首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G B Panigrahi  I G Walker 《Biochemistry》1991,30(40):9761-9767
Monoacetyl-4-hydroxyaminoquinoline 1-oxide (Ac-HAQO) reacts with DNA to form adducts at the C8- and N2-positions of guanine and with the N6-position of adenine. Only the N2-guanine adduct blocks the 3'-5' exonuclease action of phage T4 DNA polymerase. Piperidine treatment cleaves the DNA at sites bearing C8-guanine adducts. The N2-position of guanine lies in the minor groove of DNA, whereas the C8-position of guanine occupies the major groove. We have taken advantage of these characteristics to employ Ac-HAQO in conjunction with either T4 DNA polymerase or piperidine in a footprinting technique to probe the interaction of the Escherichia coli integration host factor (IHF) with its binding site. We show that when IHF binds to its recognition site both the N2- and C8-positions of guanines are protected from modification by AcHAQO. In addition, the binding of IHF to DNA was prevented when either an N2- or a C8-AQO adduct was present in the binding site. When dimethylsulfate was used as the footprinting reagent, IHF protected against methylation of the N3 position of adenine in the minor groove but not the N7 position of guanine in the major groove. The difference in results obtained with the two reagents is ascribed to their relative sizes. Both DMS and AcHAQO are excluded by IHF from the minor groove, but only the larger AcHAQO molecule is excluded from the major groove.  相似文献   

2.
The preferred binding sites for mithramycin on four different DNA fragments have been investigated by DNAase I footprinting. Sites containing at least two contiguous GC base pairs are protected by the antibiotic, the preferred binding site consisting of the dinucleotide step GpG (or CpC). Related antibiotics chromomycin and olivomycin produce similar, but not identical footprinting patterns suggesting that they can recognize other sequences as well. All three antibiotics induce enhanced rates of enzyme cleavage at regions flanking some of their binding sites. These effects are generally observed in runs of A and T and are attributed to DNA structural variations induced in the vicinity of the ligand binding site. The reaction of dimethylsulphate with N7 of guanine was modified by the presence of mithramycin so that we cannot exclude the possibility that these antibiotics bind to DNA via the major groove.  相似文献   

3.
Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increased ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specific chemical cleavage technique for DNA sequencing. For L-Pam and UM, increased ionic strength and the cationic DNA affinity binders dose dependently inhibited the alkylation. QM alkylation was less inhibited by salt (100 mM NaCl), ethidium (10 microM), and spermine (10 microM). Distamycin A and netropsin (100 microM) gave an enhancement of overall QM alkylation. More interestingly, the pattern of guanine N7-alkylation was qualitatively altered by ethidium bromide, distamycin A, and netropsin. The result differed with both the nitrogen mustard (L-Pam less than UM less than QM) and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove.  相似文献   

4.
Experimentally observed sequence-selective binding of metal ion to DNA oligonucleotides have been compared with variations of electrostatic potential (EP) along the helix. Calculations of EP have been performed for three atomic models of the oligonucleotide duplex [d(CGCGAATTCGCG)2] using several variants of EP calculations, including a solution of non-linear Poisson-Boltzmann equation (NPBE). N7 atom of guanine adjacent to adenine base was identified as a region with the most negative electrostatic potential in the major groove. The EP value for the Me ion binding site surpasses the value for N7 of other guanines by 10-26% depending on particular duplex conformation. Qualitatively, the sequence dependent variations of EP near guanine N7 atoms are in agreement with the sequence-selective behavior of Mn(II) and Zn(II) ions as revealed by NMR experiments. But the difference in EP between the two most negative regions near guanine N7 atoms does not exceed 1.25 kT/e. Simple model suggests that metal ions are capable to form ion-hydrate complexes with G-Pu steps of DNA duplex. These complexes are formed via one Me...G and five Me...water coordination bonds with water molecules hydrogen bonded to two adjacent purine bases in the same chain. We suppose that such a stereospecific structural possibility is the main factor which control the sequence-selectivity in the metal ion binding. A combination of both mechanisms allows to explain sequence specific Mn(II) and Zn(II) binding to a set of oligonucleotides.  相似文献   

5.
Y G Gao  Y C Liaw  H Robinson  A H Wang 《Biochemistry》1990,29(45):10307-10316
The three-dimensional molecular structures of the complexes between a novel antitumor drug nogalamycin and its derivative U-58872 with a modified DNA hexamer d[m5CGT(pS)Am5CG] have been determined at 1.7- and 1.8-A resolution, respectively, by X-ray diffraction analyses. Both structures (in space group P6(1)) have been refined with constrained refinement procedure to final R factors of 0.208 (3386 reflections) and 0.196 (2143 reflections). In both complexes, two nogalamycins bind to the DNA hexamer double helix in a 2:1 ratio with the elongated aglycon chromophore intercalated between the CpG steps at both ends of the helix. The aglycon chromophore spans across the GC Watson-Crick base pairs with its nogalose lying in the minor groove and the aminoglucose lying in the major groove of the distorted B-DNA double helix. Most of the sugars remain in the C2'-endo pucker family, except three deoxycytidine residues (terminal C1, C7, and internal C5). All nucleotides are in the anti conformation. Specific hydrogen bonds are found in the complex between the drug and guanine-cytosine bases in both grooves of the helix. One hydroxyl group of the aminoglucose donates a hydrogen bond to the N7 of guanine, while the other receives a hydrogen bond from the N4 amino group of cytosine. The orientation of these two hydrogen bonds suggests that nogalamycin prefers a GC base pair with its aglycon chromophore intercalating at the 5'-side of a guanine (between NpG), or at the 3'-side of a cytosine (between CpN) with the sugars pointing toward the GC base pair. The binding of nogalamycin to DNA requires that the base pairs in DNA open up transiently to allow the bulky sugars to go through, suggesting that nogalamycin prefers GC sequences embedded in a stretch of AT sequences.  相似文献   

6.
Abstract

Experimentally observed sequence-selective binding of metal ion to DNA oligonucleotides have been compared with variations of electrostatic potential (EP) along the helix. Calculations of EP have been performed for three atomic models of the oligonucleotide duplex [d(CGCGAATTCGCG)2] using several variants of EP calculations, including a solution of non-linear Poisson-Boltzmann equation (NPBE). N7 atom of guanine adjacent to adenine base was identified as a region with the most negative electrostatic potential in the major groove. The EP value for the Me ion binding site surpasses the value for N7 of other guanines by 10–26% depending on particular duplex conformation. Qualitatively, the sequence dependent variations of EP near guanine N7 atoms are in agreement with the sequence-selective behavior of Mn(II) and Zn(II) ions as revealed by NMR experiments. But the difference in EP between the two most negative regions near guanine N7 atoms does not exceed 1.25 kT/e. Simple model suggests that metal ions are capable to form ion-hydrate complexes with G-Pu steps of DNA duplex. These complexes are formed via one Me…G and five Me…water coordination bonds with water molecules hydrogen bonded to two adjacent purine bases in the same chain. We suppose that such a stereospecific structural possibility is the main factor which control the sequence-selectivity in the metal ion binding. A combination of both mechanisms allows to explain sequence specific Mn(II) and Zn(II) binding to a set of oligonucleotides.  相似文献   

7.
DNase I footprinting has been used to probe the sequence selectivity of binding of a series of intercalating amsacrine-4-carboxamides and a related 9-aminoacridine-4-carboxamide to three DNA restriction fragments. These ligands have good experimental antileukemic activity, and for those members of the series that gave evaluable footprints, our principal finding is that they bind preferentially to GC-rich regions in agreement with the conclusion of equilibrium and kinetic measurements. The highest affinity sites generally occur in clusters of GC base pairs with runs of AT pairs being excluded from binding. It is important to appreciate that the 9-aminoacridine- and amsacrine-4-carboxamides exhibit a very high degree of selectivity for GC sites which, to our knowledge, has not been previously matched by acridine derivatives in footprinting experiments. The principal determinant of specificity appears to be the 4-carboxamide group itself since neither variations in the terminal funtionality of the 4-carboxamide sidechain nor the presence of the 9-anilino substituent modifies sequence preferences. The molecular origins of selectivity may be discerned in terms of potential hydrogen bonding interactions between the 4-carboxamide moiety and carbonyl oxygen and amino groups of GC base pairs in the DNA minor groove at CG dinucleotide sites. The related therapeutic agent amsacrine failed to inhibit cleavage by DNase I, so no conclusion can be drawn concerning its binding selectivity, save to note that amsacrine does not possess the 4-carboxamide group which appears to be the crucial determinant of GC specificity. Whether selectivity for binding to GC-rich sequences is an important element in the antitumor activity of both the 9-aminoacridine- and amsacrine-4-carboxamides remains to be determined.  相似文献   

8.
The deformed (Dfd) and ultrabithorax (Ubx) homeoproteins regulate developmental gene expression in Drosophila melanogaster by binding to specific DNA sequences within its genome. DNA binding is largely accomplished via a highly conserved helix-turn-helix DNA-binding domain that is known as a homeodomain (HD). Despite nearly identical DNA recognition helices and similar target DNA sequence preferences, the in vivo functions of the two proteins are quite different. We have previously revealed differences between the two HDs in their interactions with DNA. In an effort to define the individual roles of the HD N-terminal arm and recognition helix in sequence-specific binding, we have characterized the structural details of two Dfd/Ubx chimeric HDs in complex with both the Dfd and Ubx-optimal-binding site sequences. We utilized hydroxyl radical cleavage of DNA to assess the positioning of the proteins on the binding sites. The effects of missing nucleosides and purine methylation on HD binding were also analyzed. Our results show that both the Dfd and Ubx HDs have similar DNA-binding modes when in complex with the Ubx-optimal site. There are subtle but reproducible differences in these modes that are completely interchanged when the Dfd N-terminal arm is replaced with the corresponding region of the Ubx HD. In contrast, we showed previously that the Dfd-optimal site sequence elicits a very different binding mode for the Ubx HD, while the Dfd HD maintains a mode similar to that elicited by the Ubx-optimal site. Our current methylation interference studies suggest that this alternate binding mode involves interaction of the Ubx N-terminal arm with the minor groove on the opposite face of DNA relative to the major groove that is occupied by the recognition helix. As judged by hydroxyl radical footprinting and the missing nucleoside experiment, it appears that interaction of the Ubx recognition helix with the DNA major groove is reduced. Replacing the Dfd N-terminal arm with that of Ubx does not elicit a complete interchange of the DNA-binding mode. Although the position of the chimera relative to DNA, as judged by hydroxyl radical footprinting, is similar to that of the Dfd HD, the missing nucleoside and methylation interference patterns resemble those of the Ubx HD. Repositioning of amino acid side-chains without wholesale structural alteration in the polypeptide appears to occur as a function of N-terminal arm identity and DNA-binding site sequence. Complete interchange of binding modes was achieved only by replacement of the Dfd N-terminal arm and the recognition helix plus 13 carboxyl-terminal residues with the corresponding residues of Ubx. The position of the N-terminal arm in the DNA minor groove appears to differ in a manner that depends on the two base-pair differences between the Dfd and Ubx-optimal-binding sites. Thus, N-terminal arm position dictates the binding mode and the interaction of the recognition helix with nucleosides in the major groove.  相似文献   

9.
Purine-rich regions in DNA and RNA may contain both guanines and adenines, which have various biological functions. Here we report the crystal structure of an RNA purine-rich fragment containing both guanine and adenine at 1.4 A resolution. Adenines form an adenine tetrad in the N6-H em leader N7 conformation. Substitution of an adenine tetrad in the guanine tetraplex does not change the global conformation but introduces irregularity in both the hydrogen bonding interaction pattern in the groove and the metal ion binding pattern in the central cavity of the tetraplex. The irregularity in groove binding may be critical for specific binding in tetraplexes. The formation of G-U octads provides a mechanism for interaction in the groove. Ba(2+) ions prefer to bind guanine tetrads, and adenine tetrads can only be bound by Na(+) ions, illustrating the binding selectivity of metal ions for the tetraplex.  相似文献   

10.
We review the extra-helical guanine interactions present in many oligonucleotide crystals. Very often terminal guanines interact with other guanines in the minor groove of neighboring oligonucleotides through N2 x N3 hydrogen bonds. In other cases the interaction occurs with the help of Ni2+ ions. Guanine/netropsin stacking in the minor groove has also been found. From these studies we conclude that guanine may have multiple extra-helical interactions. In particular it may be considered a very effective minor groove binder, which could be used in the design of sequence selective binding drugs. Interactions through the major groove are seldom encountered, but might be present when DNA is stretched. Such interactions are also analyzed, since they might be important for homologous chromosome pairing during meiosis.  相似文献   

11.
Many agents successfully used in cancer chemotherapy either directly or indirectly covalently modify DNA. Examples include cisplatin, which forms a covalent adduct with guanines, and doxorubicin, which traps a cleavage intermediate between topoisomerase II and torsionally strained DNA. In most cases, the efficacy of these drugs depends on the efficiency and specificity of their DNA binding, as well as the discrimination between normal and neoplastic cells in their handling of the drug-DNA adducts. While much is known about the chemistry of drug-DNA adducts, little is known regarding the overall specificity of their formation, especially in the context of a whole human genome, where potentially billions of binding sites are possible. We used the combinatorial selection method restriction endonuclease protection, selection, and amplification (REPSA) to determine the DNA-binding specificity of the semisynthetic covalent DNA-binding polyamide tallimustine, which contains a benzoic acid nitrogen mustard appended to the minor groove DNA-binding natural product distamycin A. After investigating over 134 million possible sequences, we found that the highest affinity tallimustine binding sites contained one of two consensus sequences, either the expected distamycin hexamer binding sites followed by a CG base pair (e.g., 5'-TTTTTTC-3' and 5'-AAATTTC-3') or the unexpected sequence 5'-TAGAAC-3'. Curiously, we found that tallimustine preferentially alkylated the N7 position of guanines located on the periphery of these consensus sequences. These findings suggested a cooperative binding model for tallimustine in which one molecule noncovalently resides in the DNA minor groove and locally perturbs the DNA structure, thereby facilitating alkylation by a second tallimustine of an exposed guanine on another side of the DNA.  相似文献   

12.
Using two direct methods we have studied the binding locations and site sizes of distamycin and penta-N-methylpyrrolecarboxamide on three DNA restriction fragments from pBR322 plasmid. We find that methidiumpropyl-EDTA.Fe(II) footprinting and DNA affinity cleaving methods report common binding locations and site sizes for the tri- and pentapeptides bound to heterogeneous DNA. The tripeptide distamycin binds 5-base-pair sites with a preference for poly(dA).poly(dT) regions. The pentapeptide binds 6-7-base-pair sites with a preference for poly(dA).poly(dT) regions. These results are consistent with distamycin binding as an isogeometric helix to the minor groove of DNA with the four carboxamide N-H's hydrogen bonding five A + T base pairs. The data supports a model where each of the carboxamide N-H's can hydrogen bond to two bases, either O(2) of thymine or N(3) of adenine, located on adjacent base pairs on opposite strands of the helix. In most (but not all) cases the tri- and pentapeptide can adopt two orientations at each A + T rich binding site.  相似文献   

13.
Dostál L  Chen CY  Wang AH  Welfle H 《Biochemistry》2004,43(30):9600-9609
Members of the Sso7d/Sac7d protein family and other related proteins are believed to play an important role in DNA packaging and maintenance in archeons. Sso7d/Sac7d are small, abundant, basic, and nonspecific DNA-binding proteins of the hyperthermophilic archeon Sulfolobus. Structures of several complexes of Sso7d/Sac7d with DNA octamers are known. These structures are characterized by sequence unspecific minor groove binding of the proteins and sharp kinking of the double helix. Corresponding Raman vibrational signatures have been identified in this study. A Raman spectroscopic analysis of Sac7d binding to the oligonucleotide decamer d(GAGGCGCCTC)(2) reveals large conformational perturbations in the DNA structure upon complex formation. Perturbed Raman bands are associated with the vibrational modes of the sugar phosphate backbone and frequency shifts of bands assigned to nucleoside vibrations. Large changes in the DNA backbone and partial B- to A-form DNA transitions are indicated that are closely associated with C2'-endo/anti to C3'-endo/anti conversion of the deoxyadenosyl moiety upon Sac7d binding. The major spectral feature of Sac7d binding is kinking of the DNA. Raman markers of minor groove binding do not largely contribute to spectral differences; however, clear indications for minor groove binding come from G-N2 and G-N3 signals that are supported by Trp24 features. Trp24 is the only tryptophan present in Sac7d and binds to guanine N3, as has been demonstrated clearly in X-ray structures of Sac7d-DNA complexes. No changes of the Sac7d secondary structure have been detected upon DNA binding.  相似文献   

14.
Thorpe JH  Hobbs JR  Todd AK  Denny WA  Charlton P  Cardin CJ 《Biochemistry》2000,39(49):15055-15061
The structure of the duplex d[CG(5-BrU)ACG](2) bound to 9-bromophenazine-4-carboxamide has been solved through MAD phasing at 2.0 A resolution. It shows an unexpected and previously unreported intercalation cavity stabilized by the drug and novel binding modes of Co(2+) ions at certain guanine N7 sites. For the intercalation cavity the terminal cytosine is rotated to pair with the guanine of a symmetry-related duplex to create a pseudo-Holliday junction geometry, with two such cavities linked through the minor groove interactions of the N2/N3 guanine sites at an angle of 40 degrees, creating a quadruplex-like structure. The mode of binding of the drug is shown to be disordered, with the major conformations showing the side chain bound to the N7 position of adjacent guanines. The other end of the duplex exhibits a terminal base fraying in the presence of Co(2+) ions linking symmetry-related guanines, causing the helices to intertwine through the minor groove. The stabilization of the structure by the intercalating drug shows that this class of compound may bind to DNA junctions as well as duplex DNA or to strand-nicked DNA ('hemi-intercalated'), as in the cleavable complex. This suggests a structural basis for the dual poisoning of topoisomerase I and II enzymes by this family of drugs.  相似文献   

15.
Four different footprinting techniques have been used to probe the DNA sequence selectivity of Thia-Net, a bis-cationic analogue of the minor groove binder netropsin in which the N-methylpyrrole moieties are replaced by thiazole groups. In Thia-Net the ring nitrogen atoms are directed into the minor groove where they could accept hydrogen bonds from the exocyclic 2-amino group of guanine. Three nucleases (DNAase I, DNAase II, and micrococcal nuclease) were employed to detect binding sites on the 160bp tyr T fragment obtained from plasmid pKM delta-98, and further experiments were performed with 117mer and 253mer fragments cut out of the plasmid pBS. MPE.Fe(II) was used to footprint binding sites on an EcoRI/HindIII fragment from pBR322. Thia-Net binds to sites in the minor groove containing 4 or 5 base pairs which are predominantly composed of alternating A and T residues, but with significant acceptance of intrusive GC base pairs. Unlike the parent antibiotic netropsin, Thia-Net discriminates against homooligomeric runs of A and T. The evident preference of Thia-Net for AT-rich sites, despite its containing thiazole nitrogens capable of accepting GC sites by hydrogen bonding, supports the view that the biscationic nature of the ligand imposes a bias due to the electrostatic potential differences in the receptor which favour the ligand reading alternating AT sequences.  相似文献   

16.
The DNA-binding domain of Epstein-Barr virus nuclear antigen 1 was found by hydroxyl radical footprinting to protect backbone positions on one side of its DNA-binding site. The guanines contacted in the major groove by the DNA-binding domain of Epstein-Barr virus nuclear antigen 1 were identified by methylation protection. No difference was found in the interaction of the DNA-binding domain of Epstein-Barr virus nuclear antigen 1 with tandemly repeated and overlapping binding sites.  相似文献   

17.
When cisplatin [cis- diamminodichloroplatinum (II)] is diffused into pre-grown crystals of the B-DNA double-helical dodecamer C-G-C-G-A-A-T-T-C-G-C-G, it binds preferentially to the N7 positions of guanines, with what probably is an aquo bridge between Pt and the adjacent O6 atom of the same guanine. The entire guanine ring moves slightly toward the platinum site, into the major groove. Only three of the eight potential cisplatin binding sites on guanines actually are occupied, and this differential reactivity can be explained in terms of the relative freedom of motion of guanines toward the major groove. This shift of guanines upon ligation may weaken the glycosyl bond and assist in the depurination that leads to mismatch SOS repair and G.C. to T.A. transversion.  相似文献   

18.
Actinomycin D (ActD) is a DNA-binding antitumor antibiotic that appears to act in vivo by inhibiting RNA polymerase. The mechanism of DNA binding of ActD has attracted much attention because of its strong preference for 5'-dGpdC-3' sequences. Binding is thought to involve intercalation of the tricyclic aromatic phenoxazone ring into a GC step, with the two equivalent cyclic pentapeptide lactone substituents lying in the minor groove and making hydrogen bond contacts with the 2-amino groups of the nearest neighbor guanines. Recent studies have indicated, however, that binding is also influenced by next-nearest neighboring bases. We have examined this higher order specificity using 7-azido-actinomycin-D as a photoaffinity probe, and DNA sequencing techniques to quantitatively monitor sites of covalent photoaddition. We found that GC doublets were strongly preferred only if the 5'-flanking base was a pyrimidine and the 3'-flanking base was not cytosine. In addition we observed a previously unreported preference for binding at a GG doublet in the sequence 5'-TGGG-3'.  相似文献   

19.
The EcoKI methyltransferase methylates two adenines on opposite strands of its bipartite DNA recognition sequence AAC(N6)GTGC. The enzyme has a strong preference for hemimethylated DNA substrates, but the methylation state of the DNA does not influence its binding affinity. Methylation interference was used to compare the contacts made by the EcoKI methyltransferase with unmodified, hemimethylated or fully modified DNAs. Contacts were seen at or near the N7 position of guanine, in the major groove, for all of the guanines in the EcoKI recognition sequence, and at two guanines on the edge of the intervening spacer sequence. The presence of the cofactor and methyl donor S-adenosyl methionine had a striking effect on the interference pattern for unmodified DNA which could not be mimicked by the presence of the cofactor analogue S-adenosyl homocysteine. In contrast, S-adenosyl methionine had no effect on the interference patterns for either kind of hemimethylated DNA, or for fully modified DNA. Differences between the interference patterns for the unmodified DNA and any of the three forms of methylated DNA provide evidence that methylation of the target sequence influences the conformation of the protein-DNA interface, and illustrate the importance of S-adenosyl methionine in the distinction between unmodified and methylated DNA by the methyltransferase.  相似文献   

20.
Anti benzo[a]pyrene diol epoxide (BPDE) alkylates guanines of DNA at N7 in the major groove and at the exocyclic amino group in the minor groove. In this report we investigated the rates of BPDE hydrolysis, DNA alkylation and subsequent depurination of BPDE-adducted pBR322 DNA fragment using polyacrylamide gel electrophoresis. Preincubation studies showed that it hydrolyzed completely in triethanolamine buffer in <2 min. The depurination kinetics showed that a fraction of the N7 alkylated guanine depurinated rapidly; however a significant amount of N7 guanine alkylation remained stable to spontaneous depurination over a 4-h period. Similar results were obtained for the hydrolysis and alkylation rates of syn isomer but it required nearly 500 times more concentration to induce similar levels of N7 guanine alkylation. Cadmium ion strongly inhibited the N7 guanine alkylation of both isomers. But the minor groove alkylation was not affected as demonstrated by postlabeling assay which confirmed the presence of heat-and cadmium-stable minor groove adducts in BPDE-treated calf thymus DNA. Based on these and our earlier findings, we propose a mechanism for the synergistic effect of cadmium in chemically induced carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号