首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
An enzyme in the cytoplasmic membrane, nitrate reductase, can be solubilized by heating membranes to 60 degrees C for 10 min at alkaline pH. A protease in the cell envelope has been shown to be responsible for this solubilization. The localization of this protease in the outer membrane was demonstrated by separating the outer membrane from the cytoplasmic membrane, adding back various forms of outer membrane protein to the cytoplasmic membrane, and following the increase in nitrate reductase solubilization with increasing amounts of outer membrane proteins. This solubilization is accompanied by the cleavage of one of the subunits of nitrate reductase and is inhibited by the protease inhibitor p-aminobenzamidine. Analysis of membrane proteins synthesized by cells grown in the presence of various amounts of p-aminobenzamidine revealed that p-aminobenzamidine affects the synthesis of the major outer membrane proteins but has little effect on the synthesis of cytoplasmic membrane proteins. When outer membrane is reacted with the protease inhibitor [3H]diisopropylfluorophosphate, a single protein in the outer membrane is labeled. Since the interaction with diisopropylfluorophosphate is inhibited by p-aminobenzamidine, it is suggested that this single outer membrane protein is responsible for the in vitro solubilization of nitrate reductase and the in vivo processing of the major outer membrane proteins.  相似文献   

2.
The expression for the isotropic membrane bending energy was generalized for the case of a multicomponent membrane where the membrane constituents (single molecules or small complexes of molecules-membrane inclusions) were assumed to be anisotropic. Using this generalized expression for the membrane energy it was shown that the change of intrinsic shape of membrane components may induce first-order-like shape transitions leading to the formation of a membrane neck. The predicted discontinuous membrane shape transition and the concomitant lateral segregation of membrane components were applied to study membrane budding. Based on the results presented we conclude that the budding process might be driven by accumulation of anisotropic membrane components in the necks connecting the bud and the parent membrane, and by accumulation of isotropic (conical) membrane components on the bud. Both processes may strongly depend on the intrinsic shape of membrane components and on the direct interactions between them.  相似文献   

3.
The outer membrane fraction from Rhodopseudomonas sphaeroides was isolated by isopycnic density centrifugation. The purity of this fraction was assayed by several methods. When the outer membrane fraction obtained after French press lysis of cells was compared with the outer membrane fragments released during spheroplast formation, the polypeptide profiles were identical. Detergent solubilization of membrane fractions showed that Triton X-100 nonselectively solubilizes both the cytoplasmic membrane and the outer membrane, whereas Deriphat 160 selectively solubilizes the cytoplasmic membrane. Several outer membrane polypeptides, including the major outer membrane protein, exhibited changes in electrophoretic mobility that depended upon the temperature of solubilization in sodium dodecyl sulfate. Solubilization at room temperature in the presence of ions reproduced the effect of thermal denaturation on the major outer membrane polypeptide.  相似文献   

4.
膜生物反应器的研究进展   总被引:2,自引:0,他引:2  
膜生物反应器是近年来发展的废水处理新技术,具有活性污泥浓度高、污泥龄长、占地面积小、投资省的特点。利用膜生物反应器进行污水处理不仅可以大大节约水资源,还可以大大节约能源,节省设备和运行费用,已成为二十一世纪研究热点。膜生物反应器是通过高效膜分离技术与活性污泥相结合,增大污泥中的特效菌来加快生化反应速率,提高废水处理效果。目前处理对象已从生活污水扩展到高浓度的有机废水和难降解的工业废水。本文综述了膜生物反应器在废水中的应用研究情况,并分析比较了各种膜材质的特点、适用范围以及膜的污染因素和清洗方法,展望了膜生物反应器的应用前景及进一步研究方向。  相似文献   

5.
A rat liver plasma membrane preparation was isolated and characterized both biochemically and morphologically. The isolation procedure was rapid, simple and effective in producing a membrane fraction with the following biochemical characteristics: approximately 40-fold enrichment in three plasma membrane markers, 5'-nucleotidase, alkaline phosphodiesterase I (both putative bile canalicular membrane enzymes), and the asialo-glycoprotein (ASGP) receptor (a membrane glycoprotein present along the sinusoidal front of hepatocytes); a yield of each of these plasma membrane markers that averaged approximately 16%; and minimal contamination by lysosomes, nuclei, and mitochondria, but persistent contamination by elements of the endoplasmic reticulum. Morphological analysis of the preparation revealed that all three major domains of the hepatocyte plasma membrane (sinusoidal, lateral, and bile canalicular) were present in substantial amounts. The identification of sinusoidal membrane was further confirmed when ASGP binding sites were localized predominantly to this membrane in the isolated PM using electron microscope autoradiography. By morphometry, the sinusoidal front membrane accounted for 47% of the total membrane in the preparation, whereas the lateral surface and bile canalicular membrane accounted for 6.8% and 23% respectively. This is the first report of such a large fraction of sinusoidal membrane in a liver plasma membrane preparation.  相似文献   

6.
The YidC protein fulfills a dual and essential role in the assembly of inner membrane proteins in Escherichia coli. Besides interacting with transmembrane segments of newly synthesized membrane proteins that insert into the membrane via the SecYEG complex, YidC also functions as an independent membrane protein insertase and assists in membrane protein folding. Here, we discuss the mechanisms of YidC substrate recognition and membrane insertion with emphasis on its role in the assembly of multimeric membrane protein complexes such as the F1F0-ATP synthase.  相似文献   

7.
Summary A proteolipidic toxin, prymnesin, when added to the aqueous solutions around thin lipid membranes causes a marked increase in membrane conductance. The toxin-treated membrane is cation-permselective. The extent of cation permselectivity is dependent upon ionic strength of the aqueous solutions in a fashion similar to the dependence of cation permselectivity of a cation exchanger containing about 100mm of fixed negative sites. Dose-response relationship studies reveal a linear relation between log prymnesin concentration and log membrane conductance. The slope of the curve is around 3 if the toxin is applied to one side of the membrane and is around 7 if the toxin is applied to both sides of the membrane. The membrane treated with toxin on one side only is clearly asymmetric in its properties. These characteristics are expressed by an asymmetric current-voltage relationship, and by asymmetric sensitivity of membrane conductance to pH and to salt concentration. The conductance of the toxin-treated membrane is inversely proportional to temperature. It is suggested that aggregates of toxin moieties assemble in the membrane to form negatively charged aqueous pores. There is roughly a good correlation between the increase in membrane conductance and the increase in membrane permeability to urea if both were attributed to the formation of aqueous channels in the membrane.  相似文献   

8.
The mode and organization of the attachment site of Cryptosporidium muris to gastric glands of stomach were investigated by the freeze-fracture method. Cryptosporidium muris was enveloped by a double membrane, of host plasma membrane origin, which formed the parasitophorous vacuole. The outer membrane of the double membrane was continuous with host plasma membrane, while the inner membrane was connected with the anterior part of the parasite plasma membrane at the annular ring. The density of intramembranous particles (IMP) was severely altered at the above two junctures. The parasitophorous outer membrane showed low IMP-density when compared to the host plasma membrane, although both membranes were continuous at the dense band. The inner membrane had few IMP, whereas the parasite plasma membrane showed numerous IMP, although both membranes were continuous at the annular ring. The size of dense band and annular ring was similar in diameter. The feeder organelle was clearly visible as membrane folds in freeze-fracture and some of them were connected with small vesicles of cytoplasm, indicating that the feeder organelle may play an important role for incorporation of nutrients from the host cell.  相似文献   

9.
Summary Freeze-fracture images of exocytosis and endocytosis were studied in various kinds of secretory cells of the anterior pituitary of mice and rabbits. Exocytotic figures are frequently observed in thin section of the anterior pituitary cells. In freeze-fracture images, small elevated membrane areas without membrane particles are often seen on the PF of the plasma membrane of the secretory cells. There is a secretory granule in the cytoplasm just beneath the particle-free membrane area, and limiting membrane of the granule is also devoid of the membrane particles at the part facing the plasma membrane. The fusion of membranes for exocytosis may occur at this particle-free area.The limiting membrane of the granule which is continuous with the plasma membrane is almost always coated after release of the granule core. This invagination of coated membrane may be an initiation site for the membrane retrieval after exocytosis. In freeze-fracture images, this depressed region with an accumulation of the membrane particles is observed on the PF of the plasma membrane. This particle-rich depressed region is thought to correspond to the coated area of the plasma membrane observed in thin section. It is thought that the membrane retrieval by pinocytosis initiates at the particle-rich depressed region of the plasma membrane.This study was supported by a grant from the Japan Ministry of Education  相似文献   

10.
Membrane topology refers to the two-dimensional structural information of a membrane protein that indicates the number of transmembrane (TM) segments and the orientation of soluble domains relative to the plane of the membrane. Since membrane proteins are co-translationally translocated across and inserted into the membrane, the TM segments orient themselves properly in an early stage of membrane protein biogenesis. Each membrane protein must contain some topogenic signals, but the translocation components and the membrane environment also influence the membrane topology of proteins. We discuss the factors that affect membrane protein orientation and have listed available experimental tools that can be used in determining membrane protein topology.  相似文献   

11.
The absorption and circular dichroism of the purple membrane in solution and the linear and circular dichroism of the purple membrane oriented in a film were used to detect changes in the membrane protein structure and membrane organization in the pH range of 2.4 to 12.6. Main findings are (a) the membrane protein structure is stable at every level of organization to pH changes over the range of 5.0 to 8.5. (b) Tertiary structural changes occur in the membrane protein structure in the pH range of 2.4 to 5.0 and 8.5 to 11.8 without any secondary structural involvement. (c) An irreversible change occurs in the membrane organization in the pH range of 11.8 to 12.6 involving large tertiary and secondary structural changes in the membrane protein. (d) The retinyl chromophore is influenced by a nearby ionizable group. (e) The membrane crystalline structure is highly stable to pH perturbation except at the high pH range of 11.0 to 11.8.  相似文献   

12.
The internalization of the insulin receptor in the isolated rat adipose cell and the spatial orientation of the alpha (Mr = 135,000) and beta (Mr = 95,000) subunits of the receptor in the plasma membrane have been examined. The receptor subunits were labeled by lactoperoxidase/Na125I iodination, a technique which side-specifically labels membrane proteins in intact cells and impermeable membrane vesicles. Internalization was induced by incubating cells for 30 min at 37 degrees C in the presence of saturating insulin. Plasma, high density microsomal (endoplasmic reticulum-enriched), and low density microsomal (Golgi-enriched) membrane fractions were prepared by differential ultracentrifugation. Receptor subunit iodination was analyzed by immunoprecipitation with anti-receptor antibodies, sodium dodecyl sulfate/polyacrylamide gel electrophoresis, and autoradiography. When intact cells were surface-labeled and incubated in the absence of insulin, the alpha and beta receptor subunits were clearly observed in the plasma membrane fraction and their quantities in the microsomal membrane fractions paralleled plasma membrane contamination. Following receptor internalization, however, both subunits were decreased in the plasma membrane fraction by 20-30% and concomitantly and stoichiometrically increased in the high and low density microsomal membrane fractions, without alterations in either their apparent molecular size or proportion. In contrast, when the isolated particulate membrane fractions were directly iodinated, both subunits were labeled in the plasma membrane fraction whereas only the beta subunit was prominently labeled in the two microsomal membrane fractions. Iodination of the subcellular fractions following their solubilization in Triton X-100 again clearly labeled both subunits in all three membrane fractions in identical proportions. These results suggest that 1) insulin receptor internalization comprises the translocation of both major receptor subunits from the plasma membrane into at least two different intracellular membrane compartments associated, respectively, with the endoplasmic reticulum and Golgi-enriched membrane fractions, 2) this translocation occurs without receptor loss or alterations in receptor subunit structure, and 3) the alpha receptor subunit is primarily, if not exclusively, exposed on the extracellular surface of the plasma membrane while the beta receptor subunit traverses the membrane, and this vectorial disposition is inverted during internalization.  相似文献   

13.
The membrane capacitance of the outer hair cell, which has unique membrane potential-dependent motility, was monitored during application of membrane tension. It was found that the membrane capacitance of the cell decreased when stress was applied to the membrane. This result is the opposite of stretching the lipid bilayer in the plasma membrane. It thus indicates the importance of some other capacitance component that decreases on stretching. It has been known that charge movement across the membrane can appear to be a nonlinear capacitance. If membrane stress at the resting potential restricts the movement of the charge associated with force generation, the nonlinear capacitance will decrease. Furthermore, less capacitance reduction by membrane stretching is expected when the membrane is already extended by the (hyperpolarizing) membrane potential. Indeed, it was found that at hyperpolarized potentials, the reduction of the membrane capacitance due to stretching is less. The capacitance change can be described by a two state model of a force-producing unit in which the free energy difference between the contracted and stretched states has both electrical and mechanical components. From the measured change in capacitance, the estimated difference in the membrane area of the unit between the two states is about 2 nm2.  相似文献   

14.
The inner membrane system of mitochondria us known to consist of two contiguous but distinct membranes: the inner boundary membrane, which apposes the outer membrane, and the cristal membrane, which forms tubules or lamellae in the interior. Using immunolabeling and transmission electron microscopy of bovine heart tissue, we have calculated that around 94% of both Complex III of the respiratory chain and the ATP synthase are located in the cristal membrane, and only around 6% of either is in the inner boundary membrane. When accounting for the topographical ratio of cristal membrane versus inner boundary membrane, we find that both complexes exist at a 2.2-2.6-fold higher concentration in the cristal membrane. The residual protein in the inner boundary membrane may be newly assembled complexes destined for cristal membranes. Our results argue for restricted diffusion of complexes through the cristal junctions and indicate that the mitochondrial cristae comprise a regulated submitochondrial compartment specialized for ATP production.  相似文献   

15.
Most integral membrane proteins are cotranslationally inserted into the lipid bilayer. In prokaryotes, membrane insertion of the nascent chain takes place at the plasma membrane, whereas in eukaryotes insertion takes place into the endoplasmatic reticulum. In both kingdoms of life, however, the same membrane that acquaints the newly born membrane protein also synthesizes the bilayer lipids and thus ensures the balanced growth of the membrane as a whole. Recent evidence indicates that the lipid composition of the host membrane can determine the fate of the newborn membrane protein, as it can affect (1) the efficiency of translocation, (2) the topology of the resulting membrane protein, (3) its stability, (4) its assembly into oligomeric complexes, (5) its transport and sorting along the secretory pathway, and (6) its enzymatic activity. The lipid composition of the membrane thus can affect the biogenesis and function of integral membrane proteins at multiple steps along its biogenetic pathway. While understanding this interdependence between bilayer lipids and protein biogenesis is interesting in its own right, careful consideration of a potential host’s membrane lipid composition may also allow optimization of the yield and activity of membrane proteins that are expressed in a heterologous organism. Here, we review and discuss some examples that illustrate the interdependence between bilayer lipids and the biogenesis of integral membrane proteins.  相似文献   

16.
盐胁迫对玉米叶片叶肉细胞生物膜超微结构的影响   总被引:4,自引:0,他引:4  
研究了NaCl胁迫对玉米叶肉细胞生物膜超微结构的影响. 结果表明:NaCl胁迫破坏了玉米叶片叶肉细胞生物膜的正常结构,50 mmol·L-1 NaCl处理胁迫下,玉米叶肉细胞核膜,线粒体膜,细胞膜,叶绿体膜,液泡膜都受到不同程度的破坏,叶绿体基粒类囊体膨胀,间质片层空间增大,片层紊乱。100 mmol·L-1 NaCl处理胁迫下,质膜,液泡膜,线粒体,叶绿体都受到严重的破坏。细胞质膜破坏,破损的叶绿体充斥在细胞间隙中;叶绿体外膜破坏,甚至解体消失,叶肉细胞中充满膜结构,基粒排列方向改变,垛叠层数减少,基粒和基质片层界限模糊不清,有的基粒解体消失,甚至叶绿体完全解体;核膜破坏、解体,核中的染色质高度凝缩;线粒体的数量增多,线粒体膜破坏,脊的数量减少,甚至整个线粒体破损解体;液泡膜破坏;由于各种生物膜的破坏,使细胞内充满许多囊状小泡、多泡体或斑层小体;叶肉细胞发生严重的质壁分离,严重时发生细胞壁断裂;甚至整个细胞溶解。  相似文献   

17.
ABSTRACT The mode and organization of the attachment site of Cryptosporidium muris to gastric glands of stomach were investigated by the freeze-fracture method. Cryptosporidium muris was enveloped by a double membrane, of host plasma membrane origin, which formed the parasitophorous vacuole. The outer membrane of the double membrane was continuous with host plasma membrane, while the inner membrane was connected with the anterior part of the parasite plasma membrane at the annular ring. The density of intramembranous particles (IMP) was severely altered at the above two junctures. The parasitophorous outer membrane showed low IMP-density when compared to the host plasma membrane, although both membranes were continuous at the dense band. The inner membrane had few IMP, whereas the parasite plasma membrane showed numerous IMP, although both membranes were continuous at the annular ring. The size of dense band and annular ring was similar in diameter. The feeder organelle was clearly visible as membrane folds in freeze-fracture and some of them were connected with small vesicles of cytoplasm, indicating that the feeder organelle may play an important role for incorporation of nutrients from the host cell.  相似文献   

18.
The outer membrane of Campylobacter coli, C. jejuni and C. fetus cell envelopes appeared as three fractions after sucrose gradient centrifugation. Each outer membrane fraction was contaminated with succinate dehydrogenase activity from the cytoplasmic membrane fraction. Similarly the inner membrane fraction was contaminated with 2-ketodeoxyoctonate and outer membrane proteins including the porin(s). The separation of these two membranes was not facilitated by variations in lysozyme treatment, cell age, presence or absence of flagella, or longer lipopolysaccharide chain length. Sodium lauroyl sarcosinate extraction resulted in an outer membrane fraction which contained some inner membrane contamination and produced multiple bands upon sucrose gradient centrifugation. Triton X-100 extraction removed the inner membrane from the outer membrane and Triton X-100/EDTA treatment extracted lipopolysaccharide-rich regions of the outer membrane which contained almost exclusively the Campylobacter porin(s). These data indicated that the inner and outer membranes of the Campylobacter cell envelope were very difficult to separate, possibly because of extensive fusions between these two membranes.  相似文献   

19.
The mechanical pressure difference across the bacterial cellulose membrane located in a horizontal plane causes asymmetry of voltage measured between electrodes immersed in KCl solutions symmetrically on both sides of the membrane. For all measurements, KCl solution with lower concentration was above the membrane. In configuration of the analyzed membrane system, the concentration boundary layers (CBLs) are created only by molecular diffusion. The voltages measured in the membrane system in concentration polarization conditions were compared with suitable voltages obtained from the model of diffusion through CBLs and ion transport through the membrane. An increase of difference of mechanical pressure across the membrane directed as a difference of osmotic pressure always causes a decrease of voltage between the electrodes in the membrane system. In turn, for mechanical pressure difference across the membrane directed in an opposite direction to the difference of osmotic pressure, a peak in the voltage as a function of mechanical pressure difference is observed. An increase of osmotic pressure difference across the membrane at the initial moment causes an increase of the maximal value of the observed peak and a shift of this peak position in the direction of higher values of the mechanical pressure differences across the membrane.  相似文献   

20.
The insertion of newly synthesized proteins into the outer membrane of Escherichia coli has been examined. The results show that there is no precurser pool of outer membrane proteins in the cytoplasmic membrane because first, the incorporation of a [35S]methionine pulse into outer membrane proteins completely parallels its incorporation into cytoplasmic membrane proteins, and second, under optimal isolation conditions, no outer membrane proteins are found in the cytoplasmic membrane, even when the membranes are analysed after being labeled for only 15 s. The [35S]methionine present in the outer membrane after a pulse of 15 s was found in protein fragments of varying sizes rather than in specific outer membrane proteins. This label could however be chased into specific proteins within 30--120 s, depending on the size of the protein, indicating that although unfinished protein fragments were present in the outer membrane, they were completed by subsequent chain elongation. Thus, outer membrane proteins are inserted into the outer membrane while still attached to ribosomes. Since ribosomes which are linked to the cell envelope by nascent polypeptide chains are stationary, the mRNA which is being translated by these ribosomes moves along the inner cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号