首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tyrosylprotein sulfotransferase (TPST), responsible for the sulfation of a variety of secretory and membrane proteins, has been identified and characterized in submandibular salivary glands (William et al. Arch Biochem Biophys 1997; 338: 90-96). In the present study we demonstrate the sulfation of a salivary secretory protein, statherin, by the tyrosylprotein sulfotransferase present in human saliva. Optimum statherin sulfation was observed at pH 6.5 and at 20 mm MnCl(2). Increase in the level of total sulfation was observed with increasing statherin concentration. The K(m)value of tyrosylprotein sulfotransferase for statherin was 40 microM. Analysis of the sulfated statherin product on SDS-polyacrylamide gel electrophoresis followed by autoradiography revealed (35)S-labelling of a 5 kDa statherin. Further analysis of the sulfated statherin revealed the sulfation on tyrosyl residue. This study is the first report demonstrating tyrosine sulfation of a salivary secretory protein. The implications of this sulfation of statherin in hydroxyapatite binding and Actinomyces viscosus interactions are discussed.  相似文献   

2.
In vitro tyrosine sulfation of recombinant proteins would be a valuable tool in converting those proteins expressed in prokaryotic vectors to their natural form. For this purpose tyrosylprotein sulfotransferase (TPST), the enzyme responsible for tyrosine sulfation of proteins, was characterized from a bovine liver Golgi preparation. TPST was active in a acidic environment with a pH optimum of 6.25, and displayed a stimulation by the Mn2+, with the optimum activity in the presence of 5mM MnCl2. TPST was able to sulfate recombinant hirudin variant 1 (rHV-1) expressed in Escherichia coli and the C-terminal hirudin fragment 54-65 but not the N-terminal hirudin fragment 1-15 by using 3'-phosphoadenosine 5'-phosphosulfate (PAPS), indicating its specificity for the naturally sulfated tyrosine 63. Comparison of the reaction kinetics on synthetic peptides showed that the bovine liver TPST has a higher affinity and reaction rates for those peptides with a aspartyl residue on the N-terminal side of the tyrosine when compared with a glutamyl residue.  相似文献   

3.
Tyrosylprotein sulfotransferase (TPST) is a Golgi membrane enzyme involved in the post-translational modification of secretory and membrane proteins. Here we describe the 140,000-fold purification of this enzyme from bovine adrenal medulla to apparent homogeneity and determine its substrate specificity. The key step in the purification was affinity chromatography on a substrate peptide to which the enzyme bound in the presence of nucleotide cosubstrate. TPST is a 54-50 kd integral membrane glycoprotein. The presence of sialic acid strongly suggests that within the Golgi complex, TPST is localized in the trans-most subcompartment. TPST was found to specifically sulfate tyrosine residues adjacent to acidic amino acids. These results define a major determinant for the specificity of protein sulfation in the trans Golgi.  相似文献   

4.
1. The transfer of sulfate ester group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to poly-(Glu6, Ala3, Tyr1) (EAY; Mr 47 kDa) in rat submandibular salivary gland has been investigated. The highest tyrosylprotein sulfotransferase activity was obtained in the Golgi-enriched fraction in the presence of 2 mM 5'AMP, 20 mM MnCl2 and 50 mM NaF at pH 6.2. 2. The apparent Km values for EAY and PAPS were 1.6 x 10(-6) and 1.9 x 10(-6) M, respectively. 3. Inclusion of NaCl, EDTA, NEM and DTT was inhibitory for the enzyme activity. The enzyme was 28 times less susceptible to 2,6-dichloro-4-nitrophenol inhibition than to phenol sulfotransferase inhibition. 4. This study is the first report characterizing a sulfotransferase activity specific for tyrosylprotein in rat submandibular salivary glands.  相似文献   

5.
An enzyme activity which catalyzes the transfer of the sulfate group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to poly-Glu6,Ala3,Tyr1 (EAY; M(r) 47,000) has been demonstrated in the antral and body mucosa of the rat stomach. The distribution of this tyrosylprotein sulfotransferase was similar to that of the Golgi marker enzyme, glycoprotein sulfotransferase, and its activity from body mucosa was 23% higher than that from the antrum. The optimum for tyrosylprotein sulfotransferase activity was obtained at pH 6.8, in the presence of 0.5% Triton X-100, 20 mmol/l MnCl2, 50 mmol/l NaF, 2 mmol/l 5'-AMP, and 1 mmol/l DTT, whereas Ca2+, Mg2+, Cu2+, Zn2+, EDTA, NEM, NaCl and Na2SO4 were inhibitory. The apparent Km of the sulfotransferase for EAY was 1.5 x 10(-6) mol/l and for PAPS 0.75 x 10(-6) mol/l. The enzyme was 28 times less susceptible to 2,6-dichloro-4-nitrophenol inhibition as compared to that required for phenol sulfotransferase inhibition. The tyrosine sulfation by the tyrosylprotein sulfotransferase was independent of the sulfation of carbohydrate residues in mucous glycoproteins and glycolipids, thus indicating that the identified sulfotransferase is specific for sulfation of the tyrosyl residues in the peptide core.  相似文献   

6.
蛋白质硫酸化是一种翻译后修饰,该修饰使分泌蛋白或膜蛋白具有成熟的生物学功能,在植物的生长发育中发挥重要的作用。催化这一修饰的酶是酪氨酰蛋白磺基转移酶(tyrosylprotein sulfotransferase, TPST),它将底物3′-磷酸腺苷-5′磷酰硫酸(PAPS)的磺酸基团转移到蛋白质的酪氨酸残基上。近年来,随着植物中TPST的克隆,已有3个家族的植物多肽被发现存在硫酸化修饰。本文综述了植物TPST的生化特性与功能,介绍了植物TPST的3个底物多肽家族及其参与的分子信号途径。  相似文献   

7.
Human salivary carbonic anhydrase (HCA VI) was purified by inhibitor affinity chromatography and its location in the human parotid and submandibular glands identified, using a polyclonal antiserum raised against the purified enzyme in rabbits in conjunction with the peroxidase-antiperoxidase complex method. The antibodies raised against the purified enzyme in rabbits did not crossreact with the HCA II or I. However, they slightly recognized human IgA; the antiserum was therefore absorbed with human IgA before immunohistochemical use. HCA VI-specific staining was detected in the cytoplasm and particularly in the secretory granules of the serous acinar cells of both parotid and submandibular glands, the staining of the secretory granules being most distinct in paraformaldehyde-fixed tissues. Some epithelial cells and the luminal content of the striated ducts also gave a specific HCA VI staining. Staining specific for HCA II was also found in the granules of the serous acinar cells, particularly in the submandibular gland when Carnoy fluid fixation was used. Slight HCA II-specific staining was also detected in the striated ductal cells in the Carnoy fluid-fixed specimens. No staining specific for HCA I was detected. The results indicate that the serous acinar cells in human parotid and submandibular glands contain abundant HCA II and HCA VI. Interestingly, only HCA VI is secreted into the saliva, although both enzymes appear to be located in structures resembling the secretory granules in the acinar cells. The enzymes probably form a mutually complementary system regulating the salivary buffer capacity.  相似文献   

8.
Tyrosylprotein sulfotransferase (TPST) catalyzes the sulfation of proteins at tyrosine residues. We have analyzed the substrate specificity of TPST from bovine adrenal medulla with a novel assay, using synthetic peptides as substrates. The peptides were modeled after the known, or putative, tyrosine sulfation sites of the cholecystokinin precursor, chromogranin B (secretogranin I) and vitronectin, as well as the tyrosine phosphorylation sites of alpha-tubulin and pp60src. Varying the sequence of these peptides, we found that (i) the apparent Km of peptides with multiple tyrosine sulfation sites decreased exponentially with the number of sites; (ii) acidic amino acids were the major determinant for tyrosine sulfation, acidic amino acids adjacent to the tyrosine being more important than distant ones; (iii) a carboxyl terminally located tyrosine residue may be sulfated. Moreover, TPST catalyzed the sulfation of a peptide corresponding to the tyrosine autophosphorylation site of pp60v-src (Tyr-416) but not of a peptide corresponding to the non-autophosphorylation site of pp60c-src (Tyr-527). These results experimentally define structural determinants for the substrate specificity of TPST and show that this enzyme and certain autophosphorylating tyrosine kinases have overlapping substrate specificities in vitro.  相似文献   

9.
10.
An in vitro assay system to detect tyrosylprotein sulfotransferase (TPST) activity of higher plant cells was established, using synthetic oligopeptides based on the deduced amino acid sequence of a phytosulfokine-alpha (PSK-alpha) precursor. TPST activity was found in microsomal membrane fractions of rice, asparagus and carrot cells and it was confirmed that acidic amino acid residues adjacent to the tyrosine residues of acceptor peptides were essential to the sulfation reaction. The asparagus TPST exhibited a broad pH optimum of 7.0-8.5, required manganese ions for maximal activity and appeared to be a membrane-bound protein localized in the Golgi apparatus. These enzymes should be defined as a new class of plant sulfotransferases that catalyze tyrosine O-sulfation of a PSK-alpha precursor and other unknown proteins.  相似文献   

11.
The growth-retarded (grt) mouse has an autosomal recessive, fetal-onset, severe thyroid hypoplasia related to TSH hyporesponsiveness. Through genetic mapping and complementation experiments, we show that grt is a missense mutation of a highly conserved region of the tyrosylprotein sulfotransferase 2 (Tpst2) gene, encoding one of the two Tpst genes implicated in posttranslational tyrosine O-sulfation. We present evidence that the grt mutation leads to a loss of TPST2 activity, and TPST2 isoform has a high degree of substrate preference for TSH receptor (TSHR). The expression of TPST2 can restore TSH-TSHR-mediated cAMP production in fibroblasts derived from grt mice. Therefore, we propose that the tyrosine sulfation of TSHR by TPST2 is crucial for TSH signaling and resultant thyroid gland function.  相似文献   

12.
Phytohormone abscisic acid (ABA) plays vital roles in stress tolerance, while long-term overactivation of ABA signaling suppresses plant growth and development. However, the braking mechanism of ABA responses is not clear. Protein tyrosine sulfation catalyzed by tyrosylprotein sulfotransferase (TPST) is a critical post-translational modification. Through genetic screening, we identified a tpst mutant in Arabidopsis that was hypersensitive to ABA. In-depth analysis revealed that TPST could interact with and sulfate SnRK2.2/2.3/2.6, which accelerated their degradation and weakened the ABA signaling. Taken together, these findings uncovered a novel mechanism of desensitizing ABA responses via protein sulfation.  相似文献   

13.
Protein tyrosine sulfation is emerging as a widespread post-translational modification in multicellular eukaryotes. The responsible enzyme, named tyrosylprotein sulfotransferase (TPST), catalyzes the sulfate transfer from 3'-phosphoadenosine 5'-phosphosulfate to tyrosine residues of proteins. Two distinct TPSTs, designated TPST-1 and TPST-2, had previously been identified. In the present study, we cloned human TPST-1 and TPST-2 expressed and characterized the recombinant enzymes using peptide substrates. These enzymes displayed distinct acidic pH optima and stimulatory effects of Mn(2+). Additionally, the activity of TPST-2, but not TPST-1, was stimulated in the presence of Mg(2+). Compared with TPST-2, TPST-1 displayed considerably lower K(m) and V(max) for the majority of the tested peptide substrates, implying their differential substrate specificity. Quantitative real-time PCR analysis showed that although the two TPSTs were co-expressed in all 20 human tissues examined, the levels of expression of TPST-1 and TPST-2 varied significantly among different tissues. These latter findings may imply distinct physiological functions of TPST-1 and TPST-2.  相似文献   

14.
Enzymatic sulfation of mucus glycoprotein by rat submandibular salivary gland and the effect of prostaglandin and acetylsalicylic acid on this process were investigated in vitro. The sulfotransferase enzyme which catalyzes the transfer of sulfate ester group from 3'-phosphoadenosine-5'-phosphosulfate to submandibular gland mucus glycoprotein has been located in the detergent extracts of Golgi-rich membrane fraction of the gland. Optimum enzyme activity was obtained at pH 6.8 with 0.5% Triton X-100, 25 mM NaF and 4 mM MgCl2, using the desulfated glycoprotein. The enzyme was also capable of sulfation of the intact mucus glycoprotein, but the acceptor capacity of such glycoprotein was 68% lower. The apparent Km of the submandibular gland sulfotransferase for salivary mucus glycoprotein was 11.1 microM. The 35S-labeled glycoprotein product of the enzyme reaction gave in CsCl density gradient a 35S-labeled peak which coincided with that of the glycoprotein. This glycoprotein upon reductive beta-elimination yielded several acidic 35S-labeled oligosaccharide alditols which accounted for 75% of the 35S-labeled glycoprotein label. Based on the analytical data, the two most abundant oligosaccharides were identified as sulfated tri- and pentasaccharides. The submandibular gland sulfotransferase activity was stimulated by 16,16-dimethyl prostaglandin E2 and inhibited by acetylsalicylic acid. The rate of enhancement of the glycoprotein sulfation was proportional to the concentration of prostaglandin up to 2.10(-5) M, at which point a 31% increase in sulfation was attained. The inhibition of the glycoprotein sulfation by acetylsalicylic acid was proportional to the drug concentration up to 2.5.10(-4) M at which concentration a 48% reduction in the sulfotransferase activity occurred. The apparent Ki value for sulfation of salivary mucus glycoprotein in presence of acetylsalicylic acid was 58.9 microM. The results suggest that prostaglandins may play a role in salivary mucin sulfation and that this process is sensitive to such nonsteroidal anti-inflammatory agents as acetylsalicylic acid.  相似文献   

15.
16.
J H Yu 《Prostaglandins》1986,31(6):1087-1097
Exogenously administered PGE1 or PGE2, like atropine, markedly decreased both the flow and calcium concentration of parasympathetically evoked rat parotid saliva; PGF2 alpha was less effective. Despite the fact that prostaglandins greatly reduced the Ca concentration of nerve-evoked saliva, they did not change the glandular Ca concentration of either control or parasympathetically stimulated parotid glands. Prostaglandins (20 micrograms/kg, i.a.) decreased the Na or K concentration of nerve-evoked parotid saliva, but at lower doses had no significant effect. PGE1, PGE2, PGF2 alpha or atropine markedly decreased flow rates of similarly evoked rat submandibular saliva. Prostaglandins and atropine, however, decreased the Na concentration and increased the K concentration of parasympathetically evoked submandibular saliva. PGF2 alpha, like atropine, increased the Ca concentration of such saliva. Drug vehicle, ethanol, slightly decreased the flow of both parotid and submandibular saliva but not the ion secretion, Endogenous prostaglandins themselves may not play a role in secretory activities during parasympathetic nerve stimulation of rat salivary glands, since administration of indomethacin, and inhibitor of prostaglandin biosynthesis, prior to or during nerve stimulation did not significantly alter nerve-evoked salivary secretion, The mechanisms by which prostaglandins modulate secretory responses of salivary glands during parasympathetic stimulation are not understood.  相似文献   

17.
The secreted carbonic anhydrases, CA VI, are high molecular mass, oligomeric enzymes originally found in the sheep parotid gland and saliva. The enzymes have been purified from the saliva or parotid glands of several different species. All the CA VI enzymes studied have an apparent subunit Mr of about 45,000 as previously reported for the sheep enzyme. By Western analysis, CA VI from human, cow and dog cross-reacted with antibody raised against the purified sheep enzyme whereas that of the mouse did not. The N-terminal sequences of the sheep, human, cow and mouse enzymes are reported. The sheep, cow and human N-terminal sequences are similar to one another while the mouse sequence is substantially different. Nevertheless, the amino acids in the aromatic cluster I (Trp-5, Tyr-7, Trp-16 and Tyr/Phe-20) have all been conserved, as is the case with the cytoplasmic carbonic anhydrases. Eighteen tissues from the sheep have been examined for the presence of CA VI by Western analysis but it has been found only in the salivary glands. Northern analysis and hybridization histochemistry show that the mRNA for CA VI in sheep is expressed specifically in the acinar cells of the parotid and submandibular glands.  相似文献   

18.
Tyrosylprotein sulfotransferase (TPST) is a membrane-associated enzyme of the trans Golgi network that catalyzes the posttranslational sulfation of a variety of secretory and membrane proteins. We have analyzed the membrane association of TPST in Golgi-enriched fractions from bovine adrenal medulla using carbonate treatment (pH 11) and Triton X-114 phase partitioning. TPST was not extracted by carbonate. Triton X-114 phase partitioning revealed that, unexpectedly, TPST from non-carbonate-treated membranes was present in both, a hydrophilic and a hydrophobic form with apparent sedimentation coefficients of approximately 13 and approximately 6, respectively. Extraction of membranes with carbonate converted the hydrophilic form TPST to the hydrophobic form. Addition of the carbonate extract to TPST solubilized from carbonate-treated membranes converted the hydrophobic form of the enzyme to the hydrophilic form. This conversion of TPST was specific in that it was not observed for the bulk of the proteins present in the carbonate-treated membranes. The factor in the carbonate extract responsible for this conversion, referred to as "phase-transfer factor", (i) was precipitable with ammonium sulfate and polyethylene glycol, (ii) was non-dialyzable, (iii) was not extracted from membranes by 0.5 M NaCl, and (iv) appeared to be more abundant than TPST itself. These results show that TPST is an integral membrane protein and suggested that the enzyme may exist in a complex with a peripheral membrane protein. Moreover, a phase-transfer factor was also observed in another system, PC12 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The sulfoconjugation of tyrosyl residues is a widespread post-translational modification of biologically active peptides and proteins. In this paper we describe the characterization of a rat liver tyrosylprotein sulfotransferase that is capable of catalyzing the transfer of a sulfate moiety from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the synthetic polymer, poly-(Glu6,Ala3,Tyr1) (EAY; Mr 47,000) using a simple filter paper assay. Following sucrose density gradient centrifugation and comparison with known subcellular marker enzyme activities, rat liver tyrosylprotein sulfotransferase activity was shown to have a distribution similar to the Golgi enzyme, galactosyltransferase. Using the enriched Golgi preparation, rat liver tyrosylprotein sulfotransferase displayed a pH optimum of 6.7 and required the presence of 20 mM Mn2+ for maximal activity. Co2+ (20 mM) was able to produce 26% of the maximal stimulation observed with Mn2+, whereas other metal ions, such as Mg2+, Ca2+, and Co2+, were not effective in stimulating tyrosylprotein sulfotransferase activity. Whereas tyrosylprotein sulfotransferase activity was observed in the native membrane-bound state, EAY sulfation was maximally enhanced 3-fold when assayed in the presence of Lubrol Px. Under the optimal conditions for assaying the sulfation of EAY by a rat liver enriched Golgi fraction, significant degradation of the sulfate donor, PAPS, was observed. The addition of both NaF and 5'-AMP to the incubation mixture was found to effectively prevent PAPS degradation and increase the amount of product formed in the assay by 10-fold. Using the optimized conditions for the sulfation of EAY by rat liver tyrosylprotein sulfotransferase, membrane-bound sulfotransferase activity was also observed in the crude microsomal pellets of a variety of rat tissues, including lung, pituitary, and cerebellum, as well as in livers from different species.  相似文献   

20.
TPST1 is a human tyrosylprotein sulfotransferase that uses 3'phosphoadenosine-5'phosphosulfate (PAPS) to transfer the sulfate moiety to proteins predominantly designated for secretion. To achieve a general understanding of the cellular role of human tyrosine-directed sulfotransferases, we investigated targeting, structure and posttranslational modification of TPST1. Golgi localisation of the enzyme in COS-7 and HeLa cells was visualised by fluorescence imaging techniques. PNGase treatment and mutational studies determined that TPST1 bears N-linked glycosyl residues exclusively at position Asn60 and Asn262. By alanine mutation of these asparagine residues, we could determine that the N-linked oligosaccharides do not have an influence on Golgi retention of TPST1. In concert with N and C-terminal flanking residues, the transmembrane domain of TPST1 was determined to act in targeting and retention of the enzyme to the trans-Golgi compartment. This domain exhibits a pronounced secondary structure in a lipid environment. Further in vivo FRET studies using the transmembrane domain suggest that the human tyrosylprotein sulfotransferase may be functional as homodimer/oligomer in the trans-Golgi compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号