首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We have identified 14 families with ataxia-telangiectasia (A-T) in which mutation of the ATM gene is associated with a less severe clinical and cellular phenotype (approximately 10%-15% of A-T families identified in the United Kingdom). In 10 of these families, all the homozygotes have a 137-bp insertion in their cDNA caused by a point mutation in a sequence resembling a splice-donor site. The second A-T allele has a different mutation in each patient. We show that the less severe phenotype in these patients is caused by some degree of normal splicing, which occurs as an alternative product from the insertion-containing allele. The level of the 137-bp PCR product containing the insertion was lowest in two patients who showed a later onset of cerebellar ataxia. A further four families who do not have this insertion have been identified. Mutations detected in two of four of these are missense mutations, normally rare in A-T patients. The demonstration of mutations giving rise to a slightly milder phenotype in A-T raises the interesting question of what range of phenotypes might occur in individuals in whom both mutations are milder. One possibility might be that individuals who are compound heterozygotes for ATM mutations are more common than we realize.  相似文献   

2.
Functional consequences of sequence alterations in the ATM gene   总被引:4,自引:0,他引:4  
Lavin MF  Scott S  Gueven N  Kozlov S  Peng C  Chen P 《DNA Repair》2004,3(8-9):1197-1205
The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) is a high molecular weight, protein ( approximately 350kDa) containing a C-terminal protein kinase domain and a number of other putative domains not yet functionally defined. The majority of ATM gene mutations in A-T patients are truncating, resulting in prematurely terminated products that are highly unstable. Missense mutations within the kinase domain and elsewhere in the molecule alter the stability of the protein and lead to loss of protein kinase activity. Only rarely are patients observed with two missense mutations and this gives rise to a milder disease phenotype. Evidence for a dominant interfering effect on normal ATM kinase activity has been reported in cell lines transfected with missense mutant ATM and in cell lines from some A-T heterozygotes. The dominant negative effect of mutant ATM is manifested by an enhancement of cellular radiosensitivity and may be responsible for the cancer predisposition observed in carriers of ATM missense mutations. In this review, we explore the domain structure of the ATM molecule, sites of interaction with other proteins and the consequences of specific amino acid changes on function.  相似文献   

3.
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, radiosensitivity, and cancer predisposition. A-T cells are sensitive to ionizing radiation and radiomimetic chemicals and fail to activate cell-cycle checkpoints after treatment with these agents. The responsible gene, ATM, encodes a large protein kinase with a phosphatidylinositol 3-kinase-like domain. The typical A-T phenotype is caused, in most cases, by null ATM alleles that truncate or severely destabilize the ATM protein. Rare patients with milder manifestations of the clinical or cellular characteristics of the disease have been reported and have been designated "A-T variants." A special variant form of A-T is A-TFresno, which combines a typical A-T phenotype with microcephaly and mental retardation. The possible association of these syndromes with ATM is both important for understanding their molecular basis and essential for counseling and diagnostic purposes. We quantified ATM-protein levels in six A-T variants, and we searched their ATM genes for mutations. Cell lines from these patients exhibited considerable variability in radiosensitivity while showing the typical radioresistant DNA synthesis of A-T cells. Unlike classical A-T patients, these patients exhibited 1%-17% of the normal level of ATM. The underlying ATM genotypes were either homozygous for mutations expected to produce mild phenotypes or compound heterozygotes for a mild and a severe mutation. An A-TFresno cell line was found devoid of the ATM protein and homozygous for a severe ATM mutation. We conclude that certain "A-T variant" phenotypes represent ATM mutations, including some of those without telangiectasia. Our findings extend the range of phenotypes associated with ATM mutations.  相似文献   

4.
We have assessed several ataxia Telangiectasia mutated (ATM)-dependent functions in cells derived from ataxia telangiectasia patients, carrying either an ATM 5762ins137 splice site or a 7271T-->G missense mutation, with a less severe phenotype compared with the classical disorder. ATM kinase in vitro, from 5762ins137 cells, showed the same specific activity as ATM in normal cells, but the protein was present at low levels. In contrast, mutant ATM kinase activity in the 7271T-->G cells was only about 6% that of the activity in normal cells, although the level of mutant protein expressed was similar to normal cells. Phosphorylation of the DNA double strand break repair proteins Nbs1 and hMre11, following DNA damage, was observed in normal and 7271T-->G cells but was almost absent in both 5762ins137 and classical ataxia telangiectasia cells. The kinetics of p53 response was intermediate between normal and classical ataxia telangiectasia cells in both the 7271T-->G and 5762ins137 cells, but interestingly, c-Jun kinase activation following DNA damage was equally deficient in cell lines derived from all the ataxia telangiectasia patients. Our results indicate that levels of ATM kinase activity, but not induction of p53 or c-Jun kinase activity, in these cells correlate with the degree of neurological disorder in the patients.  相似文献   

5.
The ATM (A-T, mutated) gene on human chromosome 11q22.3 has recently been identified as the gene responsible for the human recessive disease ataxia-telangiectasia (A-T). In order to define the types of disease-causing ATM mutations in Japanese A-T patients as well as to look for possible mutational hotspots, reverse-transcribed RNA derived from ten patients belonging to eight unrelated Japanese A-T families was analyzed for mutations by the restriction endonuclease fingerprinting method. As has been reported by others, mutations that lead to exon skipping or premature protein truncation were also predominant in our mutants. Six different mutations were identified on 12 of the 16 alleles examined. Four were deletions involving a loss of a single exon: exon 7, exon 16, exon 33 or exon 35. The others were minute deletions, 4649delA in exon 33 and 7883del5 in exon 55. The mutations 4612del165 and 7883del5 were found in more than two unrelated families; 44% (7 of 16) of the mutant alleles had one of the two mutations. The 4612del165 mutations in three different families were all ascribed to the same T→A substitution at the splice donor site in intron 33. Microsatellite genotyping around the ATM locus also indicated that a common haplotype was shared by the mutant alleles in both mutations. This suggests that these two founder mutations may be predominant among Japanese ATM mutant alleles. Received: 15 September 1997 / Accepted: 12 January 1998  相似文献   

6.
Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis.  相似文献   

7.
Ataxia-telangiectasia, an evolving phenotype   总被引:10,自引:0,他引:10  
Chun HH  Gatti RA 《DNA Repair》2004,3(8-9):1187-1196
Ataxia-telangiectasia (A-T) is a progressive neurodegenerative disorder, with onset in early childhood and a frequency of approximately 1 in 40,000 births in the United States. A-T is seen among all races and is most prominent among ethnic groups with a high frequency of consanguinity. The syndrome includes: progressive cerebellar ataxia, dysarthric speech, oculomotor apraxia, choreoathetosis and, later, oculocutaneous telangiectasia. Immunodeficiency with sinopulmonary infections, cancer susceptibility (usually lymphoid), and sensitivity to ionizing radiation are also characteristic. Laboratory findings include: (1) elevated alphafetoprotein (AFP), (2) cerebellar atrophy on magnetic resonance imaging, (3) reciprocal translocations between chromosomes 7 and 14 in lymphocytes, (4) absence or dysfunction of the ATM protein, (5) radiosensitivity, as demonstrated by colony survival assay (CSA), and (6) mutations in the ATM gene. The latter are usually truncating or splicing mutations; approximately 10% are missense mutations. Mutations are found across the entire gene. Almost all recurring mutations are found on unique haplotypes that represent founder effects and ancestral relationships between patients. In addition to radiosensitivity and sensitivity to radiomimetic chemicals, the phenotype of A-T cells includes defective damage-induced activation of the cell cycle checkpoints at G1, S and G2/M. With the aid of molecular testing, A-T can now be distinguished from other autosomal recessive cerebellar ataxias (ARCAs) such as Friedreich ataxia, Mre11 deficiency (AT-like disease), and the oculomotor apraxias 1 (aprataxin deficiency) and 2 (senataxin deficiency). Other "A-T variants" include: (1) Nijmegen breakage syndrome (NBS) or nibrin/Nbs1 deficiency, with microcephaly and mental retardation but without ataxia, apraxia, or telangiectasia, and 2) A-T(Fresno), a phenotype that combines features of both NBS and A-T, with mutations in the ATM gene. The term "A-T variant" has a diminishing usefulness.  相似文献   

8.
Wolfram syndrome is an autosomal recessive neurodegenerative disorder characterized by juvenile-onset diabetes mellitus and progressive optic atrophy. mtDNA deletions have been described, and a gene (WFS1) recently has been identified, on chromosome 4p16, encoding a predicted 890 amino acid transmembrane protein. Direct DNA sequencing was done to screen the entire coding region of the WFS1 gene in 30 patients from 19 British kindreds with Wolfram syndrome. DNA was also screened for structural rearrangements (deletions and duplications) and point mutations in mtDNA. No pathogenic mtDNA mutations were found in our cohort. We identified 24 mutations in the WFS1 gene: 8 nonsense mutations, 8 missense mutations, 3 in-frame deletions, 1 in-frame insertion, and 4 frameshift mutations. Of these, 23 were novel mutations, and most occurred in exon 8. The majority of patients were compound heterozygotes for two mutations, and there was no common founder mutation. The data were also analyzed for genotype-phenotype relationships. Although some interesting cases were noted, consideration of the small sample size and frequency of each mutation indicated no clear-cut correlations between any of the observed mutations and disease severity. There were no obvious mutation hot spots or clusters. Hence, molecular screening for Wolfram syndrome in affected families and for Wolfram syndrome-carrier status in subjects with psychiatric disorders or diabetes mellitus will require complete analysis of exon 8 and upstream exons.  相似文献   

9.
Mutations in the connexin 26 (Cx26) gene (GJB2) are associated with the type of autosomal recessive nonsyndromic neurosensory deafness known as "DFNB1." Studies indicate that DFNB1 (13q11-12) causes 20% of all childhood deafness and may have a carrier rate as high as 2. 8%. This study describes the analysis of 58 multiplex families each having at least two affected children diagnosed with autosomal recessive nonsyndromic deafness. Twenty of the 58 families were observed to have mutations in both alleles of Cx26. Thirty-three of 116 chromosomes contained a 30delG allele, for a frequency of .284. This mutation was observed in 2 of 192 control chromosomes, for an estimated gene frequency of .01+/-.007. The homozygous frequency of the 30delG allele is then estimated at .0001, or 1/10,000. Given that the frequency of all childhood hearing impairment is 1/1,000 and that half of that is genetic, the specific mutation 30delG is responsible for 10% of all childhood hearing loss and for 20% of all childhood hereditary hearing loss. Six novel mutations were also observed in the affected population. The deletions detected cause frameshifts that would severely disrupt the protein structure. Three novel missense mutations, Val84Met, Val95Met, and Ser113Pro, were observed. The missense mutation 101T-->C has been reported to be a dominant allele of DFNA3, a dominant nonsyndromic hearing loss. Data further supporting the finding that this mutation does not cause dominant hearing loss are presented. This allele was found in a recessive family segregating independently from the hearing-loss phenotype and in 3 of 192 control chromosomes. These results indicate that 101T-->C is not sufficient to cause hearing loss.  相似文献   

10.
11.
BACKGROUND: Fabry disease, an X-linked inborn error of glycosphingolipid catabolism, results from mutations in the alpha-galactosidase A (alpha-Gal A) gene located at Xq22.1. To determine the nature and frequency of the molecular lesions causing the classical and milder variant Fabry phenotypes and for precise carrier detection, the alpha-Gal A lesions in 42 unrelated Fabry hemizygotes were determined. MATERIALS AND METHODS: Genomic DNA was isolated from affected probands and their family members. The seven alpha-galactosidase A exons and flanking intronic sequences were PCR amplified and the nucleotide sequence was determined by solid-phase direct sequencing. RESULTS: Two patients with the mild cardiac phenotype had missense mutations, I9IT and F113L, respectively. In 38 classically affected patients, 33 new mutations were identified including 20 missense (MIT, A31V, H46R, Y86C, L89P, D92Y, C94Y, A97V, R100T, Y134S, G138R, A143T, S148R, G163V, D170V, C202Y, Y216D, N263S, W287C, and N298S), two nonsense (Q386X, W399X), one splice site mutation (IVS4 + 2T-->C), and eight small exonic insertions or deletions (304del1, 613del9, 777del1, 1057del2, 1074del2, 1077del1, 1212del3, and 1094ins1), which identified exon 7 as a region prone to gene rearrangements. In addition, two unique complex rearrangements consisting of contiguous small insertions and deletions were found in exons 1 and 2 causing L45R/H46S and L120X, respectively. CONCLUSIONS: These studies further define the heterogeneity of mutations causing Fabry disease, permit precise carrier identification and prenatal diagnosis in these families, and facilitate the identification of candidates for enzyme replacement therapy.  相似文献   

12.
Ataxia-telangiectasia (A-T) and Nijmegen breakage syndrome (NBS) are related genomic instability syndromes characterized by neurological deficits. The NBS1 protein that is defective in NBS is a component of the Mre11/RAD50/NBS1 (MRN) complex, which plays a major role in the early phase of the complex cellular response to double strand breaks (DSBs) in the DNA. Among others, Mre11/RAD50/NBS1 is required for timely activation of the protein kinase ATM (A-T, mutated), which is missing or inactivated in patients with A-T. Understanding the molecular pathology of A-T, primarily its cardinal symptom, cerebellar degeneration, requires investigation of the DSB response in cerebellar neurons, particularly Purkinje cells, which are the first to be lost in A-T patients. Cerebellar cultures derived from mice with different mutations in DNA damage response genes is a useful experimental system to study malfunctioning of the damage response in the nervous system. To clarify the interrelations between murine Nbs1 and Atm, we generated a mouse strain with specific disruption of the Nbs1 gene in the central nervous system on the background of general Atm deficiency (Nbs1-CNS-Δ//Atm(-/-)). This genotype exacerbated several features of both conditions and led to a markedly reduced life span, dramatic decline in the number of cerebellar granule neurons with considerable cerebellar disorganization, abolishment of the white matter, severe reduction in glial cell proliferation, and delayed DSB repair in cerebellar tissue. Combined loss of Nbs1 and Atm in the CNS significantly abrogated the DSB response compared with the single mutation genotypes. Importantly, the data indicate that Atm has cellular roles not regulated by Nbs1 in the murine cerebellum.  相似文献   

13.
Requirement of the MRN complex for ATM activation by DNA damage   总被引:34,自引:0,他引:34  
The ATM protein kinase is a primary activator of the cellular response to DNA double-strand breaks (DSBs). In response to DSBs, ATM is activated and phosphorylates key players in various branches of the DNA damage response network. ATM deficiency causes the genetic disorder ataxia-telangiectasia (A-T), characterized by cerebellar degeneration, immunodeficiency, radiation sensitivity, chromosomal instability and cancer predisposition. The MRN complex, whose core contains the Mre11, Rad50 and Nbs1 proteins, is involved in the initial processing of DSBs. Hypomorphic mutations in the NBS1 and MRE11 genes lead to two other genomic instability disorders: the Nijmegen breakage syndrome (NBS) and A-T like disease (A-TLD), respectively. The order in which ATM and MRN act in the early phase of the DSB response is unclear. Here we show that functional MRN is required for ATM activation, and consequently for timely activation of ATM-mediated pathways. Collectively, these and previous results assign to components of the MRN complex roles upstream and downstream of ATM in the DNA damage response pathway and explain the clinical resemblance between A-T and A-TLD.  相似文献   

14.
Ataxia-telangiectasia (A-T) is a human genetic disorder caused by mutational inactivation of the ATM gene. A-T patients display a pleiotropic phenotype, in which a major neurological feature is progressive ataxia due to degeneration of cerebellar Purkinje and granule neurons. Disruption of the mouse Atm locus creates a murine model of A-T that exhibits most of the clinical and cellular features of the human disease, but the neurological phenotype is barely expressed. We present evidence for the accumulation of DNA strand breaks in the brains of Atm(-/-), supporting the notion that ATM plays a major role in maintaining genomic stability. We also show a perturbation of the steady state levels of pyridine nucleotides. There is a significant decrease in both the reduced and the oxidized forms of NAD and in the total levels of NADP(T) and NADP(+) in the brains of Atm(-/-) mice. The changes in NAD(T), NADH, NAD(+), NADP(T), and NADP(+) were progressive and observed primarily in the cerebellum of 4-month-old Atm(-/-) mice. Higher rates of mitochondrial respiration were also recorded in 4-month-old Atm(-/-) cerebella. Taken together, our findings support the hypothesis that absence of functional ATM results in continuous stress, which may be an important cause of the degeneration of cerebellar neurons in A-T.  相似文献   

15.
Ataxia telangiectasia mutated (ATM) is a PI3-kinase-like kinase (PIKK) associated with DNA double-strand break (DSB) repair and cell cycle control. We have previously reported comparable efficiencies of DSB repair in nuclear extracts from both ATM deficient (A-T) and control (ATM+) cells; however, the repair products from the A-T nuclear extracts contained deletions encompassing longer stretches of DNA compared to controls. These deletions appeared to result from end-joining at sites of microhomology. These data suggest that ATM hinders error-prone repair pathways that depend on degradation of DNA ends at a break. Such degradation may account for the longer deletions we formerly observed in A-T cell extracts. To address this possibility we assessed the degradation of DNA duplex substrates in A-T and control nuclear extracts under DSB repair conditions. We observed a marked shift in signal intensity from full-length products to shorter products in A-T nuclear extracts, and addition of purified ATM to A-T nuclear extracts restored full-length product detection. This repression of degradation by ATM was both ATP-dependent and inhibited by the PIKK inhibitors wortmannin and caffeine. Addition of pre-phosphorylated ATM to an A-T nuclear extract in the presence of PIKK inhibitors was insufficient in repressing degradation, indicating that kinase activities are required. These results demonstrate a role for ATM in preventing the degradation of DNA ends possibly through repressing nucleases implicated in microhomology-mediated end-joining.  相似文献   

16.
Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.  相似文献   

17.
The protein kinase ATM (ataxia-telangiectasia mutated) activates the cellular response to double strand breaks (DSBs), a highly cytotoxic DNA lesion. ATM is activated by DSBs and in turn phosphorylates key players in numerous damage response pathways. ATM is missing or inactivated in the autosomal recessive disorder ataxia-telangiectasia (A-T), which is characterized by neuronal degeneration, immunodeficiency, genomic instability, radiation sensitivity, and cancer predisposition. The predominant symptom of A-T is a progressive loss of movement coordination due to ongoing degeneration of the cerebellar cortex and peripheral neuropathy. A major deficiency in understanding A-T is the lack of information on the role of ATM in neurons. It is unclear whether the ATM-mediated DSB response operates in these cells similarly to proliferating cells. Furthermore, ATM was reported to be cytoplasmic in neurons and suggested to function in these cells in capacities other than the DNA damage response. Recently we obtained genetic molecular evidence that the neuronal degeneration in A-T does result from defective DNA damage response. We therefore undertook to investigate this response in a model system of human neuron-like cells (NLCs) obtained by neuronal differentiation in culture. ATM was largely nuclear in NLCs, and their ATM-mediated responses to DSBs were similar to those of proliferating cells. Knocking down ATM did not interfere with neuronal differentiation but abolished ATM-mediated damage responses in NLCs. We concluded that nuclear ATM mediates the DSB response in NLCs similarly to in proliferating cells. Attempts to understand the neurodegeneration in A-T should be directed to investigating the DSB response in the nervous system.  相似文献   

18.
Homozygous mutations in the human ATM gene lead to a pleiotropic clinical phenotype of ataxia-telangiectasia (A-T) patients and correlating cellular deficiencies in cells derived from A-T donors. Saccharomyces cerevisiae tel1 mutants lacking Tel1p, which is the closest sequence homologue to the ATM protein, share some of the cellular defects with A-T. Through genetic complementation of A-T cells with the yeast TEL1 gene, we provide evidence that Tel1p can partially compensate for ATM in suppressing hyperrecombination, radiation-induced apoptosis, and telomere shortening. Complementation appears to be independent of p53 activation. The data provided suggest that TEL1 is a functional homologue of human ATM in yeast, and they help to elucidate different cellular and biochemical pathways in human cells regulated by the ATM protein.  相似文献   

19.
Ninety patients with tuberous-sclerosis complex (TSC) were tested for subtle mutations in the TSC2 gene, by means of single-strand conformational analysis (SSCA) of genomic DNA. Patients included 56 sporadic cases and 34 familial probands. For all patients, SSCA was performed for each of the 41 exons of the TSC2 gene. We identified 32 SSCA changes, 22 disease-causing mutations, and 10 polymorphic variants. Interestingly, we detected mutations at a much higher frequency in the sporadic cases (32%) than in the multiplex families (9%). Among the eight families for which linkage to the TSC2 region had been determined, only one mutation was found. Mutations were distributed equally across the gene; they included 5 deletions, 3 insertions, 10 missense mutations, 2 nonsense mutations, and 2 tandem duplications. We did not detect an increase in mutations either in the GTPase-activating protein (GAP)-related domains of TSC2 or in the activating domains that have been identified in rat tuberin. We did not detect any mutations in the exons (25 and 31) that are spliced out in the isoforms. There was no evidence for correspondence between variability of phenotype and type of mutation (missense versus early termination). Diagnostic testing will be difficult because of the genetic heterogeneity of TSC (which has at least two causative genes: TSC1 and TSC2), the large size of the TSC2 gene, and the variety of mutations. More than half of the mutations that we identified (missense, small in-frame deletion, and tandem duplication) are not amenable to the mutation-detection methods, such as protein-truncation testing, that are commonly employed for genes that encode proteins with tumor-suppressor function.  相似文献   

20.
The gene predisposing to neurofibromatosis type 2 (NF2) on human chromosome 22 has revealed a wide variety of different mutations in NF2 individuals. These patients display a marked variability in clinical presentation, ranging from very severe disease with numerous tumors at a young age to a relatively mild condition much later in life. To investigate whether this phenotypic heterogeneity is determined by the type of mutation in NF2, we have collected clinical information on 111 NF2 cases from 73 different families on whom we have performed mutation screening in this gene. Sixty-seven individuals (56.2%) from 41 of these kindreds revealed 36 different putative disease-causing mutations. These include 26 proposed protein-truncating alterations (frameshift deletions/insertions and nonsense mutations), 6 splice-site mutations, 2 missense mutations, 1 base substitution in the 3' UTR of the NF2 cDNA, and a single 3-bp in-frame insertion. Seventeen of these mutations are novel, whereas the remaining 19 have been described previously in other NF2 individuals or sporadic tumors. When individuals harboring protein-truncating mutations are compared with cases with single codon alterations, a significant correlation (P < .001) with clinical outcome is observed. Twenty-four of 28 patients with mutations that cause premature truncation of the NF2 protein, schwannomin, present with severe phenotypes. In contrast, all 16 cases from three families with mutations that affect only a single amino acid have mild NF2. These data provide conclusive evidence that a phenotype/genotype correlation exists for certain NF2 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号