首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Penicillium charlesii extracts contain UDP-galactose:NAD+ 2-hexosyl oxidoreductase (1). ADP-ribose also serves as a substrate resulting in formation of NADH and an oxidized ADP-ribose derivative. Treatment of the oxidized product with NaBH4 followed by hydrolysis at pH 2 and 100° releases xylose as well as ribose. We conclude that ADP-D-glycero-D-glycero-3-pentosulose (ADP-3-ketoribose) is the product derived from ADP-ribose.  相似文献   

2.
Cloned uncG genes (wild-type or in vitro mutagenized) for the Escherichia coli gamma subunit were introduced into the uncG mutant Gln-14----end), and the functions of the mutant subunits were studied. The F1's with Ala-283----end and Thr-277----end mutant gamma subunits had 63 and 14% of the wild-type ATPase activity, respectively, and mutants with these subunits showed reduced growth by oxidative phosphorylation, indicating that the 10 residues at the carboxyl terminus (286th residue) are important, but dispensable, for catalysis. On the other hand, F1 with a Gln-269----end gamma subunit was inactive. Replacement of conserved residues (Gln-269, Thr-273, or Glu-275) between Gln-269 and Leu-276 gave enzymes with significantly reduced ATPase activity (2-41% of that of the wild-type) and lower ATP-driven proton conduction. Thus these residues are required for the normal catalytic activity of F1, although they are not absolutely essential. Membranes with amino acid replacements (Thr-277----end, Gln-269----Leu, or Glu-275----Lys) and the frameshift mutation (downstream of Thr-277) had about 15% of the wild-type ATPase activity, but showed different degrees of ATP-dependent H+ translocation and growth yield by oxidative phosphorylation, suggesting that the gamma subunit, especially its carboxyl-terminal region, functions in coupling between catalysis and H+ translocation.  相似文献   

3.
4.
Summary A mutant of E. coli K12 appears to be temperature-sensitive in the process of initiation of DNA replication. After a temperature shift from 33 to 42°C, the amount of residual DNA synthesis (Fig. 1) and the number of residual cell divisions (Figs. 2,4) indicate that rounds of DNA replication in process are completed, but new rounds cannot be initiated. Following the alignment of chromosomal DNA by amino acid starvation at 33° C no residual DNA synthesis at 42°C takes place (Fig. 5). When the temperature is lowered to 33°C after a period of inhibition at 42°C, the following observations are made: 1. DNA replication resumes and proceeds synchroneously, (Figs. 7, 8a), 2. cells start to divide again only after a lag period of about 1 hour 3. a temporary increase in cell volume is correlated with the frequency of initiation of DNA synthesis (Fig. 8a, b). In a lysogenic mutant strain prophage is inducible; with all bacteriophages tested, replication of phage DNA is not inhibited at 42°C.  相似文献   

5.
A mutant of Escherichia coli that accumulated prolipoprotein, a secretory precursor of the outer membrane lipoprotein, was isolated. The prolipoprotein accumulated in this mutant was modified by glyceride, but the in vitro cleavage of the signal peptide of the accumulated prolipoprotein was found to be temperature sensitive. The mutation appears to be located outside the gene for the lipoprotein, thus suggesting that the gene for the signal peptidase for the prolipoprotein was mutated.  相似文献   

6.
A mutant sensitive to colicin M at 30 degrees C and tolerant at 42 degrees C to high concentrations of colicin M was isolated from Escherichia coli K-12. A temperature shift from 30 to 42 degrees C rescued all cells up to the time they started to lyse at 30 degrees C (25 min after addition of colicin M). The growth rate at 42 degrees C remained unaffected by colicin M. AT 42 degrees C the cell-bound colicin M was inactivated by trypsin, sodium dodecyl sulfate, and antiserum against colicin M. Ferrichrome competed with colicin M at 42 degrees C only during the initial adsorption to the common receptor protein in the outer membrane. Since cells lysed earlier at 30 degrees C when they had been preincubated with colicin M at 42 degrees C, we conclude that the process leading finally to cell lysis is initiated at 42 degrees C and stops at a later stage of colicin M trypsin, dodecyl sulfate, and antiserum when cells were transferred from 30 to 42 degrees C, we assume that colicin M is translocated from its target site towards the cell surface. The mutation conferring tolerance was mapped close to the rpsL gene.  相似文献   

7.
8.
Genes (uncB) for wild-type and mutant a subunits of Escherichia coli H+-ATPase (F0F1) were cloned into recombinant plasmids. The subunits were expressed under the control of a weak promoter of the unc operon at 30 degrees C and strong promoters of lambda phage at 42 degrees C. At 30 degrees C, the wild type and a truncated (Glu-269----end) a subunit complemented the defect of the a subunit mutant KF24A (Trp-111----end), whereas the other mutant subunits (Trp-111----end, Trp-231----end, Gln-252----end, and a subunit with a deletion of residues 21 to 227) did not. Three mutant subunits (Trp-231----end, Gln-252----end, and Glu-269----end) and the wild-type a subunit caused growth inhibition associated with cell elongation, an uneven distribution of membrane proteins, and an altered septum structure when they were expressed at 42 degrees C. These phenomena were not observed with the other mutant subunits, suggesting that overproduction of the middle region (between residues 111 and 230) of the a subunit causes growth inhibition.  相似文献   

9.
ATPase activity was restored to the inactive coupling factor, F1ATPase, of Escherichia coli strain AN120 (uncA401) by reconstitution of the dissociated complex with an excess of wild-type α subunit. Large excesses of α gave the highest levels of activity. The other subunits which are required for the reconstitution of ATPase activity, β and γ, did not complement the mutant enzyme. These results indicate that the α polypeptide of the AN120 ATPase is defective.  相似文献   

10.
A mutation is described that alters the promoter specificity of sigma 70, the primary sigma factor of Escherichia coli RNA polymerase. In strains carrying both the mutant and wild-type sigma gene (rpoD), the mutant sigma causes a large increase in the activity of mutant P22 ant promoters with A.T or C.G instead of the wild-type, consensus G.C base-pair at position -33, the third position of the consensus -35 hexamer 5'-TTGACA-3'. There is little or no effect on the activities of the wild-type and 23 other mutant ant promoters, including one with T.A at -33. The mutant sigma also activates E. coli lac promoters with A.T or C.G, but not T.A, at the corresponding position. The rpoD mutation (rpoD-RH588) changes a CGT codon to CAT. The corresponding change in sigma 70 is Arg588----His. This residue is in a region that is conserved among most sigma factors, a region that is also homologous with the helix-turn-helix motif of DNA-binding proteins. These results suggest that this region of sigma 70 is directly involved in recognition of the -35 hexamer.  相似文献   

11.
Mutant genes for the gamma subunit of H+-translocating ATPase (H+-ATPase) were cloned from eight different strains of Escherichia coli isolated in this laboratory. Determination of their nucleotide sequences revealed that they are amber nonsense mutations: a Gln codon at position 15, 158, 227, 262, and 270, respectively, was replaced by a termination codon in these strains. As terminal Met is missing in the gamma subunit, these results indicate that these strains are capable of synthesizing fragments of gamma subunits of 13, 156, 225, 260, and 268 amino acid residues, respectively. Studies on the properties of membranes of these strains suggested the importance of the region between Gln 269 and the carboxyl terminus (residue 286) for forming a stable F1 complex with ATPase activity and the region between Gln 226 and Gln 261 for normal interaction of F1 with F0. The sequence from Gln 261 to Gln 269 also seemed to be important for stability of F1 assembly on the membranes. The high frequency of the nonsense mutations suggested that the number of essential residues is limited in this subunit. Comparison of the homologies of the amino acid sequences of the gamma subunits from four different sources confirmed this notion: 19% of amino acid residues are identically conserved in these four strains, and the conserved regions are the amino terminal and carboxyl terminal regions.  相似文献   

12.
The uncD gene for the beta subunit of Escherichia coli H+-ATPase was cloned downstream of the lac promoter and mutagenized (Glu-185----Gln or Lys) by an oligonucleotide-directed procedure. The recombinant plasmid was introduced into a strain in which the unc operon for subunits of H+-ATPase was deleted. The wild-type or mutant beta subunit synthesized amounted to about 10% total cell protein and was mainly found in the cytoplasmic fraction. These subunits could be purified to almost homogeneity by conventional procedures. The wild-type and two mutant beta subunits had essentially the same Kd values for 8-anilinonaphthalene-1-sulfonate, aurovertin, and ATP, although the fluorescence intensities of 8-anilinonaphthalene-1-sulfonate and aurovertin were significantly less when bound to the two mutant beta subunits than when bound to the wild-type subunit. The three beta subunits showed essentially the same circular dichroism spectra, indicating alpha-helical contents of about 16-18%. Thus, the mutations did not cause marked change of the secondary structure of the subunit. However, measurements of theta 208 during linear increase in temperature suggested that replacement of Glu-185 by Gln or Lys slightly changed the stability of the secondary structure. Only trace amounts of alpha beta gamma complexes could be reconstituted using the two mutant beta subunits. These results suggest that Glu-185 or the region in its vicinity may be essential for subunit assembly. The methods developed in this study should be useful for further studies on the beta subunit.  相似文献   

13.
1. Stimulation of the Escherichia coli ATPase activity by urea and trypsin shows that the ATPase activity both in the membrane-bound and the solubilized form is partly masked. 2. A protein, inhibiting the ATPase activity of Escherichia coli, can be isolated by sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified ATPase. The inhibitor was identified with the smallest of the subunits of E. coli ATPase. 3. The molecular weight of the ATPase inhibitor is about 10,000, as determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis and deduced from the amino acid composition. 4. The inhibitory action is independent of pH, ionic strength or the presence of Mg2+ or ATP. 5. The ATPase inhibitor is heat-stable, insensitive to urea but very sensitive to trypsin degradation. 6. The Escherichia coli ATPase inhibitor does not inhibit the mitochondrial or the chloroplast ATPase.  相似文献   

14.
The bindings of Mg2+ to the F1 portion of Escherichia coli H+-ATPase and its isolated alpha and beta subunits were studied with 8-anilinonaphthalene-1-sulfonate (ANS). The fluorescence of ANS increased upon addition of F1 or its alpha subunit or beta subunit, as reported previously (M. Hirano, K. Takeda, H. Kanazawa, and M. Futai (1984) Biochemistry 23, 1652-1656). The fluorescence of ANS bound to F1 or its beta subunit increased significantly with further addition of Mg2+, whereas that of the alpha subunit increased only slightly. Ca2+ and Mn2+ had similar effects on the fluorescence of ANS with F1 and its beta subunit. The Mg2+-induced fluorescence enhancement (delta F) was high at an alkaline pH and was lowered by addition of ethylenediaminetetraacetic acid. Dicyclohexylcarbodiimide and azide had no effect on the delta F. Binding analysis showed that the concentration dependence of Mg2+ on the fluorescence enhancement of the beta subunit is similar to that of F1. These results suggest that both the beta subunit and F1 have binding sites for Mg2+ and that the delta F observed with F1 may be due to the binding of Mg2+ to the beta subunit.  相似文献   

15.
The temperature-sensitive Escherichia coli mutant strain ST-640 lyses at the restrictive temperature except when an osmotic stabilizer or a high concentration of d-alanine is present. The presence of dl-alanyl-dl-alanine does not prevent lysis. The rate of murein synthesis, followed in a wall medium, is decreased at both 30 and 42 C. d-Alanyl-d-alanine and uridine diphosphate-N-acetyl-muramyl (UDP-MurNAc)-pentapeptide are synthesized in decreased amounts, accompanied by accumulation of UDP-MurNAc-tripeptide at 42 C but not at 30 C. Uridine nucleotide precursors leak into the medium, especially out of the mutant cells. This leakage is prevented when NaCl is present. The d-alanine: d-alanine ligase (ADP) (EC 6.3.2.4) of the mutant strain, assayed in crude extracts, is temperature sensitive. The impaired ligase is relatively resistant to d-cycloserine and other inhibitors of the enzyme. Combined genetic and enzymatic results show that the low ligase activity is due to a mutation in the ddl gene, the structural gene for d-alanine: d-alanine ligase.  相似文献   

16.
Six chromosomal uncF mutants of Escherichia coli defective in the b subunit of H+-ATPase (156 amino acid residues) were identified (KF92, Met-1----Val; KF164, Gln-64----end; KF61 and KF144, Gln-104----end; KF138, Gln-106----end; and KF79, Gln-123----end). The membranes of all these mutants had low ATPase activities (less than 5% of that of the wild type), and no functional H+ pathway, although the truncated b subunits were integrated into these membranes. These findings suggest that about 30 carboxyl-terminal amino acid residues of the b subunit are essential for formation of the F1-binding site and H+ pathway. For examination of the role(s) of the carboxyl-terminal region(s) or residue(s) of the b subunit, recombinant plasmids carrying truncated uncF genes of various lengths were constructed by in vitro muta-genesis and introduced into a recA1 derivative of strain KF92 (Met-1----Val). Analyses of the membranes from the resulting strains demonstrated that almost the entire carboxyl-terminal region of the b subunit is necessary for formation of functional Fo, since loss of the carboxyl-terminal residue resulted in significant reduction of both F1 binding and H+ translocation, and loss of two or more residues abolished both activities completely.  相似文献   

17.
18.
In a lacZ expression vector (pMC1403Plac), all 64 codons were introduced immediately 3' from the AUG initiation codon. The expression of the second codon variants was measured by immunoprecipitation of the plasmid-coded fusion proteins. A 15-fold difference in expression was found among the codon variants. No distinct correlation could be made with the level of tRNA corresponding to the codons and large differences were observed between synonymous codons that use the same tRNA. Therefore the effect of the second codon is likely to be due to the influence of its composing nucleotides, presumably on the structure of the ribosomal binding site. An analysis of the known sequences of a large number of Escherichia coli genes shows that the use of codons in the second position deviates strongly from the overall codon usage in E. coli. It is proposed that codon selection at the second position is not based on requirements of the gene product (a protein) but is determined by factors governing gene regulation at the initiation step of translation.  相似文献   

19.
Complete nucleotide sequence of the genes for subunits of the H+ ATPase of E.coli has been determined and several hybrid plasmids carrying various portions of these genes have been constructed. Genetic complementation and recombination tests of about forty mutants of E.coli defective in the ATPase were performed using these plasmids for identifying the locations of the mutations. Two mutants defective in the delta subunit and a novel type of mutant defective in the b subunit of F0 were identified. The delta subunit mutants showed no proton conduction, suggesting that this subunit has an important role for the proton conduction. The ATPase of the b subunit mutant has a normal activity of proton channel portion, which phenotype is clearly different from that of mutants of the b subunit reported previously.  相似文献   

20.
Strain NR70, a mutant of E. coli lacking the Mg2+-adenosine triphosphatase (E.C. 3.6.1.3.) was previously shown to be defective in amino acid and sugar transport in whole cells and right-side-out membrane vesicles. It is shown here that the mutant is also deficient in the uptake of calcium into inverted membrane vesicles. Treatment of inverted vesicles from the wild-type strain with ethylenediamine tetraacetate removes the Mg2+-adenosine triphosphatase and results in an inability to transport calcium. Addition of a crude fraction containing the wild-type Mg2+-adenosine triphosphatase restores active uptake of calcium both to vesicles from the mutant and depleted vesicles from the wild-type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号