略。  相似文献   

17.
He YY  He KL  Liu CL 《生理科学进展》2011,42(6):419-422
内质网应激是继死亡受体信号途径和线粒体途径之后新近发现的一条细胞凋亡通路,适度的应激可通过未折叠蛋白反应(UPR)产生细胞保护作用,但当应激过强或长时间不缓解时则会触发CHOP、ASK1/JNK及Caspases等通路诱导细胞凋亡。近年来研究发现内质网应激参与多种心血管疾病的发生发展,通过对相关通路的干预可以产生心肌细胞的保护作用,这有望成为防治心脏疾病的新靶点。  相似文献   

18.
The process of mRNA localization typically utilizes cis-targeting elements and trans-recognition factors to direct the compartmental organization of translationally suppressed mRNAs. mRNA localization to the endoplasmic reticulum (ER), in contrast, occurs via a co-translational, signal sequence/signal recognition particle (SRP)-dependent mechanism. We have utilized cell fractionation/cDNA microarray analysis, shRNA-mediated suppression of SRP expression, and mRNA reporter construct studies to define the role of the SRP pathway in ER-directed mRNA localization. Cell fractionation studies of mRNA partitioning between the cytosol and ER demonstrated the expected enrichment of cytosolic/nucleoplasmic protein-encoding mRNAs and secretory/integral membrane protein-encoding mRNAs in the cytosol and ER fractions, respectively, and identified a subpopulation of cytosolic/nucleoplasmic protein-encoding mRNAs in the membrane-bound mRNA pool. The latter finding suggests a signal sequence-independent pathway of ER-directed mRNA localization. Extending from these findings, mRNA partitioning was examined in stable SRP54 shRNA knockdown HeLa cell lines. shRNA-directed reductions in SRP did not globally alter mRNA partitioning patterns, although defects in membrane protein processing were observed, further suggesting the existence of multiple pathways for mRNA localization to the ER. ER localization of GRP94-encoding mRNA was observed when translation was disabled by mutation of the start codon/insertion of a 5'UTR stem-loop structure or upon deletion of the encoded signal sequence. Combined, these data indicate that the mRNA localization to the ER can be conferred independent of the signal sequence/SRP pathway and suggest that mRNA localization to the ER may utilize cis-encoded targeting information.  相似文献   

19.
Intermittent clamping of the portal trial is an effective method to avoid excessive blood loss during hepatic resection, but this procedure may cause ischemic damage to liver. Intermittent selective clamping of the lobes to be resected may represent a good alternative as it exposes the remnant liver only to the reperfusion stress. We compared the effect of intermittent total or selective clamping on hepatocellular injury and liver regeneration. Entire hepatic lobes or only lobes to be resected were subjected twice to 10 min of ischemia followed by 5 min of reperfusion before hepatectomy. We provided evidence that the effect of intermittent clamping can be damaging or beneficial depending to its mode of application. Although transaminase levels were similar in all groups, intermittent total clamping impaired liver regeneration and increased apoptosis. In contrast, intermittent selective clamping improved liver protein secretion and hepatocyte proliferation when compared with standard hepatectomy. This beneficial effect was linked to better adenosine-5′-triphosphate (ATP) recovery, nitric oxide production, antioxidant activities and endoplasmic reticulum adaptation leading to limit mitochondrial damage and apoptosis. Interestingly, transient and early chaperone inductions resulted in a controlled activation of the unfolded protein response concomitantly to endothelial nitric oxide synthase, extracellular signal-regulated kinase-1/2 (ERK1/2) and p38 MAPK activation that favors liver regeneration. Endoplasmic reticulum stress is a central target through which intermittent selective clamping exerts its cytoprotective effect and improves liver regeneration. This procedure could be applied as a powerful protective modality in the field of living donor liver transplantation and liver surgery.  相似文献   

20.
Herp is a stress-response protein localized in the endoplasmic reticulum (ER) membrane. Herp was proposed to improve ER-folding, decrease ER protein load, and participate in ER-associated degradation (ERAD). Intra-muscle-fiber ubiquitinated multiprotein-aggregates containing, among other proteins, either amyloid-beta (Abeta) or phosphorylated tau are characteristic of sporadic inclusion-body myositis (s-IBM). ER stress and proteasome inhibition appear to play a role in s-IBM pathogenesis. We have now studied Herp in s-IBM muscle fibers and in ER-stress-induced or proteasome-inhibited cultured human muscle fibers. In s-IBM muscle fibers: (i) Herp was strongly immunoreactive in the form of aggregates, which co-localized with Abeta, GRP78, and beta2 proteasome subunit; (ii) Herp mRNA and protein were increased. In ER-stress-induced cultured human muscle fibers: (i) Herp immunoreactivity was diffusely increased; (ii) Herp mRNA and protein were increased. In proteasome-inhibited cultured human muscle fibers: (i) Herp immunoreactivity was in the form of aggregates; (ii) Herp protein was increased, but its mRNA was not. Accordingly, in s-IBM muscle fibers: (i) increase of Herp might be due to both ER-stress and proteasome inhibition; (ii) co-localization of Herp with Abeta, proteasome, and ER-chaperone GRP78 could reflect its possible role in processing and degradation of cytotoxic proteins in ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号