首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The present study was undertaken to determine the extent of diversity at 12 microsatellite short tandem repeat (STR) loci in seven primitive tribal populations of India with diverse linguistic and geographic backgrounds. DNA samples of 160 unrelated individuals were analyzed for 12 STR loci by multiplex polymerase chain reaction (PCR). Gene diversity analysis suggested that the average heterozygosity was uniformly high ( >0.7) in these groups and varied from 0.705 to 0.794. The Hardy-Weinberg equilibrium analysis revealed that these populations were in genetic equilibrium at almost all the loci. The overall G(ST) value was high (G(ST) = 0.051; range between 0.026 and 0.098 among the loci), reflecting the degree of differentiation/heterogeneity of seven populations studied for these loci. The cluster analysis and multidimensional scaling of genetic distances reveal two broad clusters of populations, besides Moolu Kurumba maintaining their distinct genetic identity vis-à-vis other populations. The genetic affinity for the three tribes of the Indo-European family could be explained based on geography and Language but not for the four Dravidian tribes as reflected by the NJT and MDS plots. For the overall data, the insignificant MANTEL correlations between genetic, linguistic and geographic distances suggest that the genetic variation among these tribes is not patterned along geographic and/or linguistic lines.  相似文献   

2.
Numerous population samples from around the world have been tested for Y chromosome-specific p49a,f/TaqI restriction polymorphisms. Here we review the literature as well as unpublished data on Y-chromosome p49a,f/TaqI haplotypes and provide a new nomenclature unifying the notations used by different laboratories. We use this large data set to study worldwide genetic variability of human populations for this paternally transmitted chromosome segment. We observe, for the Y chromosome, an important level of population genetics structure among human populations (FST = .230, P < .001), mainly due to genetic differences among distinct linguistic groups of populations (FCT = .246, P < .001). A multivariate analysis based on genetic distances between populations shows that human population structure inferred from the Y chromosome corresponds broadly to language families (r = .567, P < .001), in agreement with autosomal and mitochondrial data. Times of divergence of linguistic families, estimated from their internal level of genetic differentiation, are fairly concordant with current archaeological and linguistic hypotheses. Variability of the p49a,f/TaqI polymorphic marker is also significantly correlated with the geographic location of the populations (r = .613, P < .001), reflecting the fact that distinct linguistic groups generally also occupy distinct geographic areas. Comparison of Y-chromosome and mtDNA RFLPs in a restricted set of populations shows a globally high level of congruence, but it also allows identification of unequal maternal and paternal contributions to the gene pool of several populations.  相似文献   

3.
The combination of polymorphic restriction-enzyme sites in the 3' region of the beta-globin gene cluster shows very little variation in southern-African Bantu-speaking black and Kalahari !Kung San populations. The sites of the 5' region, on the other hand, show marked variation, and two common haplotypes are present--the "Negro" type (- - - - +) and the "San" type (- + - - +)--in frequencies of .404 and .106, respectively, in the Bantu-speakers and .262 and .405, respectively, in the San. Twenty of 23 beta s-associated haplotypes in southern-African Bantu-speaking black subjects were the same as that found commonly in the Central African Republic (CAR)--i.e., the "Bantu" type--a finding providing the first convincing biological evidence for the common ancestry of geographically widely separated speakers of languages belonging to the Bantu family. The (-alpha) haplotype has a frequency of .21 in the Venda, .07 in both the Sotho-Tswana and the Nguni, and .06 among the !Kung San. These data are interpreted in the light of Plasmodium falciparum malaria selection and population movements in the African subcontinent.  相似文献   

4.
To evaluate sex-specific differences in gene flow between Native American populations from South America and between those populations and recent immigrants to the New World, we examined the genetic diversity at uni- and biparental genetic markers of five Native American populations from Colombia and in published surveys from native South Americans. The Colombian populations were typed for five polymorphisms in mtDNA, five restriction sites in the beta-globin gene cluster, the DQA1 gene, and nine autosomal microsatellites. Elsewhere, we published results for seven Y-chromosome microsatellites in the same populations. Autosomal polymorphisms showed a mean G(ST) of 6.8%, in agreement with extensive classical marker studies of South American populations. MtDNA and Y-chromosome markers resulted in G(ST) values of 0.18 and 0.165, respectively. When only Y chromosomes of confirmed Amerind origin were used in the calculations (as defined by the presence of allele T at locus DYS199), G(ST) increased to 0.22. G(ST) values calculated from published data for other South American natives were 0.3 and 0.29 for mtDNA and Amerind Y chromosomes, respectively. The concordance of these estimates does not support an important difference in migration rates between the sexes throughout the history of South Amerinds. Admixture analysis of the Colombian populations suggests an asymmetric pattern of mating involving mostly immigrant men and native women.  相似文献   

5.
We attempt to address the issue of genetic variation and the pattern of male gene flow among and between five Indian population groups of two different geographic and linguistic affiliations using Y-chromosome markers. We studied 221 males at three Y-chromosome biallelic loci and 184 males for the five Y-chromosome STRs. We observed 111 Y-chromosome STR haplotypes. An analysis of molecular variance (AMOVA) based on Y-chromosome STRs showed that the variation observed between the population groups belonging to two major regions (western and southwestern India) was 0.17%, which was significantly lower than the level of genetic variance among the five populations (0.59%) considered as a single group. Combined haplotype analysis of the five STRs and the biallelic locus 92R7 revealed minimal sharing of haplotypes among these five ethnic groups, irrespective of the similar origin of the linguistic and geographic affiliations; this minimal sharing indicates restricted male gene flow. As a consequence, most of the haplotypes were population specific. Network analysis showed that the haplotypes, which were shared between the populations, seem to have originated from different mutational pathways at different loci. Biallelic markers showed that all five ethnic groups have a similar ancestral origin despite their geographic and linguistic diversity.  相似文献   

6.
On the genetic interrelationships of South African Negroes   总被引:1,自引:0,他引:1  
This study addresses the comparative genetic interrelationships between South African Negro groups. For this the genetic distances between seven ethnically defined Negro subsamples (total of 998 individuals) based on 24 genetic loci/polymorphisms are calculated by applying standard distance formulae. These computations offer an opportunity to evaluate the different polymorphisms in terms of their effects on the genetic distances. The genetic interrelationships thus computed are illustrated by way of dendrograms and are discussed in terms of their comparative significance. It follows from the findings that the Ndebele, Northern Sotho (Pedi), and Tswana form a closely related subcluster and that the Zulu and Swazi as well as the Venda and Shangana-Tsonga form two additional, more distant, subclusters. These results are discussed and tentatively interpreted against the background of the reported Khoisan admixture of the populations concerned as well as their ethnological history. The data are also compared to those derived from metric and dermatoglyphic studies. It is concluded that whereas there is some agreement between these categories of variation (genetic, metric, and dermatoglyphic) as far as the comparative evaluation of South African Negro groups is concerned, there also are discrepancies. These conclusions need to be explained in terms of evolutionary mechanisms (such as historic origins, hybridization, natural selection, and genetic drift) in order to obtain a more consistent and comprehensive comparative picture of the physical anthropology of southern African populations.  相似文献   

7.
Elucidating the pattern of genetic diversity for non-European populations is necessary to make the benefits of human genetics research available to individuals from these groups. In the era of large human genomic initiatives, Native American populations have been neglected, in particular, the Quechua, the largest South Amerindian group settled along the Andes. We characterized the genetic diversity of a Quechua population in a global setting, using autosomal noncoding sequences (nine unlinked loci for a total of 16 kb), 351 unlinked SNPs and 678 microsatellites and tested predictions of the model of the evolution of Native Americans proposed by (Tarazona-Santos et al.: Am J Hum Genet 68 (2001) 1485-1496). European admixture is <5% and African ancestry is barely detectable in the studied population. The largest genetic distances were between African versus Quechua or Melanesian populations, which is concordant with the African origin of modern humans and the fact that South America was the last part of the world to be peopled. The diversity in the Quechua population is comparable with that of Eurasian populations, and the allele frequency spectrum based on resequencing data does not reflect a reduction in the proportion of rare alleles. Thus, the Quechua population is a large reservoir of common and rare genetic variants of South Amerindians. These results are consistent with and complement our evolutionary model of South Amerindians (Tarazona-Santos et al.: Am J Hum Genet 68 (2001) 1485-1496), proposed based on Y-chromosome data, which predicts high genomic diversity due to the high level of gene flow between Andean populations and their long-term effective population size.  相似文献   

8.
Data on 31 genetic systems were obtained for 421 individuals belonging to the Arara, Araweté, Mundurucu, and Jamamadi tribes of northern Brazil. The Jamamadi depart farthest, and the Mundurucu least, from South American Indian averages. These data are analyzed together with those of 24 other Amazonian groups. Genetic distances and corresponding dendrograms indicate a cluster of 14 related tribes living north of the Amazon river. These genetic results show only a modest correlation with linguistic and geographic relationships among these groups.  相似文献   

9.
The genetic profile based on autosomal markers, four microsatellite DNA markers (D8S315, FES, D8S592, and D2S1328) and two minisatellite DNA markers (TPMT and PDGFA), were analyzed in six endogamous populations to examine the effect of geographic and linguistic affiliation on the genetic affinities among the groups. The six populations are from three different states of India and are linguistically different. Marathas from western India speak Marathi, an Indo-European language. Arayas, Muslims, Ezhavas, and Nairs from Kerala state of South India speak Malayalam, and Iyers from Tamil Nadu state speak Tamil. Genomic DNA was extracted from peripheral blood samples of random, normal, healthy individuals. Locus-specific PCR amplification was carried out, followed by electrophoresis of the amplicons and genotyping. All the loci were highly polymorphic and followed Hardy-Weinberg equilibrium, except for loci D8S315 and PDGFA in Iyers and Marathas, respectively. All six loci had high heterozygosity (average heterozygosity ranged from 0.73 to 0.76) and high polymorphism information content (0.57-0.90). The extent of gene differentiation among the six populations (G(ST) = 0.030) was greater than that for four Kerala populations (G(ST) = 0.011), suggesting proximity between the four Kerala populations. This result conforms with the cultural and linguistic background of the populations. The extent of diversity found among the populations probably resulted from the strict endogamous practices that they follow.  相似文献   

10.
A previous analysis of mtDNA variation in the Caucasus found that Indo-European-speaking Armenians and Turkic-speaking Azerbaijanians were more closely related genetically to other Caucasus populations (who speak Caucasian languages) than to other Indo-European or Turkic groups, respectively. Armenian and Azerbaijanian therefore represent language replacements, possibly via elite dominance involving primarily male migrants, in which case genetic relationships of Armenians and Azerbaijanians based on the Y-chromosome should more closely reflect their linguistic relationships. We therefore analyzed 11 bi-allelic Y-chromosome markers in 389 males from eight populations, representing all major linguistic groups in the Caucasus. As with the mtDNA study, based on the Y-chromosome Armenians and Azerbaijanians are more closely-related genetically to their geographic neighbors in the Caucasus than to their linguistic neighbors elsewhere. However, whereas the mtDNA results show that Caucasian groups are more closely related genetically to European than to Near Eastern groups, by contrast the Y-chromosome shows a closer genetic relationship with the Near East than with Europe.  相似文献   

11.
This study attempts to ascertain genetic affinities between Native American and East Asian populations by analyzing four polymorphic Alu insertions (PAIs) and three L1 polymorphic loci. These two genetic systems demonstrated strong congruence when levels of diversity and genetic distances were considered. Overall, genetic relatedness within Native American groups does not correlate with geographical and linguistic structure, although strong grouping for Native Americans with East Asians was demonstrated, with clear discrimination from African and European groups. Most of the variation was assigned to differences occurring within groups, but the interpopulation variation found for South Amerindians was recognizably higher in comparison to the other sampled groups of populations. Our data suggest that bottleneck events followed by strong influence of genetic drift in the process of the peopling of the Americas may have been determinant factors in delineating the genetic background of present-day South Amerindians. Since no clear subgroups were detected within Native Americans and East Asians, there is no indication of multiple waves in the early colonization of the New World.  相似文献   

12.
Semerikova SA  Semerikov VL 《Genetika》2007,43(12):1637-1646
The genetic variability in 29 populations of Abies sibirica, three of A. nephrolepis, and seven of A. sachalinensis was studied using SSR markers of chloroplast DNA. Stable amplification and polymorphic products were obtained using primer pairs Pt71936 and Pt30204 (with nine and forteen alleles, respectively) of 10 pairs. Totally, 70 haplotypes were found, 43 in A. sibirica, 49 in A. sachalinensis, and 31 in A. nephrolepis. The highest values of genetic diversity parameters were observed in A. sachalinensis, and the lowest in A. nephrolepis. The Siberian fir differs from Far East species by the uneven multimodal frequency distributions of allele length in both cpSSR loci, which is explained by the presence of few separated from each other dominating haplotypes. This fact indicates that A. sibirica and the Far East species have different demographic histories. In A. sibirica, the proportion of diversity between populations in the total genetic diversity, calculated taking into account the differences between haplotypes (R(ST)) was 8.34% and 4.42% without accounting for haplotypes differences (R(ST) > G(ST), P= 0.01). The pairwise G(ST) correlate significantly with geographic distances between the populations A. sibirica and with genetic distances D calculated from allozyme data. No such correlations were found with the R(ST) parameter. The results of cpSSR variability analysis strongly support the conclusions inferred from allozyme data: several geographic groups of comparatively genetically close populations are identified, which may be explained by the invasion of colonization of the present-day Siberian fir range.  相似文献   

13.
Mitochondrial and autosomal short tandem-repeat (STR) genetic distances among 28 Pacific Island and Asian populations are significantly correlated (r=.25, P<.01) but describe distinct patterns of relationships. Maternally inherited-mtDNA data suggest that Remote Oceanic Islanders originated in island Southeast Asia. In contrast, biparental STR data reveal substantial genetic affinities between Remote Oceanic Islanders and Near Oceanic populations from highland Papua New Guinea and Australia. The low correlation between maternal and biparental genetic markers from the same individuals may reflect differences in genome-effective population sizes or in sex-biased gene flow. To explore these possibilities, we have examined genetic diversity, gene flow, and correlations among genetic, linguistic, and geographic distances within four sets of populations representing potential geographic and cultural spheres of interaction. GST estimates (a measure of genetic differentiation inversely proportional to gene flow) from mtDNA sequences vary between 0.13 and 0.39 and are typically five times greater than GST estimates from STR loci (0.05-0.08). Significant correlations (r>.5, P<.05) between maternal genetic and linguistic distances are coincident with high mtDNA GST estimates (>0.38). Thus, genetic and linguistic distances may coevolve, and their correspondence may be preserved under conditions of genetic isolation. A significant correlation (r=.65, P<.01) between biparental genetic and geographic distances is coincident with a low STR GST estimate (0.05), indicating that isolation by distance is observed under conditions of high nuclear-gene flow. These results are consistent with an initial settlement of Remote Oceania from island Southeast Asia and with extensive postcolonization male-biased gene flow with Near Oceania.  相似文献   

14.
To define Y-chromosome haplotypes, we studied seven biallelic polymorphic sites. We combined data with those from four dinucleotide-repeat polymorphisms, to establish Y-chromosome compound superhaplotypes. Eight biallelic haplotypes that matched the dendrogram proposed by other investigators were identified in 762 Y chromosomes from 25 African populations. For each biallelic site, coalescence time of lineages carrying the derived allele was estimated and compared with previous estimates. The "ancestral" haplotype (haplotype 1A) was observed among Ethiopians, "Khoisan" (!Kung and Khwe), and populations from northern Cameroon. Microsatellite distributions within this haplotype showed that the Khoisan haplotypes 1A are widely divergent from those of the other two groups. Populations from northern Africa and northern Cameroon share a haplotype (i.e., 1C), which is not observed in other African populations but represents a major Eurasian cluster. Haplotypes 1C of northern Cameroon are clearly distinct from those of Europe, whereas haplotypes 1C of northern African are well intermingled with those of the other two groups. Apportionment of diversity for the Y-chromosomal biallelic haplotypes was calculated after populations were clustered into different configurations. Despite some correspondence between language affiliation and genetic similarity, geographic proximity seems to be a better predictor of genetic affinity.  相似文献   

15.

Background  

Current information about the expansion of Bantu-speaking peoples is hampered by the scarcity of genetic data from well identified populations from southern Africa. Here, we fill an important gap in the analysis of the western edge of the Bantu migrations by studying for the first time the patterns of Y-chromosome, mtDNA and lactase persistence genetic variation in four representative groups living around the Namib Desert in southwestern Angola (Ovimbundu, Ganguela, Nyaneka-Nkumbi and Kuvale). We assessed the differentiation between these populations and their levels of admixture with Khoe-San groups, and examined their relationship with other sub-Saharan populations. We further combined our dataset with previously published data on Y-chromosome and mtDNA variation to explore a general isolation with migration model and infer the demographic parameters underlying current genetic diversity in Bantu populations.  相似文献   

16.
The patterning of allele frequency variability among 18 local groups of Gainj and Kalam speakers of highland Papua New Guinea is investigated using new genetic distance methods. The genetic distances proposed here are obtained by decomposing Sewall Wright's coefficient FST into a set of coefficients corresponding to all pairs of population subdivisions. Two statistical methods are given to estimate these quantities. One method provides estimates weighted by sample sizes, while the other method does not use sample size weighting. Both methods correct for the within-individual and between-individual-within-groups sums of squares. Genetic distances among the Gainj and Kalam subdivisions are analyzed with respect to demographic, geographic, and linguistic variables. We find that a demographic feature, group size, has the greatest demonstrable association with the patterning of genetic distances. The pattern of geographic distances among groups displays a weak congruence with the pattern of genetic distances, and the association of genetic and linguistic diversity is very low. An effect of differences in group size on genetic distances is not surprising, from basic theoretical considerations, but genetic distances have not often been analyzed with respect to these variables in the past. The lack of correspondence between genetic distances and linguistic and geographic differences is an unusual feature that distinguishes the Gainj and Kalam from most other tribal populations.  相似文献   

17.
North Africa is considered a distinct geographic and ethnic entity within Africa. Although modern humans originated in this Continent, studies of mitochondrial DNA (mtDNA) and Y-chromosome genealogical markers provide evidence that the North African gene pool has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. More recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North-South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the Maghreb. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population using mtDNA sequences and Y-chromosome biallelic polymorphisms, focusing on the fine dissection of haplogroups E and R, which are the most prevalent in North Africa and Europe respectively. The Eurasian component in Algeria reached 80% for mtDNA and 90% for Y-chromosome. However, within them, the North African genetic component for mtDNA (U6 and M1; 20%) is significantly smaller than the paternal (E-M81 and E-V65; 70%). The unexpected presence of the European-derived Y-chromosome lineages R-M412, R-S116, R-U152 and R-M529 in Algeria and the rest of the Maghreb could be the counterparts of the mtDNA H1, H3 and V subgroups, pointing to direct maritime contacts between the European and North African sides of the western Mediterranean. Female influx of sub-Saharan Africans into Algeria (20%) is also significantly greater than the male (10%). In spite of these sexual asymmetries, the Algerian uniparental profiles faithfully correlate between each other and with the geography.  相似文献   

18.
The present Venezuelan population is the product of admixture of Amerindians, Europeans, and Africans, a process that was not homogeneous throughout the country. Blood groups, short tandem repeats (STRs), mtDNA, and Y-chromosome markers have been used successfully in admixture studies, but few such studies have been conducted in Venezuela. In this study we aim to estimate the admixture components of samples from two different socioeconomic levels from Caracas, Venezuela's capital city, compare their differences, and infer sexual asymmetry in the European Amerindian union patterns. Gene frequencies for blood groups ABO and Rh (CDE) and for the STRs VWA, F13A01, and FES/FPS and mtDNA and Y-chromosome haplogroups were studied in a sample of 60 individuals living in Caracas, taken from a private clinic (high socioeconomic level), and 50 individuals, also living in Caracas, drawn from a public maternity clinic (low socioeconomic level). The admixture analysis for the five autosomal markers gives a high European component (0.78) and an almost negligible African sub-Saharan component (0.06) for the high socioeconomic level, whereas for the low socioeconomic level the sub-Saharan, European, and Amerindian components were 0.21, 0.42, and 0.36, respectively. Estimates of admixture based on mtDNA and Y-chromosome markers reveal that the Amerindian contribution to these Caracas samples is almost entirely through females, because the Y-chromosome Amerindian and African sub-Saharan chromosomes found in this study were scarce. Our study reveals that the identification of the grandparents' geographic origin is an important methodological aspect to take into account in genetic studies related to the reconstruction of historical events.  相似文献   

19.
The structure of gene pool of the Siberian aboriginal population has been described based on the data on polymorphism of ZFX gene located on X-chromosome. In ten populations under study 49 haplotypes have been determined, three of which are presented with high frequency. Comparing the obtained results with the available data from HapMap project unique "African" haplotypes were revealed, which occurred in Yoruba population with the frequency of 3-7% and were not found in other populations. A coefficient of genetic differentiation of the Siberian ethnic groups under study amounted to 0.0486. Correlation analysis involving Mantel test did not reveal any significant correlations between a matrix of genetic distances and the matrices of geographic, linguistic and anthropological differences, where a maximum coefficient was obtained at the comparison with the anthropological matrix. Phylogenetic analysis proved strong isolation of African population from the other investigated ethnic groups. The Siberian populations were subdivided into two separate clusters: the first one included Yakuts, Buryats and Kets, while the second cluster included Altaians, Tuvinians and Khanty. A principal component analysis enabled to combine the investigated populations in three groups, which clearly differed by a degree of manifestation of Caucasoid and Mongoloid components. The first group included Europe inhabitants and one of Khanty populations, the second one--populations of South Siberia and China inhabitants. Mongoloid populations of East Siberia, the Japanese and Kets were combined in the third group. The results of barrier analysis revealed similar structure of genetic differentiation in the Siberian population. Linkage disequilibrium structure was obtained for six ethnic groups of Siberia. A unified linkage block by ten SNP of ZFX gene was found in five of the presented ethnic groups (excluding Ket population).  相似文献   

20.
Recent studies have detailed a remarkable degree of genetic and linguistic diversity in Northern Island Melanesia. Here we utilize that diversity to examine two models of genetic and linguistic coevolution. The first model predicts that genetic and linguistic correspondences formed following population splits and isolation at the time of early range expansions into the region. The second is analogous to the genetic model of isolation by distance, and it predicts that genetic and linguistic correspondences formed through continuing genetic and linguistic exchange between neighboring populations. We tested the predictions of the two models by comparing observed and simulated patterns of genetic variation, genetic and linguistic trees, and matrices of genetic, linguistic, and geographic distances. The data consist of 751 autosomal microsatellites and 108 structural linguistic features collected from 33 Northern Island Melanesian populations. The results of the tests indicate that linguistic and genetic exchange have erased any evidence of a splitting and isolation process that might have occurred early in the settlement history of the region. The correlation patterns are also inconsistent with the predictions of the isolation by distance coevolutionary process in the larger Northern Island Melanesian region, but there is strong evidence for the process in the rugged interior of the largest island in the region (New Britain). There we found some of the strongest recorded correlations between genetic, linguistic, and geographic distances. We also found that, throughout the region, linguistic features have generally been less likely to diffuse across population boundaries than genes. The results from our study, based on exceptionally fine-grained data, show that local genetic and linguistic exchange are likely to obscure evidence of the early history of a region, and that language barriers do not particularly hinder genetic exchange. In contrast, global patterns may emphasize more ancient demographic events, including population splits associated with the early colonization of major world regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号