首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The universally conserved GTPase HflX is a putative translation factor whose GTPase activity is stimulated by the 70S ribosome as well as the 50S but not the 30S ribosomal subunit. However, the details and mechanisms governing this interaction are only poorly understood. In an effort to further elucidate the functional mechanism of HflX, we examined its interaction with the 70S ribosome, the two ribosomal subunits (50S and 30S), as well as its ability to interact with guanine nucleotides in the respective ribosomal complexes using a highly purified in vitro system. Binding studies reported here demonstrate that HflX not only interacts with 50S and 70S particles, but also with the 30S subunit, independent of the nucleotide-bound state. A detailed pre-steady-state kinetic analysis of HflX interacting with a non-hydrolyzable analog of mant-GTP, coupled with an enzymatic probing assay utilizing limited trypsinolysis, reveal that HflX·GTP exists in a structurally distinct 50S- and 70S-bound form that stabilizes GTP binding up to 70 000-fold and that may represent the “GTPase-activated” state. This activation is likely required for efficient GTP-hydrolysis, and may be similar to that observed in elongation factor G. Results reported here address the surprising low affinity of free HflX for GTP and suggest that cellular HflX will mainly exist in the HflX·GTP·ribosome-bound form. A minimal model for the functional cycle of HflX is proposed.  相似文献   

2.
HflX GTPases are found in all three domains of life, the Bacteria, Archaea, and Eukarya. HflX from Escherichia coli has been shown to bind to the 50S ribosomal subunit in a nucleotide-dependent manner, and this interaction strongly stimulates its GTPase activity. We recently determined the structure of an HflX ortholog from the archaeon Sulfolobus solfataricus (SsoHflX). It revealed the presence of a novel HflX domain that might function in RNA binding and is linked to a canonical G domain. This domain arrangement is common to all archaeal, bacterial, and eukaryotic HflX GTPases. This paper shows that the archaeal SsoHflX, like its bacterial orthologs, binds to the 50S ribosomal subunit. This interaction does not depend on the presence of guanine nucleotides. The HflX domain is sufficient for ribosome interaction. Binding appears to be restricted to free 50S ribosomal subunits and does not occur with 70S ribosomes engaged in translation. The fingerprint (1)H-(15)N heteronuclear correlation nuclear magnetic resonance (NMR) spectrum of SsoHflX reveals a large number of well-resolved resonances that are broadened upon binding to the 50S ribosomal subunit. The GTPase activity of SsoHflX is stimulated by crude fractions of 50S ribosomal subunits, but this effect is lost with further high-salt purification of the 50S ribosomal subunits, suggesting that the stimulation depends on an extrinsic factor bound to the 50S ribosomal subunit. Our results reveal common properties but also marked differences between archaeal and bacterial HflX proteins.  相似文献   

3.
The HflX‐family is a widely distributed but poorly characterized family of translation factor‐related guanosine triphosphatases (GTPases) that interact with the large ribosomal subunit. This study describes the crystal structure of HflX from Sulfolobus solfataricus solved to 2.0‐Å resolution in apo‐ and GDP‐bound forms. The enzyme displays a two‐domain architecture with a novel “HflX domain” at the N‐terminus, and a classical G‐domain at the C‐terminus. The HflX domain is composed of a four‐stranded parallel β‐sheet flanked by two α‐helices on either side, and an anti‐parallel coiled coil of two long α‐helices that lead to the G‐domain. The cleft between the two domains accommodates the nucleotide binding site as well as the switch II region, which mediates interactions between the two domains. Conformational changes of the switch regions are therefore anticipated to reposition the HflX‐domain upon GTP‐binding. Slow GTPase activity has been confirmed, with an HflX domain deletion mutant exhibiting a 24‐fold enhanced turnover rate, suggesting a regulatory role for the HflX domain. The conserved positively charged surface patches of the HflX‐domain may mediate interaction with the large ribosomal subunit. The present study provides a structural basis to uncover the functional role of this GTPases family whose function is largely unknown. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Ribosomes catalyze protein synthesis using transfer RNAs and auxiliary proteins. Historically, ribosomes have been considered nonspecific translational machines, having no regulatory functions. However, a new class of regulatory mechanisms has been discovered that is based on interactions occurring within the ribosomal peptide exit tunnel that result in ribosome stalling during translation of an appropriate mRNA segment. These discoveries reveal an unexpectedly dynamic role ribosomes play in regulating their own activity. By using nascent leader peptides in combination with bound specific amino acids or antibiotics, ribosome functions can be altered significantly resulting in regulated expression of downstream coding regions. This review summarizes relevant findings in recent articles and outlines our current understanding of nascent peptide-induced ribosome stalling in regulating gene expression.  相似文献   

5.
Many ribosome-interacting GTPases, with proposed functions in ribosome biogenesis, are also implicated in the cellular regulatory coupling between ribosome assembly process and various growth control pathways. EngA is an essential GTPase in bacteria, and intriguingly, it contains two consecutive GTPase domains (GD), being one-of-a-kind among all known GTPases. EngA is required for the 50S subunit maturation. However, its molecular role remains elusive. Here, we present the structure of EngA bound to the 50S subunit. Our data show that EngA binds to the peptidyl transferase center (PTC) and induces dramatic conformational changes on the 50S subunit, which virtually returns the 50S subunit to a state similar to that of the late-stage 50S assembly intermediates. Very interestingly, our data show that the two GDs exhibit a pseudo-two-fold symmetry in the 50S-bound conformation. Our results indicate that EngA recognizes certain forms of the 50S assembly intermediates, and likely facilitates the conformational maturation of the PTC of the 23S rRNA in a direct manner. Furthermore, in a broad context, our data also suggest that EngA might be a sensor of the cellular GTP/GDP ratio, endowed with multiple conformational states, in response to fluctuations in cellular nucleotide pool, to facilitate and regulate ribosome assembly.  相似文献   

6.
A novel GTPase activated by the small subunit of ribosome   总被引:6,自引:0,他引:6  
The GTPase activity of Escherichia coli YjeQ, here named RsgA (ribosome small subunit-dependent GTPase A), has been shown to be significantly enhanced by ribosome or its small subunit. The enhancement of GTPase activity was inhibited by several aminoglycosides bound at the A site of the small subunit, but not by a P site-specific antibiotic. RsgA stably bound the small subunit in the presence of GDPNP, but not in the presence of GTP or GDP, to dissociate ribosome into subunits. Disruption of the gene for RsgA from the genome affected the growth of the cells, which predominantly contained the dissociated subunits having only a weak activation activity of RsgA. We also found that 17S RNA, a putative precursor of 16S rRNA, was contained in the small subunit of the ribosome from the RsgA-deletion strain. RsgA is a novel GTPase that might provide a new insight into the function of ribosome.  相似文献   

7.
R Langlois  C R Cantor  R Vince  S Pestka 《Biochemistry》1977,16(11):2349-2356
The effects of chloramphenical on the binding kinetics of a fluorescein isothiocyanate derivative of 9(S)-erythromycylamine with 70S and 50S ribosomes have been studied by direct fluorimetric measurements. While chloramphenicol had little effect on the second-order 70S binding rate of the erythromycin analogue, it substantially reduced the dissociation rate of the fluorescent antibiotic-70S ribosome complex. This could be explained by simultaneous binding of both antibiotics to the 70S ribosome. The kinetic results suggest that chloramphenicol-saturated 70S particles bind the erythromycin analogue four times stronger and this was confirmed by direct binding studies. In additon, chloramphenicol causes a twofold increase in the intrinsic fluorescence of the 70S-bound analogue. This increase in fluorescence was used to study the kinetics of chloramphenicol binding to 70S ribosomes containing the fluorescent derivative. The fluorescence change followed first-order kinetics, suggesting that chloramphenicol induces a conformational change in the 70S particle. This could explain both its effect on erythromycin binding and on the fluorescence of bound analogue. Less detailed results with the 50S particle indicate a qualitively similar picture of erythromycin-chloramphenicol interactions.  相似文献   

8.
Function of the ribosomal E-site: a mutagenesis study   总被引:2,自引:2,他引:0       下载免费PDF全文
Ribosomes synthesize proteins according to the information encoded in mRNA. During this process, both the incoming amino acid and the nascent peptide are bound to tRNA molecules. Three binding sites for tRNA in the ribosome are known: the A-site for aminoacyl-tRNA, the P-site for peptidyl-tRNA and the E-site for the deacylated tRNA leaving the ribosome. Here, we present a study of Escherichia coli ribosomes with the E-site binding destabilized by mutation C2394G of the 23S rRNA. Expression of the mutant 23S rRNA in vivo caused increased frameshifting and stop codon readthrough. The progression of these ribosomes through the ribosomal elongation cycle in vitro reveals ejection of deacylated tRNA during the translocation step or shortly after. E-site compromised ribosomes can undergo translocation, although in some cases it is less efficient and results in a frameshift. The mutation affects formation of the P/E hybrid site and leads to a loss of stimulation of the multiple turnover GTPase activity of EF-G by deacylated tRNA bound to the ribosome.  相似文献   

9.
The decoding release factor (RF) triggers termination of protein synthesis by functionally mimicking a tRNA to span the decoding centre and the peptidyl transferase centre (PTC) of the ribosome. Structurally, it must fit into a site crafted for a tRNA and surrounded by five other RNAs, namely the adjacent peptidyl tRNA carrying the completed polypeptide, the mRNA and the three rRNAs. This is achieved by extending a structural domain from the body of the protein that results in a critical conformational change allowing it to contact the PTC. A structural model of the bacterial termination complex with the accommodated RF shows that it makes close contact with the first, second and third bases of the stop codon in the mRNA with two separate loops of structure" the anticodon loop and the loop at the tip of helix orS. The anticodon loop also makes contact with the base following the stop codon that is known to strongly influence termination efficiency. It confirms the close contact of domain 3 of the protein with the key RNA structures of the PTC. The mRNA signal for termination includes sequences upstream as well as downstream of the stop codon, and this may reflect structural restrictions for specific combinations of tRNA and RF to be bound onto the ribosome together. An unbiased SELEX approach has been investigated as a tool to identify potential rRNA-binding contacts of the bacterial RF in its different binding conformations within the active centre of the ribosome.  相似文献   

10.
YchF, a universally conserved protein, hitherto thought to be a GTPase, was shown to be an ATPase based on structural and biochemical studies on hOLA1, a human ortholog of YchF. However, the cellular role of YchF is unclear. Based on the presence of a RNA binding domain in this protein and significant homology to ribosome binding Obg family GTPases, we examined its ability to associate with the ribosome. Here, we show that Escherichia coli YchF binds the 50S and 70S ribosomal particles in a nucleotide independent manner and it hydrolyzes ATP utilizing a potassium dependent mechanism. A potassium mediated acceleration of hydrolysis activity was thus far known for a few GTPases. Like these, YchF too conserves the structural features required for K+ coordination, making it a unique ribosome binding ATPase utilizing a similar mechanism. Furthermore, we show that Lys78 is an important determinant of the potassium dependent ATPase activity.  相似文献   

11.
The elongation factors (EF) Tu and G and initiation factor 2 (IF2) from bacteria are multidomain GTPases with essential functions in the elongation and initiation phases of translation. They bind to the same site on the ribosome where their low intrinsic GTPase activities are strongly stimulated. The factors differ fundamentally from each other, and from the majority of GTPases, in the mechanisms of GTPase control, the timing of Pi release, and the functional role of GTP hydrolysis. EF-Tu x GTP forms a ternary complex with aminoacyl-tRNA, which binds to the ribosome. Only when a matching codon is recognized, the GTPase of EF-Tu is stimulated, rapid GTP hydrolysis and Pi release take place, EF-Tu rearranges to the GDP form, and aminoacyl-tRNA is released into the peptidyltransferase center. In contrast, EF-G hydrolyzes GTP immediately upon binding to the ribosome, stimulated by ribosomal protein L7/12. Subsequent translocation is driven by the slow dissociation of Pi, suggesting a mechano-chemical function of EF-G. Accordingly, different conformations of EF-G on the ribosome are revealed by cryo-electron microscopy. GTP hydrolysis by IF2 is triggered upon formation of the 70S initiation complex, and the dissociation of Pi and/or IF2 follows a rearrangement of the ribosome into the elongation-competent state.  相似文献   

12.
During the stationary growth phase, Escherichia coli 70S ribosomes are converted to 100S ribosomes, and translational activity is lost. This conversion is caused by the binding of the ribosome modulation factor (RMF) to 70S ribosomes. In order to elucidate the mechanisms by which 100S ribosomes form and translational inactivation occurs, the shape of the 100S ribosome and the RMF ribosomal binding site were investigated by electron microscopy and protein-protein cross-linking, respectively. We show that (i) the 100S ribosome is formed by the dimerization of two 70S ribosomes mediated by face-to-face contacts between their constituent 30S subunits, and (ii) RMF binds near the ribosomal proteins S13, L13, and L2. The positions of these proteins indicate that the RMF binding site is near the peptidyl transferase center or the P site (peptidyl-tRNA binding site). These observations are consistent with the translational inactivation of the ribosome by RMF binding. After the "Recycling" stage, ribosomes can readily proceed to the "Initiation" stage during exponential growth, but during stationary phase, the majority of 70S ribosomes are stored as 100S ribosomes and are translationally inactive. We suggest that this conversion of 70S to 100S ribosomes represents a newly identified stage of the ribosomal cycle in stationary phase cells, and we have termed it the "Hibernation" stage.  相似文献   

13.
The ribosome biogenesis GTPase A protein RbgA is involved in the assembly of the large ribosomal subunit in Bacillus subtilis, and homologs of RbgA are implicated in the biogenesis of mitochondrial, chloroplast, and cytoplasmic ribosomes in archaea and eukaryotes. The precise function of how RbgA contributes to ribosome assembly is not understood. Defects in RbgA give rise to a large ribosomal subunit that is immature and migrates at 45 S in sucrose density gradients. Here, we report a detailed biochemical analysis of RbgA and its interaction with the ribosome. We found that RbgA, like most other GTPases, exhibits a very slow k(cat) (14 h(-1)) and has a high K(m) (90 μM). Homology modeling of the RbgA switch I region using the K-loop GTPase MnmE as a template suggested that RbgA requires K(+) ions for GTPase activity, which was confirmed experimentally. Interaction with 50 S subunits, but not 45 S intermediates, increased GTPase activity by ~55-fold. Stable association with 50 S subunits and 45 S intermediates was nucleotide-dependent, and GDP did not support strong interaction with either of the subunits. GTP and guanosine 5'-(β,γ-imido)triphosphate (GMPPNP) were sufficient to promote association with the 45 S intermediate, whereas only GMPPNP was able to support binding to the 50 S subunit, presumably due to the stimulation of GTP hydrolysis. These results support a model in which RbgA promotes a late step in ribosome biogenesis and that one role of GTP hydrolysis is to stimulate dissociation of RbgA from the ribosome.  相似文献   

14.
Eukaryotic ribosomes directly bind to the intergenic region-internal ribosome entry site (IGR-IRES) of Plautia stali intestine virus (PSIV) and initiate translation without either initiation factors or initiator Met-tRNA. We have investigated the mode of binding of the first aminoacyl-tRNA in translation initiation mediated by the IGR-IRES. Binding ability of aminoacyl-tRNA to the first codon within the IGR-IRES/80 S ribosome complex was very low in the presence of eukaryotic elongation factor 1A (eEF1A) alone but markedly enhanced by the translocase eEF2. Moreover, eEF2-dependent GTPase activity of the IRES/80 S ribosome complex was 3-fold higher than that of the free 80 S ribosome. This activation was suppressed by addition of the antibiotics pactamycin and hygromycin B, which are inhibitors of translocation. The results suggest that translocation by the action of eEF2 is essential for stable tRNA binding to the first codon of the PSIV-IRES in the ribosome. Chemical probing analysis showed that IRES binding causes a conformational change in helix 18 of 18 S rRNA at the A site such that IRES destabilizes the conserved pseudoknot within the helix. This conformational change caused by the PSIV-IRES may be responsible for the activation of eEF2 action and stimulation of the first tRNA binding to the P site without initiation factors.  相似文献   

15.
Cisplatin is a widely prescribed anticancer drug, which triggers cell death by covalent binding to a broad range of biological molecules. Among cisplatin targets, cellular RNAs remain the most poorly characterized molecules. Although cisplatin was shown to inactivate essential RNAs, including ribosomal, spliceosomal and telomeric RNAs, cisplatin binding sites in most RNA molecules are unknown, and therefore it remains challenging to study how modifications of RNA by cisplatin contributes to its toxicity. Here we report a 2.6Å-resolution X-ray structure of cisplatin-modified 70S ribosome, which describes cisplatin binding to the ribosome and provides the first nearly atomic model of cisplatin–RNA complex. We observe nine cisplatin molecules bound to the ribosome and reveal consensus structural features of the cisplatin-binding sites. Two of the cisplatin molecules modify conserved functional centers of the ribosome—the mRNA-channel and the GTPase center. In the mRNA-channel, cisplatin intercalates between the ribosome and the messenger RNA, suggesting that the observed inhibition of protein synthesis by cisplatin is caused by impaired mRNA-translocation. Our structure provides an insight into RNA targeting and inhibition by cisplatin, which can help predict cisplatin-binding sites in other cellular RNAs and design studies to elucidate a link between RNA modifications by cisplatin and cisplatin toxicity.  相似文献   

16.
During the translocation step of protein synthesis, a complex of two transfer RNAs bound to messenger RNA (tRNA-mRNA) moves through the ribosome. The reaction is promoted by an elongation factor, called EF-G in bacteria, which, powered by GTP hydrolysis, induces an open, unlocked conformation of the ribosome that allows for spontaneous tRNA-mRNA movement. Here we show that, in the absence of EF-G, there is spontaneous backward movement, or retrotranslocation, of two tRNAs bound to mRNA. Retrotranslocation is driven by the gain in affinity when a cognate E-site tRNA moves into the P site, which compensates the affinity loss accompanying the movement of peptidyl-tRNA from the P to the A site. These results lend support to the diffusion model of tRNA movement during translocation. In the cell, tRNA movement is biased in the forward direction by EF-G, which acts as a Brownian ratchet and prevents backward movement.  相似文献   

17.
Protein targeting to the membrane of the ER is regulated by three GTPases, the 54-kD subunit of the signal recognition particle (SRP) and the alpha- and beta-subunit of the SRP receptor (SR). Here, we report on the GTPase cycle of the beta-subunits of the SR (SRbeta). We found that SRbeta binds GTP with high affinity and interacts with ribosomes in the GTP-bound state. Subsequently, the ribosome increases the GTPase activity of SRbeta and thus functions as a GTPase activating protein for SRbeta. Furthermore, the interaction between SRbeta and the ribosome leads to a reduction in the affinity of SRbeta for guanine nucleotides. We propose that SRbeta regulates the interaction of SR with the ribosome and thereby allows SRalpha to scan membrane-bound ribosomes for the presence of SRP. Interaction between SRP and SRalpha then leads to release of the signal sequence from SRP and insertion into the translocon. GTP hydrolysis then results in dissociation of SR from the ribosome, and SRP from the SR.  相似文献   

18.
The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance.  相似文献   

19.
Protein synthesis relies on several translational GTPases (trGTPases), related proteins that couple the hydrolysis of GTP to specific molecular events on the ribosome. Most bacterial trGTPases, including IF2, EF‐Tu, EF‐G and RF3, play well‐known roles in translation. The cellular functions of LepA (also termed EF4) and BipA (also termed TypA), conversely, have remained enigmatic. Recent studies provide compelling in vivo evidence that LepA and BipA function in biogenesis of the 30S and 50S subunit respectively. These findings have important implications for ribosome biogenesis in bacteria. Because the GTPase activity of each of these proteins depends on interactions with both ribosomal subunits, some portion of 30S and 50S assembly must occur in the context of the 70S ribosome. In this review, we introduce the trGTPases of bacteria, describe the new functional data on LepA and BipA, and discuss the how these findings shape our current view of ribosome biogenesis in bacteria.  相似文献   

20.
The plenty of data about structural changes in the ribosome during its functioning has been accumulated. The most interesting information on such changes was obtained by cryo-EM of various ribosomal complexes with the ligands and by combination of rRNA site-directed mutagenesis with the analysis of structural changes in ribosome by chemical modification technique (chemical probing). The most studied structural transformations of the ribosome interacting with tRNAs and elongation factors are considered in this review. The structural rearrangements are discussed in the context of interactions between the functional centers of the ribosome. We also describe the system of tertiary contacts between the rRNA helices and proteins which forms the universal structure in the ribosome. We pay attention that by means of such system the allosteric conformational signal can be transmitted between the functional centers. Besides the discussion of different biochemical data in the scope of structural data we also consider the hypothesis that the position of GTPase associated center (GAC) in the ribosome regulates the binding of elongation factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号