首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemicellulose hydrolysates of agricultural residues often contain mixtures of hexose and pentose sugars. Ethanologenic Escherichia coli that have been previously investigated preferentially ferment hexose sugars. In some cases, xylose fermentation was slow or incomplete. The purpose of this study was to develop improved ethanologenic E. coli strains for the fermentation of pentoses in sugar mixtures. Using fosfomycin as a selective agent, glucose-negative mutants of E. coli KO11 (containing chromosomally integrated genes encoding the ethanol pathway from Zymomonas mobilis) were isolated that were unable to ferment sugars transported by the phosphoenolpyruvate-dependent phosphotransferase system. These strains (SL31 and SL142) retained the ability to ferment sugars with independent transport systems such as arabinose and xylose and were used to ferment pentose sugars to ethanol selectively in the presence of high concentrations of glucose. Additional fosfomycin-resistant mutants were isolated that were superior to strain KO11 for ethanol production from hexose and pentose sugars. These hyperproductive strains (SL28 and SL40) retained the ability to metabolize all sugars tested, completed fermentations more rapidly, and achieved higher ethanol yields than the parent. Both SL28 and SL40 produced 60 gl–1 ethanol from 120 gl–1 xylose in 60 h, 20% more ethanol than KO11 under identical conditions. Further studies illustrated the feasibility of sequential fermentation. A mixture of hexose and pentose sugars was fermented with near theoretical yield by SL40 in the first step followed by a second fermentation in which yeast and glucose were added. Such a two-step approach can combine the attributes of ethanologenic E. coli for pentoses with the high ethanol tolerance of conventional yeasts in a single vessel.  相似文献   

2.
The fermentation kinetics for separate as well as simultaneous glucose and xylose fermentation with recombinant ethanologenic Escherichia coli KO11 are presented. Glucose and xylose were consumed simultaneously and exhibited mutual inhibition. The glucose exhibited 15 times stronger inhibition in xyclose fermentation than vice versa. The fermentation of condensate from steampretreated willow (Salix) was investigated. The kinetics were studied in detoxified as well as in nondetoxified condensate. The fermentation of the condensate followed two phases: First the glucose and some of the pentoses (xylose in addition to small amounts of arabinose) were fermented simultaneously, and then the remaining part of the pentoses were fermented. The rate of the first phase was independent of the detoxification method used, whereas the rate of the second phase was found to be strongly dependent. When the condensate was detoxified with overliming in combination with sulfite, which was the best detoxification method investigated, the sugars in the condensate, 9 g/L, were fermented in 11 h. The same fermentation took 150 h in nondetoxified condensate. The experimental data were used to develop an empirical model, describing the batch fermentation of recombinant E. coli KO11 in the condensate. The model is based on Monod kinetics including substrate and product inhibition and the sum of the inhibition exerted by the rest of the inhibitors, lumped together. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
Fermentation to ethanol of pentose-containing spent sulphite liquor   总被引:3,自引:0,他引:3  
Ethanolic fermentation of spent sulphite liquor with ordinary bakers' yeast is incomplete because this yeast cannot ferment the pentose sugars in the liquor. This results in poor alcohol yields, and a residual effluent problem By using the yeast Candida shehatae (R) for fermentation of the spent sulphite liquor from a large Canadian alcohol-producing sulphite pulp and paper mill, pentoses as well as hexoses were fermented nearly completely, alcohol yields were raised by 33%, and sugar removal increased by 46%. Inhibitors were removed prior to fermentation by steam stripping. Major benefits were obtained by careful recycling of this yeast, which was shown to be tolerant both of high sugar concentrations and high alcohol concentrations. When sugar concentrations over 250 g/L (glucose: xylose 70:30) were fermented, ethanol became an inhibitor when its concentration reached 90 g/L. However, when the ethanol was removed by low-temperature vacuum distillation, fermentation continued and resulted in a yield of 0.50 g ethanol/g sugar consumed. Further improvement was achieved by combining enzyme saccharification of sugar oligomers with fermentation. This yeast is able to ferment both hexoses and pentoses simultaneously, efficiently, and rapidly. Present indications are that it is well suited to industrial operations wherever hexoses and pentoses are both to be fermented to ethanol, for example, in wood hydrolysates.  相似文献   

4.
Escherichia coli KO11 was previously constructed to produce ethanol from acid hydrolysates of hemicellulose (pentoses and hexoses) by the chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB). Klebsiella oxytoca P2 was constructed in an analogous fashion for the simultaneous saccharification and fermentation of cellulose and contains PTS enzymes for cellobiose. In this study, KO11 was further engineered for the fermentation of cellulose by adding the K. oxytoca casAB genes encoding Enzyme IIcellobiose and phospho-beta-glucosidase. Although the two K. oxytoca genes were well expressed in cloning hosts such as DH5 alpha, both were expressed poorly in E. coli KO11, a derivative of E. coli B. Spontaneous mutants which exhibited more than 15-fold-higher specific activities for cellobiose metabolism were isolated. The mutations of these mutants resided in the plasmid rather than the host. Three mutants were characterized by sequence analysis. All contained similar internal deletions which eliminated the casAB promoter and operator regions and placed the lacZ Shine-Dalgarno region immediately upstream from the casA Shine-Dalgarno region. KO11 harboring mutant plasmids (pLOI1908, pLOI1909, or pLOI1910) rapidly fermented cellobiose to ethanol, and the yield was more than 90% of the theoretical yield. Two of these strains were used with commercial cellulase to ferment mixed-waste office paper to ethanol.  相似文献   

5.
Corn hulls and corn germ meal were both evaluated as feedstocks for production of ethanol for biofuel. Currently, these fibrous co-products are combined with corn steep liquor and the fermentation bottoms (if available) and marketed as cattle feed. Samples were obtained from wet and dry corn mills. The corn hulls and germ meal were evaluated for starch and hemicellulose compositions. Starch contents were 12 to 32% w/w and hemicellulose (arabinoxylans) contents were 23 to 64% w/w. Corn fibrous samples were hydrolysed, using dilute sulphuric acid, into mixed sugar streams containing arabinose, glucose and xylose. Total sugar concentrations in the hydrolysate varied from 8.4 to 10.8% w/v. The hydrolysates were fermented to ethanol using recombinant E. coli strains K011 and SL40. Ethanol yields were 0.38 to 0.41g ethanol produced/g total sugars consumed and fermentations were completed in 60h or less. However, residual xylose was detected for each hydrolysate fermentation and was especially significant for fermentations using strain SL40. Strain K011 was a superior ethanologenic strain compared with strain SL40 in terms of both ethanol yield and maximum productivity.  相似文献   

6.
An ethanologenic microorganism capable of fermenting all of the sugars released from lignocellulosic biomass through a saccharification process is essential for secondary bioethanol production. We therefore genetically engineered the ethanologenic bacterium Zymomonas mobilis such that it efficiently produced bioethanol from the hydrolysate of wood biomass containing glucose, mannose, and xylose as major sugar components. This was accomplished by introducing genes encoding mannose and xylose catabolic enzymes from Escherichia coli. Integration of E. coli manA into Z. mobilis chromosomal DNA conferred the ability to co-ferment mannose and glucose, producing 91 % of the theoretical yield of ethanol within 36 h. Then, by introducing a recombinant plasmid harboring the genes encoding E. coli xylA, xylB, tal, and tktA, we broadened the range of fermentable sugar substrates for Z. mobilis to include mannose and xylose as well as glucose. The resultant strain was able to ferment a mixture of 20 g/l glucose, 20 g/l mannose, and 20 g/l xylose as major sugar components of wood hydrolysate within 72 h, producing 89.8 % of the theoretical yield. The recombinant Z. mobilis also efficiently fermented actual acid hydrolysate prepared from cellulosic feedstock containing glucose, mannose, and xylose. Moreover, a reactor packed with the strain continuously produced ethanol from acid hydrolysate of wood biomass from coniferous trees for 10 days without accumulation of residual sugars. Ethanol productivity was at 10.27 g/l h at a dilution rate of 0.25 h(-1).  相似文献   

7.
Summary Fermentation of an enzymatic hydrolyzate of ammonia fiber explosion (AFEX) pretreated corn fiber (containing a mixture of different sugars including glucose, xylose, arabinose, and galactose) by genetically-engineered Escherichia coli strain SL40 and KO11 and Klebsiella oxytoca strain P2 was investigated under pH-controlled conditions. Both E. coli strains (SL40 and KO11) efficiently utilized most of the sugars contained in the hydrolyzate and produced a maximum of 26.6 and 27.1 g/l ethanol, respectively, equivalent to 90 and 92% of the theoretical yield. Very little difference was observed in cell growth and ethanol production between fermentations of the enzymatic hydrolyzate and mixtures of pure sugars, simulating the hydrolyzate. These results confirm the fermentability of the AFEX-treated corn fiber hydrolyzate by ethanologenic E. coli. K.oxytoca strain P2, on the other hand, showed comparatively poor growth and ethanol production (maximum 20 g/l) from both enzymatic hydrolyzate and simulated sugar mixtures under the same fermentation conditions.  相似文献   

8.
9.
The fermentation of carbohydrates and hemicellulose hydrolysate by Mucor and Fusarium species has been investigated, with the following results. Both Mucor and Fusarium species are able to ferment various sugars and alditols, including d-glucose, pentoses and xylitol, to ethanol. Mucor is able to ferment sugar-cane bagasse hemicellulose hydrolysate to ethanol. Fusarium F5 is not able to ferment sugar-cane bagasse hemicellulose hydrolysate to ethanol. During fermentation of hemicellulose hydrolysates, d-glucose was utilized first, followed by d-xylose and l-arabinose. Small amounts of xylitol were produced by Mucor from d-xylose through oxidoreduction reactions, presumably mediated by the enzyme aldose reductase1 (alditol: NADP+ 1-oxidoreductase, EC 1.1.1.21). For pentose fermentation, d-xylose was the preferred substrate. Only small amounts of ethanol were produced from l-arabinose and d-arabitol. No ethanol was produced from l-xylose, d-arabinose or l-arabitol.  相似文献   

10.
Evaluation of the four ethanologenic constructs of bacteria in the genus Erwinia indicates that two strains E. chrysanthemi EC16 and E. carotovora SR38 show promise for development of direct hydrolysis and fermentation of pectin-rich substrates to mixtures of ethanol and acetate. Both strains fermented glucose to ethanol in nearly theoretical yields, but produced mainly acetate and ethanol by fermentation of D-galacturonic acid. Both strains depolymerized citrus pectin, polygalacturonic acid and polysaccharides in citrus peel and converted resulting sugars to carbon dioxide, acetate, ethanol and lesser amounts of formate and succinate.  相似文献   

11.
In these studies, concentrated xylose solution was fermented to ethanol using Escherichia coli FBR5 which can ferment both lignocellulosic sugars (hexoses and pentoses). E. coli FBR5 can produce 40–50 g L?1 ethanol from 100 g L?1 xylose in batch reactors. Increasing sugar concentration beyond this level results in the loss of sugar with the reactor effluent thus affecting the process yield adversely. In a nonintegrated system without simultaneous product removal more than 120 g L?1 xylose was left unused of the 220 g L?1 that was fed into the reactor. In contrast to this, application of simultaneous product removal by gas stripping was able to relieve product inhibition and the culture was able to use 216.6 g L?1 xylose thus producing 140 g L?1 (based on reactor volume) ethanol resulting in a product yield of 0.48. The product stream achieved an ethanol concentration up to 148.41 g L?1. This process has potential for greatly improving the performance of E. coli FBR5 where the strain can ferment all the lignocellulosic sugars to ethanol and gas stripping can be applied to recover product. Published 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

12.
Fermenting anaerobic cultures of Escherichia coli were observed by the nonintrusive technique of in vivo, whole-culture nuclear magnetic resonance. Fermentation balances were calculated for hexoses, pentoses, sugar alcohols, and sugar acids. Substrates more reduced than glucose yielded more of the highly reduced fermentation product ethanol, whereas more-oxidized substrates produced more of the less-reduced fermentation product acetate. These relationships were made more obvious by the introduction of ldhA mutations, which abolished lactate production, and delta frd mutations, which eliminated succinate. When grown anaerobically on sugar alcohols such as sorbitol, E. coli produced ethanol in excess of the amount calculated by the standard fermentation pathways. Reducing equivalents must be recycled from formate to account for this excess of ethanol. In mutants deficient in hydrogenase (hydB), ethanol production from sorbitol was greatly decreased, implying that hydrogen gas released from formate by the formate-hydrogen lyase system may be partially recycled, in the wild type, to increase the yield of the highly reduced fermentation product ethanol.  相似文献   

13.
Rice husk is one of the most abundant types of lignocellulosic biomass. Because of its significant amount of sugars, such as cellulose and hemicellulose, it can be used for the production of biofuels such as bioethanol. However, the complex structure of lignocellulosic biomass, consisting of cellulose, hemicellulose and lignin, is resistant to degradation, which limits biomass utilization for ethanol production. The protection of cellulose by lignin contributes to the recalcitrance of lignocelluloses to hydrolysis. Therefore, we conducted steam-explosion treatment as pretreatment of rice husk. However, recombinant Escherichia coli KO11 did not ferment the reducing sugar solution obtained by enzymatic saccharification of steam-exploded rice husk. When the steam-exploded rice husk was washed with hot water to remove inhibitory substances and M9 medium (without glucose) was used as a fermentation medium, E. coli KO11 completely fermented the reducing sugar solution obtained by enzymatic saccharification of hot water washing-treated steam-exploded rice husk to ethanol. We report here the efficient production of bioethanol using steam-exploded rice husk.  相似文献   

14.
Escherichia coli NZN111 is blocked in the ability to grow fermentatively on glucose but gave rise spontaneously to a mutant that had this ability. The mutant carries out a balanced fermentation of glucose to give approximately 1 mol of succinate, 0. 5 mol of acetate, and 0.5 mol of ethanol per mol of glucose. The causative mutation was mapped to the ptsG gene, which encodes the membrane-bound, glucose-specific permease of the phosphotransferase system, protein EIICB(glc). Replacement of the chromosomal ptsG gene with an insertionally inactivated form also restored growth on glucose and resulted in the same distribution of fermentation products. The physiological characteristics of the spontaneous and null mutants were consistent with loss of function of the ptsG gene product; the mutants possessed greatly reduced glucose phosphotransferase activity and lacked normal glucose repression. Introduction of the null mutant into strains not blocked in the ability to ferment glucose also increased succinate production in those strains. This phenomenon was widespread, occurring in different lineages of E. coli, including E. coli B.  相似文献   

15.
In order to understand the effect of pH on growth and ethanol production in ethanologenic Escherichia coli, we investigated the kinetic behavior of ethanologenic E. coli during alcoholic fermentation of glucose or xylose in a controlled pH environment and the fermentation of glucose, xylose, or their mixtures without pH control. Based on the Monod equation, an unstructured and unsegregated kinetic model was proposed as a function of the pH of the fermentation medium. The pH effects on cell growth, sugar consumption, and ethanol production were taken into account in the proposed model. Both cell growth and ethanol production were found to be significantly influenced by the pH of the fermentation medium. The optimal pH range for ethanol production by ethanologenic E. coli on either glucose or xylose was 6.0–6.5. The highest value of the maximum specific growth rate (μ m) was obtained at pH 7.0. In the kinetic model of the fermentations of the sugar mixture, two inhibition terms related to glucose concentrations were included in both the cell growth and ethanol production equations because of the strong inhibitions of glucose and glucose metabolites on xylose metabolism. A good fit was found between model predictions and experimental data for both single-sugar and mixed-sugar fermentations without pH control within the experimental domain.  相似文献   

16.
Fermentations with new recombinant organisms.   总被引:7,自引:0,他引:7  
United States fuel ethanol production in 1998 exceeded the record production of 1.4 billion gallons set in 1995. Most of this ethanol was produced from over 550 million bushels of corn. Expanding fuel ethanol production will require developing lower-cost feedstocks, and only lignocellulosic feedstocks are available in sufficient quantities to substitute for corn starch. Major technical hurdles to converting lignocellulose to ethanol include the lack of low-cost efficient enzymes for saccharification of biomass to fermentable sugars and the development of microorganisms for the fermentation of these mixed sugars. To date, the most successful research approaches to develop novel biocatalysts that will efficiently ferment mixed sugar syrups include isolation of novel yeasts that ferment xylose, genetic engineering of Escherichia coli and other gram negative bacteria for ethanol production, and genetic engineering of Saccharoymces cerevisiae and Zymomonas mobilis for pentose utilization. We have evaluated the fermentation of corn fiber hydrolyzates by the various strains developed. E. coli K011, E. coli SL40, E. coli FBR3, Zymomonas CP4 (pZB5), and Saccharomyces 1400 (pLNH32) fermented corn fiber hydrolyzates to ethanol in the range of 21-34 g/L with yields ranging from 0.41 to 0.50 g of ethanol per gram of sugar consumed. Progress with new recombinant microorganisms has been rapid and will continue with the eventual development of organisms suitable for commercial ethanol production. Each research approach holds considerable promise, with the possibility existing that different "industrially hardened" strains may find separate applications in the fermentation of specific feedstocks.  相似文献   

17.
木糖的高效发酵是制约纤维素燃料乙醇生产的技术瓶颈之一,高性能发酵菌种的开发是本领域研究的重点。以木糖发酵的典型菌株休哈塔假丝酵母为材料,研究氮源配比、葡萄糖和木糖初始浓度、葡萄糖添加及典型抑制物等因素对其木糖利用和乙醇发酵性能的影响规律。结果表明,硫酸铵更适宜于木糖和葡萄糖发酵产乙醇。在摇瓶振荡发酵条件下,该酵母可发酵164.0 g/L葡萄糖生成61.9 g/L乙醇,糖利用率和乙醇得率分别为99.8%和74.0%;受酵母细胞膜上转运体系的限制,对木糖的最高发酵浓度为120.0 g/L,可生成45.7 g/L乙醇,糖利用率和乙醇得率分别达到94.8%和87.0%。休哈塔假丝酵母发酵木糖的主要产物为乙醇,仅生成微量的木糖醇;添加葡萄糖可促进木糖的利用;休哈塔假丝酵母在葡萄糖发酵时的乙酸和甲酸的耐受浓度分别为8.32和2.55 g/L,木糖发酵时的乙酸和甲酸的耐受浓度分别为6.28和1.15 g/L。  相似文献   

18.
Metabolic engineering applications to renewable resource utilization   总被引:26,自引:0,他引:26  
Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the most abundant renewable organic resource on earth. The utilization of renewable resources for energy and chemicals is expected to increase in the near future. The conversion of both cellulose (glucose) and hemicellulose (hexose and pentose) for the production of fuel ethanol is being studied intensively, with a view to developing a technically and economically viable bioprocess. Whereas the fermentation of glucose can be carried out efficiently, the bioconversion of the pentose fraction (xylose and arabinose, the main pentose sugars obtained on hydrolysis of hemicellulose), presents a challenge. A lot of attention has therefore been focused on genetically engineering strains that can efficiently utilize both glucose and pentoses, and convert them to useful compounds, such as ethanol. Metabolic strategies seek to generate efficient biocatalysts (bacteria and yeast) for the bioconversion of most hemicellulosic sugars to products that can be derived from the primary metabolism, such as ethanol. The metabolic engineering objectives so far have focused on higher yields, productivities and expanding the substrate and product spectra.  相似文献   

19.
The focus in the development of pulping processes has usually been exclusively on cellulose. However, hemicellulose could serve as a valuable source of hexose and pentose sugars. Consequently, it should not be destroyed in a process designed for very high cellulose fibre yields. Novel procedures developed for production of ethanol by the fermentation of pentoses as well as hexoses provide new possibilities of hemicellulose utilization.

Many fungi produce extracellular hemicellulases. In the present work the production of xylanase and β-xylosidase with strains of Aspergillus and Trichoderma was studied. The enzymes were used for the hydrolysis of xylan. Xylose was fermented to ethanol by the mold Fusarium oxysporum.  相似文献   


20.
Dilute acid pretreatment is an established method for hydrolyzing the methylglucuronoxylans of hemicellulose to release fermentable xylose. In addition to xylose, this process releases the aldouronate methylglucuronoxylose, which cannot be metabolized by current ethanologenic biocatalysts. Enterobacter asburiae JDR-1, isolated from colonized wood, was found to efficiently ferment both methylglucuronoxylose and xylose in acid hydrolysates of sweet gum xylan, producing predominantly ethanol and acetate. Transformation of E. asburiae JDR-1 with pLOI555 or pLOI297, each containing the PET operon containing pyruvate decarboxylase (pdc) and alcohol dehydrogenase B (adhB) genes derived from Zymomonas mobilis, replaced mixed-acid fermentation with homoethanol fermentation. Deletion of the pyruvate formate lyase (pflB) gene further increased the ethanol yield, resulting in a stable E. asburiae E1(pLOI555) strain that efficiently utilized both xylose and methylglucuronoxylose in dilute acid hydrolysates of sweet gum xylan. Ethanol was produced from xylan hydrolysate by E. asburiae E1(pLOI555) with a yield that was 99% of the theoretical maximum yield and at a rate of 0.11 g ethanol/g (dry weight) cells/h, which was 1.57 times the yield and 1.48 times the rate obtained with the ethanologenic strain Escherichia coli KO11. This engineered derivative of E. asburiae JDR-1 that is able to ferment the predominant hexoses and pentoses derived from both hemicellulose and cellulose fractions is a promising subject for development as an ethanologenic biocatalyst for production of fuels and chemicals from agricultural residues and energy crops.Lignocellulosic resources, including forest and agricultural residues and evolving energy crops, offer benign alternatives to petroleum-based resources for production of fuels and chemicals. As renewable resources, these lignocellulosic materials are expected to decrease dependence on exhaustible supplies of petroleum and mitigate the net release of carbon dioxide into the atmosphere. The development of economically acceptable bioconversion processes requires pretreatments that release the maximal quantities of hexoses (predominantly glucose released from cellulose) and pentoses (arabinose and xylose) from hemicelluloses and also requires microbial biocatalysts that efficiently convert these compounds to a single targeted product.As one of three main components of lignocellulosics, hemicellulose contains polysaccharides comprised of pentoses, hexoses and sugar acids that account for 20 to 35% of the total biomass from different sources (21). Methylglucuronoxylans (MeGAXn), consisting of long chains of as many as 70 β-xylopyranose residues linked by β-1,4-glycosidic bonds (25), are the predominant components in the hemicellulose fractions of agricultural residues and energy crops, including corn stover, sugarcane bagasse, poplar, and switchgrass (7, 18, 23, 24). In hardwood and softwood xylans, a 4-O-methylglucuronic acid is attached at the 2′ position of every sixth to eighth xylose residue (12, 15). Dilute acid hydrolysis is commonly used to make the monosaccharides comprising hemicellulose accessible for fermentation (7, 22). However, the α-1,2 glucuronosyl linkage in xylan is resistant to dilute acid hydrolysis, which results in the release of methylglucuronoxylose (MeGAX) along with xylose and other monosaccharides. MeGAX is not fermented by bacterial biocatalysts currently used to convert hemicellulose to ethanol, such as Escherichia coli KO11 (2, 6). In sweet gum xylan, as much as 27% of the carbohydrate may be in this unfermentable fraction after dilute acid pretreatment (2, 20). Complete utilization of all hemicellulosic sugars can improve the efficiency of conversion of lignocellulosic materials to fuel ethanol and other value-added products.Our previous research on the processing of hemicelluloses for fermentation led to isolation of Enterobacter asburiae strain JDR-1. This isolate performed mixed-acid fermentation of the principal hexoses and pentoses that can be derived from cellulose and hemicellulose fractions of lignocellulosic biomass and exhibited a novel metabolic potential based on its ability to ferment MeGAX and xylose to ethanol and acetate as major fermentation products from sweet gum MeGAXn hydrolysates generated by dilute acid pretreatment (2). This strain has been genetically modified to produce d-(−)-lactate as the predominant product from acid hydrolysates of MeGAXn (3).In this study, the PET operon containing the pdc, adhA, and adhB genes from Zymomonas mobilis (10, 11) was incorporated into a pflB E. asburiae JDR-1 isolate by plasmid transformation to construct homoethanologenic strains. The resulting recombinant strains were compared with E. asburiae wild-type strain JDR-1 and the ethanologenic strain E. coli KO11 to evaluate their efficiencies of production of ethanol from dilute acid hydrolysates of sweet gum MeGAXn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号