首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel variant of S49 mouse lymphoma cells is described which is resistant to growth arrest and cytolysis by dibutyryl cyclic AMP but, in contrast to previously described variants, has normal cyclic AMP-dependent protein kinase. The variant is also resistant to N6-monobutyryl cAMP but is sensitive to killing by 8-bromo cAMP and cholera toxin. Extracts of the variant appear to contain wild type levels of both O2'-butyrylesterase and cyclic AMP phosphodiesterase activities. Accumulation of exogenous [3H]dibutyryl cyclic AMP is reduced in the variant suggesting a defect in either uptake or secretion of the analog or its metabolic products. Accumulation of cyclic AMP in variant cells after stimulation of adenylate cyclase with either isoproterenol or cholera toxin is also reduced compared with wild type cells, although cyclase activity of membranes prepared from the variant cells is normal. Extracellular accumulation of cyclic AMP after stimulation of variant cells with isoproterenol is greater than that found with wild type cells. It is concluded that the variant has an alteration in its cyclic AMP secretion mechanism resulting in more efficient extrusion of cyclic AMP than in wild type cells.  相似文献   

2.
Wild-type Salmonella typhimurium could not grow with exogenous cyclic adenosine 3',5'-monophosphate (AMP) as the sole source of phosphate, but mutants capable of cyclic AMP utilization could be isolated provided the parental strain contained a functional cyclic AMP phosphodiesterase.All cyclic AMP-utilizing mutants had the growth and fermentation properties of cyclic AMP receptor protein (crp) mutants, and some lacked cyclic AMP binding activity in vitro. The genetic defect in each such mutant was due to a single point mutation, which was co-transducible with cysG. crp mutants isolated by alternative procedures also exhibited the capacity to utilize cyclic AMP. crp mutants synthesized cyclic AMP at increased rates and contained enhanced cellular cyclic AMP levels relative to the parental strains, regardless of whether or not cyclic AMP phosphodiesterase was active. Moreover, adenylate cyclase activity in vivo was less sensitive to regulation by glucose, possibly because the enzyme II complexes of the phosphotransferase system, responsible for glucose transport and phosphorylation, could not be induced to maximal levels. This possibility was strengthened by the observation that enzyme II activity (measured both in vitro by sugar phosphorylation and in vivo by sugar transport and chemotaxis) was inducible in the parental strain but not in crp mutants. The results suggest that the cyclic AMP receptor protein regulates cyclic AMP metabolism as well as catabolic enzyme synthesis.  相似文献   

3.
A mutant strain (PN507) of the cellular slime mold Polysphondylium pallidum is described which: (a) is morphogenetically abnormal in stalk formation; (b) secretes unusually low quantities of cyclic AMP; (c) responds to exogenous cyclic AMP in the same manner as wild type, by differentiating stalk cells and synthesizing several specific proteins; (d) complements with other morphogenetic mutants secreting normal amounts of cyclic AMP to produce fruiting structures resembling wild type. The tentative conclusion is that the critical defect of PN507 is low production of cyclic AMP.  相似文献   

4.
We have demonstrated that in Chinese hamster ovary (CHO) cells, N6,O2'-dibutyryl adenosine cyclic 3':5'-monophosphate (dibutyryl cyclic AMP) has a remarkable morphogenetic effect in converting cells of a compact, epithelial-like morphology into a spindle-shaped, fibroblast-like form. Homogenates of CHO cells were found to contain two adenosine cyclic 3':5'-monophosphate (cyclic AMP) phosphodiesterase (EC 3.1.4.c) activities, which differ in apparent Km with respect to their substrate, cyclic AMP. These were designated cyclic AMP phosphodiesterase I, with a low Km of 2 to 5 muM and cyclic AMP phosphodiesterase II, with a high Km of 1 to 3 mM. Cyclic AMP phosphodiesterase I was competitively inhibited by N6-monobutyryl and dibutyryl cyclic AMP, with apparent Ki values of 40 to 60 muM and 0.25 to 0.35 mM, respectively. Experimental evidence demonstrates that the effect of exogenous dibutyryl cyclic AMP on cell morphology is a result of an increase in the endogenous level of cyclic AMP. This increase appears to be due largely to the inhibitory action of intracellular N6-monobutyryl cyclic AMP on cyclic AMP phosphodiesterase I, which results in a decreased rate of degradation of intracellular cyclic AMP.  相似文献   

5.
In Escherichia coli cya mutants, deficient in adenylate cyclase (EC 4.6.1.1), basal cellular rates of glycogen synthesis were lower and the relative increases produced by exogenous cyclic adenosine 3',5'-monophosphate during growth on glucose were greater than in their respective parent strains. These observations provide strong evidence that endogenous cyclic AMP is one of the key regulators of glycogen synthesis in growing E. coli. In crp mutants, deficient in cyclic AMP receptor protein (CRP), the basal cellular rates of glycogen synthesis were much lower than in their respective parent strains. Stimulation of glycogen synthesis by exogenous cyclic AMP was markedly attenuated in the three crp mutants. Thus, stimulation of glycogen synthesis by either endogenous or exogenous cyclic AMP appears to require CRP. Functional CRP appeared to be required for all three responses observed after cyclic AMP addition: an abrupt step-up in the cellular rate of glycogen synthesis, a continuing exponential increase in rate, and a stimulation of the rate during a subsequent nitrogen starvation. To account for these responses, we derived a mathematical model in which the cyclic AMP-CRP complex regulates the differential rate of synthesis of an enzyme metabolizing an effector of the rate-limiting enzyme of glycogen synthesis.  相似文献   

6.
A group of three mutants of Chinese hamster ovary cells (10260, 10265, and 10223) which are resistant to cyclic AMP (Gottesman, M. M., LeCam, A., Bukowski, M., and Pastan I. (1980) Somatic Cell Genet. 6, 45-61) have been characterized in this work. By genetic analysis, these mutants are all recessive and fall into two complementation groups. Cycl AMP-stimulated protein kinase activity in crude extracts of these mutants using histone as a substrate is decreased to 10 and 7% (complementation group I), and 31% (complementation group II), respectively, of the activity found in wild type extracts. The binding of cyclic [3H]AMP by extracts of all of these mutants is decreased to 30 to 50% of the binding found in wild type extracts. We have used the photoaffinity label 8-azidoadenosine 3':5'-[32P]monophosphate to label the regulatory subunits of type I and type II protein kinase in wild type and mutant extracts analyzed by DEAE-cellulose and Sephadex chromatography. We find that all three mutants lack type I cyclic AMP-dependent protein kinase and have reduced amounts of type II kinase activity. The regulatory subunits of type I and type II kinase are present in both complementation groups. We conclude that type I protein kinase is not needed for normal growth of Chinese hamster ovary cells. The defect in both classes of mutants appears to be in the failure of the catalytic subunit to associate normally with its regulatory subunits.  相似文献   

7.
A mutant clone resistant to dibutyryl cyclic AMP was isolated from S49 mouse lymphoma cells. The mutant expressed a form of cyclic AMP-dependent protein kinase distinguishable from wild type kinase by its decreased sensitivity to activation by cyclic AMP and its increased thermal lability. Hybrids formed between mutant and wild type cells were resistant to dibutyryl cyclic AMP and expressed both mutant and wild type activities in about equal amount. The parent mutant cells also appeared to express wild type kinase activity, but at a lower level. We conclude that wild type S49 cells have and express two identical alleles for the regulatory subunit of protein kinase, one of which has undergone mutation in the mutant cells.  相似文献   

8.
Mouse B16 melanoma extracts of both cultured cells and tumour tissue contain cyclic AMP phosphodiesterase activity, with 95% present in the soluble fraction. Although activation of the enzyme by added calmodulin did not occur, it was found that endogenous calmodulin was present at a level sufficient to activate fully the enzyme. The ability of Ca-calmodulin to stimulate cyclic AMP phosphodiesterase in this tissue was shown by the inhibitory effect of N-(6-aminohexyl)-5-chloronaphthalenesulphonamide (W7), a known calmodulin antagonist; by the activation of the enzyme with exogenous calmodulin observed in supernatants depleted of endogenous calmodulin by passage over fluphenazine-Sepharose 6B in the presence of Ca2+; by the Ca-dependent binding of the enzyme to calmodulin-agarose and its activation by Ca-calmodulin after elution from the column with EGTA-containing buffer. It was calculated that about 50% of the total cyclic AMP phosphodiesterase activity was calmodulin-activated in this tissue.  相似文献   

9.
Glycogen synthase (EC 2.4.1.11) activity was studied in cell extracts from wild-type Chinese hamster ovary (CHO) cells and three mutants resistant to cyclic AMP effects on cell shape and cell growth. Based on the capacity of crude extracts to phosphorylate exogenous histone, two of the mutants appeared to have altered cyclic AMP-dependent protein kinase (EC 2.7.1.37) and one of them had apparently normal amounts of kinase activity. Glycogen synthase activity was present in comparable amounts in wild-type and all three mutant strains in a presumably inactive phosphorylated form since activity was virtually completely dependent upon the presence of glucose 6-phosphate. The enzyme could be partially dephosphorylated by endogenous phosphatases and rephosphorylated by exogenous cyclic AMP-dependent protein kinase. Attempts to find culture conditions (e.g. glucose starvation) or cell treatment (e.g. insulin) which might activate glycogen synthase in intact cells were unsuccessful. since glycogen synthase activity present in CHO cells was independent of the level of cyclic AMP-dependent kinase, we conclude that cyclic AMP-dependent protein kinase does not play a critical role in regulating the state of phosphorylation of the synthase.  相似文献   

10.
Glycogen synthase (EC 2.4.1.11) activity was studied in cell extracts from wild-type Chinese hamster ovary (CHO) cells and three mutants resistant to cyclic AMP effects on cell shape and cell growth. Based on the capacity of crude extracts to phosphorylate exogenous hisone, two of the mutants appeared to have altered cyclic AMP-dependent protein kinase (EC 2.7.1.37) and one of them had apparently normal amounts of kinase activity. Glycogen synthase activity was present in comparable amounts in wild-type and all three mutant strains in a presumably inactive phosphorylated form since activity was virtually completely dependent upon the presence of glucose 6-phosphate. The enzyme could be partially dephosphorylated by endogenous phosphatases and rephosphorylated by exogenous cyclic AMP-dependent protein kinase. Attempts to find culture conditions (e.g. glucose starvation)_or cell treatment (e.g. insulin) which might activate glycogen synthase in intact cells were unsuccessful. Since glycogen synthase activity present in CHO cells was independent of the level of cyclic AMP-dependent kinase, we conclude that cyclic AMP-dependent protein kinase does not play a critical role in regulating the state of phosphorylation of the synthase.  相似文献   

11.
B16 mouse melanoma cells are grown inhibited by cyclic AMP or by retinoic acid (RA). However, the combination of these two agents results in less growth inhibition than either agent alone. In order to investigate this interaction, cells were selected for resistance to 8-bromo-cyclic AMP-induced growth inhibition. Two clones (3 and 7) which demonstrated significant resistance were isolated. When these two clones were treated with retinoic acid (RA) it was observed that they also exhibited different degrees of resistance to this growth inhibitor. This cross-resistance did not appear to be due to a lack of uptake or retention of the respective inhibitors, since the mutants took up and retained more 3H-cAMP and 3H-RA than wild type cells, suggesting that the dual resistance was not due to an amplification of P-glycoprotein. The mutation confering cAMP-resistance did not appear to involve cyclic AMP-dependent protein kinase, since both catalytic activity and the amount of cAMP protein binding was similar in wild type and mutants. Thus, the mutation must be beyond the interaction of cAMP with cAMP-dependent protein kinase. We have previously reported that RA induces protein kinase C in B16 melanoma cells (Niles and Loewy: Cancer Res. 49:4483-4487, 1989). Therefore, we measured the ability of RA to induce protein kinase C in the cyclic AMP-resistant mutants. We found an inverse correlation between RA-induced protein kinase C activity and growth inhibition in these mutants. The data reported here suggest that cyclic AMP regulates some step in the RA signal transduction pathway.  相似文献   

12.
Prostaglandin E1 (PGE1) has a stimulatory effect both on the growth and the expression of differentiated function of Madin Darby Canine Kidney (MDCK) cells in a hormonally defined medium (Medium K-1). While the stimulatory effect of PGE1 on MDCK cell growth is observed in subconfluent cultures, the effect of PGE1 on differentiated function (i.e., dome formation) is observed at confluency. PGE1 may possibly affect growth and such differentiated functions by separate mechanisms. In order to examine this possibility, dibutyryl cyclic AMP resistant variants of MDCK were selected. All of the variants were partially resistant to the growth inhibitory effects of dibutyryl cyclic AMP and theophylline. The cyclic AMP dependent protein kinase activity of four of the five variant clones studied was significantly reduced as compared with normal MDCK cells. The dependence of the kinase activity of several of the dibutyryl cyclic AMP resistant variants (DBr2 and DBr3) on the cyclic AMP concentration in the reaction mixture was compared with that of normal MDCK cells. At all of the cyclic AMP concentrations tested DBr2 and DBr3 cells had reduced protein kinase activity as compared with normal MDCK cells. This reduced activity could be attributed to a decrease in the Vmax for kinase in the two variants, rather than to a change in the Km of kinase for cyclic AMP. The cyclic AMP phosphodiesterase activity of dibutyryl cyclic AMP resistant variants was also studied. Unlike PGE1 independent clone 1, DBr2 and DBr3 cells did not differ significantly from normal MDCK cells with regard to their ability to degrade cyclic AMP. The growth and functional responsiveness of DBr2 and DBr3 cells to PGE1 was also examined. DBr2 and DBr3 cells were shown to retain a normal growth response to PGE1. However the capacity of DBr2 and DBr3 cells to form domes in response to PGE1 was dramatically reduced as compared with normal MDCK cells. Nevertheless DBr3 cells were shown to still retain the capacity to form domes in response to other inducers. The effect of PGE1 on one of the functional parameters involved in dome formation (the activity of the Na+/K+ATPase) was examined. The rate of ouabain-sensitive Rb+ uptake was observed to be elevated in confluent monolayers of normal MDCK cells maintained in Medium K-1, as compared with monolayers maintained in Medium K-1 minus PGE1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Studies on the crisp-1 (cr-1), cyclic adenosine 3',5'-monophosphate (cAMP)-deficient mutants of Neurospora crassa were undertaken to characterize the response of these mutants to exogenous cyclic nucleotides and cyclic nucleotide analogs. A growth tube bioassay and a radioimmune assay for cyclic nucleotides yielded the following results. (i) 8-Bromo cAMP and N6-monobutyryl cAMP but not dibutyryl cAMP are efficient cAMP analogs in Neurospora, stimulating mycelial elongation of the cr-1 mutants. Exogenous cyclic guanosine 3'5'-monophosphate (cGMP) also stimulates such mycelial elongation. (ii) Both cAMP levels and cGMP levels found in cr-1 mycelia are lower than those in wild type. However, the levels of both cyclic nucleotides are normal in conidia of cr-1. The data on cr-1 mycelia and those reported earlier in Escherichia coli (M. Shibuya, Y. Takebe, and Y. Kaziro (Cell 12:528-528, 1977) show a previously unexpected relationship between cAMP and cGMP metabolism in microorganisms. The semicolonial morphology of another adenylate cyclase-deficient mutant of Neurospora, frost, was not corrected by exogenous cyclic nucleotides or by phosphodiesterase inhibitors indicating that the frost morphology is probably not caused by low endogenous cAMP levels. The low adenylate cyclase activity and the abnormal morphology of frost may be related separately to the linolenate deficiency reported in the mutant.  相似文献   

14.
Both wild type and cr-1 mutant (adenylate cyclase and cyclic AMP-deficient) strains of Neurospora crassa contain fructose 2,6-bisphosphate at levels of 27 nmol/g dry tissue weight. This level decreases by about 50% in both strains upon depriving the cells of carbon or nitrogen sources for 3 h. An increase in cyclic AMP levels produced by addition of lysine to nitrogen-starved cells produced no increase in fructose 2,6-bisphosphate levels. Both strains respond to short-term addition of salicylate, acetate, or 2,4-dinitrophenol with an increase in fructose 2,6-bisphosphate. Thus, the above-described regulation of fructose 2,6-bisphosphate levels is cyclic AMP-independent. A suspension of the wild type produces a transient increase of fructose 2,6-bisphosphate in response to administration of glucose, whereas the mutant strain does not respond unless it is fed exogenous cyclic AMP. Substitution of acetate for sucrose as a sole carbon source for growth leads to a differential decrease in fructose 2,6-bisphosphate levels between the two strains: the wild type strain has 63% and the cr-1 mutant strain has 37% of the levels of fructose 2,6-bisphosphate on acetate as compared to sucrose-grown controls. This may be the basis for an advantage of cr-1 over wild type in growth on acetate. Thus, although most regulation of fructose 2,6-bisphosphate is cyclic AMP-independent, the levels can be regulated by a combination of carbon source and cyclic AMP levels.  相似文献   

15.
The physiological function of cyclic AMP (cAMP) phosphodiesterase in Salmonella typhimurium was investigated with strains which were isogenic except for the cpd locus. In crude broken-cell extracts the properties of the enzyme were found to be similar to those reported for Escherichia coli. The specific activity in the mutant was less than 1% that in the wild type. Rates of cAMP production in the mutant were as much as twice those observed in the wild type. The amount of cAMP accumulated when cells grew overnight with limiting glucose was 4.5-fold greater in the mutant than in the wild type. The intracellular concentration of cAMP in the two strains was measured directly, using four different techniques to wash the cells to remove extracellular cAMP. The cAMP level in the cpd strain was only 25% greater than in the wild type. The functional concentration of the cAMP receptor protein-cAMP complex was estimated indirectly from the specific activity of beta-galactosidase in the two strains after introducing F'lac. When cells were grown with carbon sources permitting synthesis of different levels of cAMP, the specific activity of the enzyme was at most 25% greater in the cpd strain. The cpd strain was more sensitive to the effects of exogenous cAMP. Exogenous cAMP relieved both permanent and transient catabolite repression of the lac operon at lower concentrations in the cpd strain than in the wild type. When cells grew with glucose, glycerol, or ribose, exogenous cAMP inhibited growth of the mutant strain more than the wild type.  相似文献   

16.
We investigated the cell cycle regulation of deoxyribonucleoside triphosphate (dNTP) metabolism in hydroxyurea-resistant (HYUR) murine S49 T-lymphoma cell lines. Cell lines 10- to 40-fold more hydroxyurea-resistant were selected in a stepwise manner. These HYUR cells exhibited increased CDP reductase activity (5- to 8-fold) and increased dNTP pools (up to 5-fold) that appeared to result from increased activity of the M2 subunit (binding site of hydroxyurea) of ribonucleotide reductase. These characteristics remained stable when the cells were grown in the absence of hydroxyurea for up to 2 years. In both wild type and hydroxyurea-resistant cell populations synchronized by elutriation, dCTP and dTTP pools increased in S phase, whereas dATP and dGTP pools generally remained the same or decreased, suggesting that allosteric effector mechanisms were operating to regulate pool sizes. Additionally, CDP reductase activity measured in permeabilized cells increased in S phase in both wild type and hydroxyurea-resistant cells, suggesting a nonallosteric mechanism of increased ribonucleotide reductase activity during periods of active DNA synthesis. While wild type S49 cells could be arrested in the G1 phase of the cell cycle by dibutyryl cyclic AMP, hydroxyurea-resistant cell lines could not be arrested in the G1 phase by exogenous cyclic AMP or agents that elevate the concentration of endogenous cyclic AMP. These data suggest that cyclic AMP-generated G1 arrest in S49 cells might be mediated by the M2 subunit of ribonucleotide reductase.  相似文献   

17.
The role of cyclic AMP on endothelial cell proliferation was investigated, since these cells can be exposed to high concentrations of physiological and pharmacological agents that alter cyclic AMP metabolism. Cloned bovine aortic endothelial cells were plated at 25,000 cells/35mm dish and grown for 5 days in the presence of phosphodiesterase (PDE) inhibitors, forskolin, or cyclic AMP analogs. The PDE inhibitors dipyridamole, ZK 62 711, isobutylmethylxanthine (IBMX) and theophylline inhibited cell growth in a concentration-dependent manner. Dipyridamole produced a 30% and a 50% inhibition at 5 microM and 12.5 microM, while higher concentrations were cytotoxic. At its therapeutic plasma concentration range (50-100 microM) theophylline inhibited cell proliferation by 15-25%, while IBMX and the highly specific cyclic AMP phosphodiesterase inhibitor, ZK 62 711 inhibited growth by 60-80% and 40-50%, respectively. Forskolin (5 microM) increased cyclic AMP levels and cyclic AMP-kinase activity ratios by 2.5-fold and 2-fold. In the absence of PDE inhibitors forskolin produced a 20% growth inhibition at 0.5 microM and a 60% inhibition at 10 microM. The forskolin dose-response curve was not altered by theophylline, but was shifted to the left by approximately 10-fold with dipyridamole and ZK 62 711 and 5-fold with IBMX. Forskolin (5 microM), by itself produced a 1.8-fold increase in cyclic AMP. In the presence of 5 microM theophylline, dipyridamole, IBMX, and ZK 62 711, cyclic AMP was increased by forskolin 2.0, 2.6, 3.5, and 6.6-fold, respectively. 8-Bromo cyclic AMP and dibutyryl cyclic AMP produced a 55% and 60% growth inhibition at 100 microM. The cyclic GMP analogs were less effective inhibitors of growth (15-30%). Our results demonstrate that cyclic AMP analogs and pharmacological agents that elevate intracellular cyclic AMP levels inhibit cell growth and suggest that cyclic AMP may be an important endogenous regulator of endothelial cell proliferation.  相似文献   

18.
Both wild type and cr-1 mutant (adenylate cyclase and cyclic AMP-deficient) strains of Neurospora crassa contain fructose 2,6-biphosphate at levels of 2t nmol/g dry tissue weight. This level decreases by about 50% in both strains upon depriving the cells of carbon or nitrogen sources for 3 h. An increase in cyclic AMP levels produced by addition of lysine to nitrogen-starved cells produced no increase in fructose 2,6-biphosphate levels. Both strains respond to short-term addition of salicylate, acetate, or 2,4-dinitrophenol with an increase in fructose 2,6-biphosphate. Thus, the above-described regulation of fructose 2,6-biphosphate levels is cyclic AMP-independent. A suspension of the wild type produces a transient increase of fructose 2,6-biphosphate in response to administration of glucose, whereas the mutant strain does not respond unless it is fed exogenous cyclic AMP. Substitution of acetate for sucrose as a sole carbon source for growth leads to a differential decrease in fructose 2,6-biphosphate levels between the two strains: the wild type strain has 63% and the cr-1 mutant strain has 37% of the levels of fructose 2,6-biphosphate on acetate as compared to sucrose-grown controls. This may be the basis for an advantage of cr-1 over wild type in growth on acetate. Thus, although most regulation of fructose 2,6-biphosphate is cyclic AMP-independent, the levels can be regulated by a combination of carbon source and cyclic AMP levels.  相似文献   

19.
The following evidence suggests that inhibition of hepatoma cell (HTC) growth by cyclic nucleotides is an adenosine-like effect that is greatly modified by the type and treatment of serum used in the culture medium and is probably not mediated by cyclic AMP-dependent protein kinase: 1) Heating serum reduces its phosphodiesterase content, thereby slowing metabolism of cyclic AMP and reducing the inhibition of HTC cell growth by cyclic AMP; 2) Using medium that contains phosphodiesterase but lacks adenosine deaminase causes adenosine to accumulate from cyclic AMP and increases the toxicity of cyclic AMP; 3) Uridine or cytidine reverses the growth inhibition caused by adenosine, 5'-AMP or cyclic AMP; 4) adenosine, 5'-AMP and N6-(delta 2-isopentenyl) adenosine are more toxic for HTC cells than is cyclic AMP, and N6,O2-dibutyryl cyclic AMP is not toxic; and 5) N6,O2'-dibutyryl cyclic AMP inhibits growth of Reuber H35 cells, but uridine prevents this inhibition of growth. We conclude that most, if not all, of the inhibitory effects of cyclic AMP and N6,O2'-dibutyryl cyclic AMP on HTc and Reuber H35 hepatoma cell growth are due to the generation of toxic metabolites.  相似文献   

20.
In previous studies, cystic fibrosis (CF) fibroblasts were demonstrated to be resistant to the cytotoxic effects of ouabain, dexamethasone, and the sex hormones, dihydrotestosterone, 17beta-estradiol, and progesterone. We now show that CF fibroblasts also exhibit greatly increased resistance to the cytotoxic effects of exogenous dibutyryl cyclic AMP (cAMP), as well as to isoproterenol and theophylline, drugs which are known to increase endogenous levels of cAMP. CF cells were also shown to have normal amounts of (3H)cAMP binding to protein kinase as well as normal amounts of cAMP-stimulated protein kinase activity. Phosphodiesterase in CF cells was also found to be stimulated by cAMP to the same degree as in normal cells. These findings suggest that there is no detectable protein kinase deficiency in CF cells. cf cells thus appear to be unlike some cAMP-resistant mutants described by others which are defective in protein kinase activity and cAMP regulation of phosphodiesterase levels. The cross-resistance of CF fibroblasts to ouabain, steroid hormones, and cAMP may provide a unique opportunity to study the biochemical events involved in the metabolism of these drugs as well as the basic biochemical defect in a common human genetic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号