首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Peroxisomes are organelles found in all eukaryotic cells. Peroxisomes import integral membrane proteins post-translationally, and PEX19 is a predominantly cytosolic, farnesylated protein of mammalian and yeast cells that binds multiple peroxisome membrane proteins and is required for their correct targeting/insertion to the peroxisome membrane. We report the characterisation of the Arabidopsisthaliana homologue of PEX19 which is a predominantly cytosolic protein. AtPEX19 is encoded by two genes (designated AtPEX19-1 and AtPEX19-2) that are expressed in all tissues and at all developmental stages of the plant. Quantitative real time PCR shows that AtPEX19-1 and AtPEX19-2 have distinct expression profiles. Using in vitro translation and co-immunoprecipitation AtPEX19-1 was shown to bind to the Arabidopsis peroxisomal membrane protein PEX10. Additionally, bacterially expressed recombinant AtPEX19-1 was able to bind a fusion protein consisting of the C-terminus of PEX10 and glutathione S-transferase in pull-down assays, thereby demonstrating that non-farnesylated AtPEX19 can interact with the C-terminus of AtPEX10. Purified recombinant AtPEX19-1 was analysed by gel filtration chromatography and was found to have a molecular weight consistent with it forming a dimer and a dimer was detected in Arabidopsis cell extracts that was slightly destabilised in the presence of DTT. Moreover, cross-linking studies of native AtPEX19 suggest that in vivo it is the dimeric species of the protein that preferentially forms complexes with other proteins.  相似文献   

5.
Peroxisomes are organelles found in all eukaryotic cells. Peroxisomes import integral membrane proteins post-translationally, and PEX19 is a predominantly cytosolic, farnesylated protein of mammalian and yeast cells that binds multiple peroxisome membrane proteins and is required for their correct targeting/insertion to the peroxisome membrane. We report the characterisation of the Arabidopsis thaliana homologue of PEX19 which is a predominantly cytosolic protein. AtPEX19 is encoded by two genes (designated AtPEX19-1 and AtPEX19-2) that are expressed in all tissues and at all developmental stages of the plant. Quantitative real time PCR shows that AtPEX19-1 and AtPEX19-2 have distinct expression profiles. Using in vitro translation and co-immunoprecipitation AtPEX19-1 was shown to bind to the Arabidopsis peroxisomal membrane protein PEX10. Additionally, bacterially expressed recombinant AtPEX19-1 was able to bind a fusion protein consisting of the C-terminus of PEX10 and glutathione S-transferase in pull-down assays, thereby demonstrating that non-farnesylated AtPEX19 can interact with the C-terminus of AtPEX10. Purified recombinant AtPEX19-1 was analysed by gel filtration chromatography and was found to have a molecular weight consistent with it forming a dimer and a dimer was detected in Arabidopsis cell extracts that was slightly destabilised in the presence of DTT. Moreover, cross-linking studies of native AtPEX19 suggest that in vivo it is the dimeric species of the protein that preferentially forms complexes with other proteins.  相似文献   

6.
7.
Replication factor C (RF-C) is a eukaryotic heteropentameric protein required for DNA replication and repair processes by loading proliferating cell nuclear antigen (PCNA) onto DNA in an ATP-dependent manner. Prior to loading PCNA, RF-C binds to DNA. This binding is thought to be restricted to a specific DNA structure, namely to a primer/template junction. Using the electron microscope we have examined the affinity of human heteropentameric RF-C and the DNA-binding region within the large subunit of RF-C from Drosophila melanogaster (dRF-Cp140) to heteroduplex DNA. The electron microscopic data indicate that both human heteropentameric RF-C and the DNA-binding region within dRF-Cp140 are sequestered by single-stranded DNA. No preferential affinity for the 3' or 5' transition points from single- to double-stranded DNA was evident.  相似文献   

8.
The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.  相似文献   

9.
Glycans present on glycoproteins from the eggs of the parasite Schistosoma mansoni are mediators of various immune responses of the human host, including T-cell modulation and granuloma formation, and they are the target of glycan-specific antibodies. Here we have analyzed the glycosylation of kappa-5, a major glycoprotein antigen from S. mansoni eggs using a targeted approach of lectin purification followed by mass spectrometry of glycopeptides as well as released glycans. We demonstrate that kappa-5 has four fully occupied N-glycosylation sites carrying unique triantennary glycans composed of a difucosylated and xylosylated core region, and immunogenic GalNAcβ1-4GlcNAc (LDN) termini. Furthermore, we show that the kappa-5 specific IgE antibodies in sera of S. mansoni-infected individuals are directed against the core region of the kappa-5 glycans. Whereas two previously analyzed immunomodulatory egg glycoproteins, IPSE/alpha-1 and omega-1, both express diantennary N-glycans with a difucosylated core and one or two Galβ1-4(Fucα1-3)GlcNAc (Lewis X) antennae, the kappa-5 glycosylation appears unique among the major soluble egg antigens of S. mansoni. The distinct structural and antigenic properties of kappa-5 glycans suggest a specific role for kappa-5 in schistosome egg immunogenicity.  相似文献   

10.
In Kv1.5, protonation of histidine 463 in the S5-P linker (turret) increases the rate of depolarization-induced inactivation and decreases the peak current amplitude. In this study, we examined how amino acid substitutions that altered the physico-chemical properties of the side chain at position 463 affected slow inactivation and then used the substituted cysteine accessibility method (SCAM) to probe the turret region (E456-P468) to determine whether residue 463 was unique in its ability to modulate the macroscopic current. Substitutions at position 463 of small, neutral (H463G and H463A) or large, charged (H463R, H463K, and H463E) side groups accelerated inactivation and induced a dependency of the current amplitude on the external potassium concentration. When cysteine substitutions were made in the distal turret (T462C-P468C), modification with either the positively charged [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) or negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate reagent irreversibly inhibited current. This inhibition could be antagonized either by the R487V mutation (homologous to T449V in Shaker) or by raising the external potassium concentration, suggesting that current inhibition by MTS reagents resulted from an enhancement of inactivation. These results imply that protonation of residue 463 does not modulate inactivation solely by an electrostatic interaction with residues near the pore mouth, as proposed by others, and that residue 463 is part of a group of residues within the Kv1.5 turret that can modulate P/C-type inactivation. electrophysiology; voltage-gated potassium channels; substituted cysteine accessibility method  相似文献   

11.
12.
Shoots of higher plants exhibit negative gravitropism. However, little is known about the mechanism or site of gravity perception in shoots. We have identified two loci that are essential for normal shoot gravitropism in Arabidopsis thaliana . Genetic analysis demonstrated that the shoot gravitropism mutants sgr1 and sgr7 are allelic to the radial pattern mutants, scr and shr , respectively. Characterization of the aerial phenotype of these mutants revealed that the primary defect is the absence of a normal endodermis in hypocotyls and inflorescence stems. This indicates that the endodermis is essential for shoot gravitropism and strongly suggests that this cell layer functions as the gravity-sensing cell layer in dicotyledonous plant shoots. These results also demonstrate that, in addition to their previously characterized role in root radial patterning, SCR and SHR regulate the radial organization of the shoot axial organs in Arabidopsis .   相似文献   

13.
During mouse embryogenesis GATA-4 is expressed first in primitive endoderm and then in definitive endoderm derivatives, including glandular stomach and intestine. To explore the role of GATA-4 in specification of definitive gastric endoderm, we generated chimeric mice by introducing Gata4(-/-) ES cells into ROSA26 morulae or blastocysts. In E14.5 chimeras, Gata4(-/-) cells were represented in endoderm lining the proximal and distal stomach. These cells expressed early cytodifferentiation markers, including GATA-6 and ApoJ. However, by E18.5, only rare patches of Gata4(-/-) epithelium were evident in the distal stomach. This heterotypic epithelium had a squamous morphology and did not express markers associated with differentiation of gastric epithelial cell lineages. Sonic Hedgehog, an endoderm-derived signaling molecule normally down-regulated in the distal stomach, was overexpressed in Gata4(-/-) cells. We conclude that GATA-4-deficient cells have an intrinsic defect in their ability to differentiate. Similarities in the phenotypes of Gata4(-/-) chimeras and mice with other genetically engineered mutations that affect gut development suggest that GATA-4 may be involved in the gastric epithelial response to members of the TGF-beta superfamily.  相似文献   

14.
Indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme of tryptophan catabolism through the kynurenine pathway. Intriguingly, IDO is constitutively and highly expressed in the mammalian epididymis in contrast to most other tissues where IDO is induced by proinflammatory cytokines, such as interferons. To gain insight into the role of IDO in the physiology of the mammalian epididymis, we studied both wild type and Ido1(-/-)-deficient mice. In the caput epididymis of Ido1(-/-) animals, the lack of IDO activity was not compensated by other tryptophan-catabolizing enzymes and led to the loss of kynurenine production. The absence of IDO generated an inflammatory state in the caput epididymis as revealed by an increased accumulation of various inflammation markers. The absence of IDO also increased the tryptophan content of the caput epididymis and generated a parallel increase in caput epididymal protein content as a consequence of deficient proteasomal activity. Surprisingly, the lack of IDO expression had no noticeable impact on overall male fertility but did induce highly significant increases in both the number and the percentage of abnormal spermatozoa. These changes coincided with a significant decrease in white blood cell count in epididymal fluid compared with wild type mice. These data provide support for IDO playing a hitherto unsuspected role in sperm quality control in the epididymis involving the ubiquitination of defective spermatozoa and their subsequent removal.  相似文献   

15.
Galectin-1 is reported to be upregulated in various human cancers. However, the relationship between galectin-1 expression and cancer prognosis has not been systematically assessed. In this study, we searched PubMed, Web of Science, and Embase to collect all relevant studies and a meta-analysis was performed. We found that increased galectin-1 expression was associated with tumor size (odds ratio [OR] = 1.75; 95% confidence interval [CI]: 1.06–2.89; p = 0.029), clinical stage (OR = 3.89; 95% CI: 2.40–6.31; p < 0.001), and poorer differentiation (OR = 1.39; 95% CI: 1.14–1.69; p = 0.001), but not with age (OR = 1.07; 95% CI: 0.82–1.39; p = 0.597), sex (OR = 0.89; 95% CI: 0.74–1.07; p = 0.202), or lymph node metastasis (OR = 2.57; 95% CI: 0.98–6.78; p = 0.056). In addition, we found that high galectin-1 expression levels were associated with poor overall survival (HR = 2.12; 95% CI: 1.71–2.64; p < 0.001). The results were further validated using The Cancer Genome Atlas data set. Moreover, high galectin-1 expression was significantly associated with disease-free survival (hazard ratio [HR] = 1.60; 95% CI: 1.17–2.19; p = 0.003), progression-free survival (HR = 1.93; 95% CI: 1.65–2.25; p < 0.001), and cancer-specific survival (HR = 1.82; 95% CI: 1.30–2.55; p < 0.001). Our meta-analysis demonstrated that galectin-1 might be a useful common biomarker for predicting prognosis in patients with cancer.  相似文献   

16.
We have examined the role of gibberellins (GAs) in plant development by expression of the pea GA 2-oxidase2 ( PsGA2ox2 ) cDNA, which encodes a GA inactivating enzyme, under the control of the MEDEA (MEA) promoter. Expression of MEA:PsGA2ox2 in Arabidopsis caused seed abortion, demonstrating that active GAs in the endosperm are essential for normal seed development. MEA:PsGA2ox2 plants had reduced ovule number per ovary and exhibited defects in phyllotaxy and leaf morphology which were partly suppressed by GA treatment. The leaf architecture and phyllotaxy defects of MEA:PsGA2ox2 plants were also restored by sly1-d which reduces DELLA protein stability to increase GA response. MEA:PsGA2ox2 seedlings had increased expression of the KNOTTED1 -like homeobox (KNOX) genes, BP , KNAT2 and KNAT6 , which are known to control plant architecture. The expression of KNOX genes is also altered in wild-type plants treated with GA. These results support the conclusion that GAs can suppress the effects of elevated KNOX gene expression, and raise the possibility that localized changes in GA levels caused by PsGA2ox2 alter the expression of KNOX genes to modify plant architecture.  相似文献   

17.
18.
Xyloglucan endotransglucosylases/hydrolases (XTHs) that mediate cleavage and rejoining of the beta (1-4)-xyloglucans of the primary cell wall are considered to play an important role in the construction and restructuring of xyloglucan cross-links. A novel rice (Oryza sativa) XTH-related gene, OsXTH8, was cloned and characterized after being identified by cDNA microarray analysis of gibberellin-induced changes in gene expression in rice seedlings. OsXTH8 was a single copy gene; its full-length cDNA was 1,298 bp encoding a predicted protein of 290 amino acids. Phylogenetic analysis revealed that OsXTH8 falls outside of the three established subfamilies of XTH-related genes. OsXTH8 was preferentially expressed in rice leaf sheath in response to gibberellic acid. In situ hybridization and OsXTH8 promoter GUS fusion analysis revealed that OsXTH8 was highly expressed in vascular bundles of leaf sheath and young nodal roots where the cells are actively undergoing elongation and differentiation. OsXTH8 gene expression was up-regulated by gibberellic acid and there was very little effect of other hormones. In two genetic mutants of rice with abnormal height, the expression of OsXTH8 positively correlated with the height of the mutants. Transgenic rice expressing an RNAi construct of OsXTH8 exhibited repressed growth. These results indicate that OsXTH8 is differentially expressed in rice leaf sheath in relation to gibberellin and potentially involved in cell elongation processes.  相似文献   

19.
Meiotic crossovers/chiasmata, that are required to ensure chromosome disjunction, arise via the class I interference-dependent pathway or via the class II interference-free pathway. The proportions of these two classes vary considerably between different organisms. In Arabidopsis, about 85% of chiasmata are eliminated in Atmsh4 mutants, denoting that these are class I events. In budding and fission yeasts Msh4-independent crossovers arise largely or entirely via a Mus81-dependent pathway. To investigate the origins of the 15% residual (AtMSH4-independent) chiasmata in Arabidopsis we conducted a cytological and molecular analysis of AtMUS81 meiotic expression and function. Although AtMUS81 functions in somatic DNA repair and recombination, it is more highly expressed in reproductive tissues. The protein is abundantly present in early prophase I meiocytes, where it co-localizes, in a double-strand break-dependent manner, with the recombination protein AtRAD51. Despite this, an Atmus81 mutant shows normal growth and has no obvious defects in reproductive development that would indicate meiotic impairment. A cytological analysis confirmed that meiosis was apparently normal in this mutant and its mean chiasma frequency was similar to that of wild-type plants. However, an Atmsh4 / Atmus81 double mutant revealed a significantly reduced mean chiasma frequency (0.85 per cell), compared with an Atmsh4 single mutant (1.25 per cell), from which we conclude that AtMUS81 accounts for some, but not all, of the 15% AtMSH4-independent residual crossovers. It is possible that other genes are responsible for these residual chiasmata. Alternatively the AtMUS81 pathway coexists with an alternative parallel pathway that can perform the same functions.  相似文献   

20.
Locus At5g03555 encodes a nucleobase cation symporter 1 (AtNCS1) in the Arabidopsis genome. Arabidopsis insertion mutants, AtNcs1-1 and AtNcs1-3, were used for in planta toxic nucleobase analog growth studies and radio-labeled nucleobase uptake assays to characterize solute transport specificities. These results correlate with similar growth and uptake studies of AtNCS1 expressed in Saccharomyces cerevisiae. Both in planta and heterologous expression studies in yeast revealed a unique solute transport profile for AtNCS1 in moving adenine, guanine and uracil. This is in stark contrast to the canonical transport profiles determined for the well-characterized S. cerevisiae NCS1 proteins FUR4 (uracil transport) or FCY2 (adenine, guanine, and cytosine transport).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号