首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerobacter aerogenes and Bacillus subtilis accumulated p, p'-DDT and methoxychlor directly from water. Uptake of both (14)C-labeled organochlorine insecticides was rapid; 80 to 90% of the 24-h residues were reached within 30 min. Total cellular residues varied linearly with concentrations of DDT and methoxychlor in water ranging from 0.5 to 5.0 mug/liter. The residue magnification factors from water were between 1,400- to 4,300-fold, but were independent of insecticide concentrations in water. When the insecticide-exposed microbial cells were washed with pesticide-free water, DDT residues were 45% in A. aerogenes and 30% in B. subtilis, whereas the methoxychlor level decreased nearly 75% in both organisms. Subsequent washing did not further reduce the insecticide residue. Autoclave-killed bacteria also rapidly adsorbed DDT and methoxychlor from water and, in some instances, residues were higher than in the living cells. Molecular polarity and lipid solubility appear to influence the retention of the organochlorine insecticides by bacterial cells.  相似文献   

2.
The p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily, is required as a co-receptor for the Nogo receptor (NgR) to mediate the activity of myelin-associated inhibitors such as Nogo, MAG, and OMgp. p45/NRH2/PLAIDD is a p75 homologue and contains a death domain (DD). Here we report that p45 markedly interferes with the function of p75 as a co-receptor for NgR. P45 forms heterodimers with p75 and thereby blocks RhoA activation and inhibition of neurite outgrowth induced by myelin-associated inhibitors. p45 binds p75 through both its transmembrane (TM) domain and DD. To understand the underlying mechanisms, we have determined the three-dimensional NMR solution structure of the intracellular domain of p45 and characterized its interaction with p75. We have identified the residues involved in such interaction by NMR and co-immunoprecipitation. The DD of p45 binds the DD of p75 by electrostatic interactions. In addition, previous reports suggested that Cys257 in the p75 TM domain is required for signaling. We found that the interaction of the cysteine 58 of p45 with the cysteine 257 of p75 within the TM domain is necessary for p45–p75 heterodimerization. These results suggest a mechanism involving both the TM domain and the DD of p45 to regulate p75-mediated signaling.  相似文献   

3.
Diabetic microangiopathy is often observed in diabetic patients, but there is little evidence regarding the relationship between post-prandial glycemia or insulinemia and the incidence of diabetic microangiopathy. In this study, to elucidate the relationship between post-prandial glycemia (or insulinemia) and diabetic microangiopathy, we performed a cross-sectional study of 232 subjects with type 2 diabetes mellitus who were not being treated with insulin injections. A multiple regression analysis showed that post-prandial hyperglycemia independently correlated with the incidence of diabetic retinopathy and neuropathy. Post-prandial hyperglycemia also correlated, although not independently, with the incidence of diabetic nephropathy. In addition, interestingly, post-prandial hypoinsulinemia independently correlated with the incidence of diabetic retinopathy, although not correlated with diabetic neuropathy or nephropathy. In conclusion, post-prandial hyperglycemia, rather than fasting glycemia or hemoglobin A1c levels, is an important predictor of the incidence of diabetic microangiopathy in Japanese type 2 diabetic patients.  相似文献   

4.
5.
Growing evidence suggests involvement of the tumor necrosis factor (TNF)-α system in the pathophysiology of psychiatric disorders. Research into post-traumatic stress disorder (PTSD) has investigated serum levels of TNF-α, but not to date its soluble receptors sTNF-R p55 and sTNF-R p75. We examined serum levels of TNF-α, sTNF-R p55 and sTNF-R p75 in 135 male German soldiers 70 of whom had been deployed abroad and 65 in Germany only. Post-traumatic stress symptoms were measured using the Post-traumatic Stress Diagnostic Scale (PDS) and the Trier Inventory for the Assessment of Chronic Stress (TICS). Correlational analysis controlling for multiple testing, showed no significant Spearman rank correlations between PDS or TICS scores and serum levels of TNF-α, sTNF-R p55 or sTNF-R p75, either in the full sample or in the group of soldiers who had been deployed abroad. ANCOVAs showed no significant differences between soldiers with or without a PDS-derived diagnosis of PTSD, or between soldiers with or without deployment abroad, after controlling for age, smoking and body mass index (BMI). These results suggest that the TNF-α system, as reflected by TNF-α, sTNF-R p55 and sTNF-R p75 serum levels, does not play a major role in the pathophysiology and development of PTSD symptoms as measured by the PDS and the TICS. However, several methodological and contextual issues have to be considered.  相似文献   

6.
7.
A region-specific library for human chromosome 2p23–p25 was constructed using microdissection and polymerase chain reaction (PCR)-mediated microcloning techniques. This library is large, comprising 300,000 recombinant microclones. The insert sizes range between 50–600 base pairs (bp) with a mean of 200 bp. About 50%–60% of the clones contain unique or very low copy number sequence inserts as determined by their weak or no hybridization to total human DNA. A subset of 48 microclones that did not hybridize to total human DNA after colony hybridization was analyzed, and 26 (54%) clones were shown to contain single-copy inserts and hybridize to human chromosome 2 DNAs, indicating that they are human chromosome 2 specific. The human genomic fragments identified by these clones after cleavage with HindIII have also been characterized. The single-copy microclones were used to analyze an interstitial deletion in the 2p23.3–p25.1 region — 46,XY, del(2) (pterp25.1::p23.3qter) — previously reported in a patient with severe growth and mental retardation and multiple anomalies. Of the 26 microclones analyzed, 14 clones were mapped to the deletion region. The availability of the 2p23–p25 region-specific library and the probes derived from the library should be valuable for fine structure physical mapping analysis and the cloning of disease-related genes localized to the region. These studies also demonstrate the efficiency with which useful probes can be quickly generated for genome studies and for positional cloning.  相似文献   

8.
The intricate regulation of cell survival and cell death is critical for the existence of both normal and transformed cells. Two factors central to these processes are p53 and NFκB, with both factors having ascribed roles in both promoting and repressing cell death. Not surprisingly, a number of studies have previously reported interplay between p53 and NFκB. The mechanistic basis behind these observations, however, is currently incomplete. We report here further insights into this interplay using a system where blockade of NFκB inhibits cell death from p53, but at the same time sensitizes cells to death by TNFα. We found in agreement with a recent report showing that NFκB is required for the efficient activation of the BH3-only protein Noxa by the p53 family member p73, that p53’s ability to induce Noxa is also impeded by inhibition of NFκB. In contrast to the regulation by p73, however, blockade of NFκB downstream of p53 decreases Noxa protein levels without effects on Noxa mRNA. Our further analysis of the effects of NFκB inhibition on p53 target gene expression revealed that while most target genes analysed where unaffected by blockade of NFκB, the p53-mediated induction of the pro-apoptotic gene p53AIP1 was significantly dependent on NFκB. These studies therefore add further insight into the complex relationship of p53 and NFκB and since both Noxa and p53AIP1 have been shown to be important components of p53-mediated cell death responses, these findings may also indicate critical points where NFκB plays a pro-apoptotic role downstream of p53.  相似文献   

9.
Emerging data on cancer suggesting that target-based therapy is promising strategy in cancer treatment. PI3K-AKT pathway is extensively studied in many cancers; several inhibitors target this pathway in different levels. Recent finding on this pathway uncovered the therapeutic applications of PI3K-specific inhibitors; PI3K, AKT, and mTORC broad spectrum inhibitors. Noticeably, class I PI3K isoforms, p110γ and p110δ catalytic subunits have rational therapeutic application than other isoforms. Therefore, three classes of inhibitors: isoform-specific, dual-specific and broad spectrum were selected for molecular docking and dynamics. First, p110δ structure was modelled; active site was analyzed. Then, molecular docking of each class of inhibitors were studied; the docked complexes were further used in 1.2?ns molecular dynamics simulation to report the potency of each class of inhibitor. Remarkably, both the studies retained the similar kind of protein ligand interactions. GDC-0941, XL-147 (broad spectrum); TG100-115 (dual-specific); and AS-252424, PIK-294 (isoform-specific) were found to be potential inhibitors of p110γ and p110δ, respectively. In addition to that pharmacokinetic properties are within recommended ranges. Finally, molecular phylogeny revealed that p110γ and p110δ are evolutionarily divergent; they probably need separate strategies for drug development.  相似文献   

10.
p38γ is a member of p38 MAPK family which contains four isoforms p38α, p38β, p38γ, and p38δ. p38γ MAPK has unique function and is less investigated. Recent studies revealed that p38γ MAPK may be involved in tumorigenesis and cancer aggressiveness. However, the underlying cellular/molecular mechanisms remain unclear. Epithelial-mesenchymal transition (EMT) is a process that epithelial cancer cells transform to facilitate the loss of epithelial features and gain of mesenchymal phenotype. EMT promotes cancer cell progression and metastasis, and is involved in the regulation of cancer stem cells (CSCs) which have self-renewal capacity and are resistant to chemotherapy and target therapy. We showed that p38γ MAPK significantly increased EMT in breast cancer cells; over-expression of p38γ MAPK enhanced EMT while its down-regulation inhibited EMT. Meanwhile, p38γ MAPK augmented CSC population while knock down of p38γ MAPK decreased CSC ratio in breast cancer cells. MicroRNA-200b (miR-200b) was down-stream of p38γ MAPK and inhibited by p38γ MAPK; miR-200b mimics blocked p38γ MAPK-induced EMT while miR-200b inhibitors promoted EMT. p38γ MAPK regulated miR-200b through inhibiting GATA3. p38γ MAPK induced GATA3 ubiquitination, leading to its proteasome-dependent degradation. Suz12, a Polycomb group protein, was down-stream of miR-200b and involved in miR-200b regulation of EMT. Thus, our study established an important role of p38γ MAPK in EMT and identified a novel signaling pathway for p38γ MAPK–mediated tumor promotion.  相似文献   

11.
BAX and BAK are essential regulators of apoptotic signaling through mitochondria in mammalian development and in response to cytotoxic stimuli. To investigate the role of BAX and BAK in transformation and tumorigenesis, primary baby mouse kidney epithelial cells (BMKs) from wild-type, BAX, BAK and BAK and BAK deficient mice were transformed by adenovirus E1A and dominant-negative p53 (p53DD). While E1A alone transforms p53 deficient BMKs, transformation of BAX and/or BAK deficient BMKs still required inactivation of p53. Since BAX and BAK are dispensable for p53 to suppress transformation, but  相似文献   

12.
13.
14.
Previous studies have described the role of p53 isoforms, including p53β and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infection by using silencing and transient expression strategies in human lung epithelial cells. In addition, with the help of a panel of different influenza viruses from different subtypes, we also show that infection differentially regulates the expressions of p53β and Δ133p53α. Altogether, our results highlight the role of p53 isoforms in the viral cycle of influenza A viruses, with p53β and Δ133p53α acting as regulators of viral production in a p53-dependent manner.  相似文献   

15.
Phosphoinositide 3-kinase δ is upregulated in lymphocytic leukemias. Because the p85-regulatory subunit binds to any class IA subunit, it was assumed there is a single universal p85-mediated regulatory mechanism; however, we find isozyme-specific inhibition by p85α. Using deuterium exchange mass spectrometry (DXMS), we mapped regulatory interactions of p110δ with p85α. Both nSH2 and cSH2 domains of p85α contribute to full inhibition of p110δ, the nSH2 by contacting the helical domain and the cSH2 via the C terminus of p110δ. The cSH2 inhibits p110β and p110δ, but not p110α, implying that p110α is uniquely poised for oncogenic mutations. Binding RTK phosphopeptides disengages the SH2 domains, resulting in exposure of the catalytic subunit. We find that phosphopeptides greatly increase the affinity of the heterodimer for PIP2-containing membranes measured by FRET. DXMS identified regions decreasing exposure at membranes and also regions gaining exposure, indicating loosening of interactions within the heterodimer at membranes.  相似文献   

16.
BackgroundMortality rate of invasive Candida infections is raising mainly amongst immunocompromised patients. These infections are hard-to-treat mainly due to the increasing incidence of resistance. The overexpression of ATP-binding cassette and major facilitator superfamily transporters is the main responsible for the failure of antifungal therapies. In a Saccharomyces cerevisiae model, β-lapachone inhibited Pdr5p, a transporter homologous to those found in Candida albicans.AimsTo determine whether β-lapachone reverses the resistance phenotype mediated by efflux transporters in C. albicans clinical isolates.MethodsThe antifungal activity of β-lapachone combined with fluconazole was measured by agarose chemosensitization and microdilution assays. CaCdr2p and CaMdr1p activities were evaluated through fluorescent dyes accumulation. ATPase activity was assessed using transporter-enriched plasma membranes.Resultsβ-lapachone reverted antifungal resistance of S. cerevisiae and C. albicans strains overexpressing CaCdr2p and CaMdr1p transporters by inhibiting these proteins activities. CaCdr2p ATPase activity was not impaired by the compound.Conclusionsβ-lapachone is a promising drug candidate to be used as an adjuvant in the treatment of candidiasis caused by fluconazole-resistant C. albicans strains.  相似文献   

17.
18.
Head and neck squamous cell carcinomas (HNscc) produce low-molecular-mass factors (low-M r factors,M r25,000), which are antigenically related to the immunosuppressive retroviral transmembrane envelope protein p15E. These P15E-related tumour factors are thought to be responsible for some immunological impairments found in these patients (particularly the defective monocyte chemotaxis). A sequential and functional homology has been reported to exist between a bioactive fragment of interferon (IFN) and the putative immunosuppressive region of retroviral p15E (CKS-17). In this study we investigated (a) a possible functional and structural relationship between p15E and IFN, and (b) the presence of and the relationship between p15E-related low-M r factors and IFN in HNscc patients. We report the following results. (a) Recombinant human (rhu) IFN was able to inhibit monocyte chemotaxis. (b) The anti-p15E antibodies crossreacted with rhuIFN in a dot-blot technique, however, the anti-IFN antibodies did not crossreact with disrupted murine leukaemia virus (p15E source). (c) Low-M r factors (n=8–11) prepared from the sera of HNscc patients, which inhibit the monocyte chemotactic responsiveness, could be adsorbed by the anti-p15E antibodies as well as by the anti-IFN antibodies. However, the abilities of the factors to adsorb to the two categories of antibodies (namely, anti-p15E and anti-IFN) did not correlate. (d) Immunohistochemically we found IFN-related epitopes, in almost all HNscc specimens studied (17/18), in locations distinctive from those of p15E-related factors. The anti-IFN antibodies used in this study mainly reacted with basal epithelial cells close to the basal membrane, the prickle and granular cells of the squamous cell carcinomas. The anti-p15E antibodies mainly reacted with corneal layers, the granular and prickle cells, and did not react with basal epithelial cells. Our findings suggest that the immunosuppressive factors produced by HNscc cells are heterogeneous and p15E- and/or IFN-related.  相似文献   

19.
The PI3K (phosphoinositide 3-kinase) pathway is commonly activated in cancer as a consequence of inactivation of the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10), a major negative regulator of PI3K signalling. In line with this important role of PTEN, mice that are heterozygous for a PTEN-null allele (PTEN+/? mice) spontaneously develop a variety of tumours in multiple organs. PTEN is a phosphatase with selectivity for PtdIns(3,4,5)P3, which is produced by the class I isoforms of PI3K (p110α, p110β, p110γ and p110δ). Previous studies indicated that PTEN-deficient cancer cell lines mainly depend on p110β, and that p110β, but not p110α, controls mouse prostate cancer development driven by PTEN loss. In the present study, we investigated whether the ubiquitously expressed p110α can also functionally interact with PTEN in cancer. Using genetic mouse models that mimic systemic administration of p110α- or p110β-selective inhibitors, we confirm that inactivation of p110β, but not p110α, inhibits prostate cancer development in PTEN+/? mice, but also find that p110α inactivation protects from glomerulonephritis, pheochromocytoma and thyroid cancer induced by PTEN loss. This indicates that p110α can modulate the impact of PTEN loss in disease and tumourigenesis. In primary and immortalized mouse fibroblast cell lines, both p110α and p110β controlled steady-state PtdIns(3,4,5)P3 levels and Akt signalling induced by heterozygous PTEN loss. In contrast, no correlation was found in primary mouse tissues between PtdIns(3,4,5)P3 levels, PI3K/PTEN genotype and cancer development. Taken together, our results from the present study show that inactivation of either p110α or p110β can counteract the impact of PTEN inactivation. The potential implications of these findings for PI3K-targeted therapy of cancer are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号