首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome of Methanosarcina acetivorans encodes three homologs, initially annotated as hypothetical fused corrinoid/methyl transfer proteins, which are highly elevated in CO-grown cells versus cells grown with alternate substrates. Based only on phenotypic analyses of deletion mutants, it was previously concluded that the homologs are strictly dimethylsulfide:coenzyme M (CoM) methyltransferases not involved in the metabolism of CO (E. Oelgeschlager and M. Rother, Mol. Microbiol. 72:1260 -1272, 2009). The homolog encoded by MA4383 (here designated CmtA) was reexamined via biochemical characterization of the protein overproduced in Escherichia coli. Purified CmtA reconstituted with methylcob(III)alamin contained a molar ratio of cobalt to protein of 1.0 ± 0.2. The UV-visible spectrum was typical of methylated corrinoid-containing proteins, with absorbance maxima at 370 and 420 nm and a band of broad absorbance between 450 and 600 nm with maxima at 525, 490, and 550 nm. CmtA reconstituted with aquocobalamin showed methyl-tetrahydromethanopterin:CoM (CH(3)-THMPT:HS-CoM) methyltransferase activity (0.31 μmol/min/mg) with apparent K(m) values of 135 μM for CH(3)-THMPT and 277 μM for HS-CoM. The ratio of CH(3)-THMPT:HS-CoM methyltransferase activity in the soluble versus membrane cellular fractions was 15-fold greater in CO-grown versus methanol-grown cells. A mutant strain deleted for the CmtA gene showed lower growth rates and final yields when cultured with growth-limiting partial pressures of CO, demonstrating a role for CmtA during growth with this substrate. The results establish that CmtA is a soluble CH(3)-THSPT:HS-CoM methyltransferase postulated to supplement the membrane-bound CH(3)-THMPT:HS-CoM methyltransferase during CO-dependent growth of M. acetivorans. Thus, we propose that the name of the enzyme encoded by MA4384 be CmtA (for cytoplasmic methyltransferase).  相似文献   

2.
A mutation in the mch gene, encoding the enzyme 5,10-methenyl tetrahydromethanopterin (H(4)MPT) cyclohydrolase, was constructed in vitro and recombined onto the chromosome of the methanogenic archaeon Methanosarcina barkeri. The resulting mutant does not grow in media using H(2)/CO(2), methanol, or acetate as carbon and energy sources, but does grow in media with methanol/H(2)/CO(2), demonstrating its ability to utilize H(2) as a source of electrons for reduction of methyl groups. Cell suspension experiments showed that methanogenesis from methanol or from H(2)/CO(2) is blocked in the mutant, explaining the lack of growth on these substrates. The corresponding mutation in Methanosarcina acetivorans C2A, which cannot grow on H(2)/CO(2), could not be made in wild-type strains, but could be made in strains carrying a second copy of mch, suggesting that M. acetivorans is incapable of methyl group reduction using H(2). M. acetivorans mch mutants could also be constructed in strains carrying the M. barkeri ech hydrogenase operon, suggesting that the block in the methyl reduction pathway is at the level of H(2) oxidation. Interestingly, the ech-dependent methyl reduction pathway of M. acetivorans involves an electron transport chain distinct from that used by M. barkeri, because M. barkeri ech mutants remain capable of H(2)-dependent methyl reduction.  相似文献   

3.
Conversion of acetate to methane (aceticlastic methanogenesis) is an ecologically important process carried out exclusively by methanogenic archaea. An important enzyme for this process as well as for methanogenic growth on carbon monoxide is the five-subunit archaeal CO dehydrogenase/acetyl coenzyme A (CoA) synthase multienzyme complex (CODH/ACS) catalyzing both CO oxidation/CO(2) reduction and cleavage/synthesis of acetyl-CoA. Methanosarcina acetivorans C2A contains two very similar copies of a six-gene operon (cdh genes) encoding two isoforms of CODH/ACS (Cdh1 and Cdh2) and a single CdhA subunit, CdhA3. To address the role of the CODH/ACS system in M. acetivorans, mutational as well as promoter/reporter gene fusion analyses were conducted. Phenotypic characterization of cdh disruption mutants (three single and double mutants, as well as the triple mutant) revealed a strict requirement of either Cdh1 or Cdh2 for acetotrophic or carboxidotrophic growth, as well as for autotrophy, which demonstrated that both isoforms are bona fide CODH/ACS. While expression of the Cdh2-encoding genes was generally higher than that of genes encoding Cdh1, both appeared to be regulated differentially in response to growth phase and to changing substrate conditions. While dispensable for growth, CdhA3 clearly affected expression of cdh1, suggesting that it functions in signal perception and transduction rather than in catabolism. The data obtained argue for a functional hierarchy and regulatory cross talk of the CODH/ACS isoforms.  相似文献   

4.
5.
Methanogenic archaea conserve energy for growth by reducing some one- and two-carbon compounds to methane and concomitantly generating an ion motive force. Growth of Methanosarcina acetivorans on carbon monoxide (CO) is peculiar as it involves formation of, besides methane, formate, acetate and methylated thiols. It has been argued that methane formation is partially inhibited under carboxidotrophic conditions and that the other products result from either detoxification of CO or from bypassing methanogenesis with other pathways for energy conservation. To gain a deeper understanding of the CO-dependent physiology of M. acetivorans we analyzed metabolite formation in resting cells. The initial rates of methane, acetate, formate, and dimethylsulfide formation increased differentially with increasing CO concentrations but were maximal already at the same moderate CO partial pressure. Strikingly, further increase of the amount of CO was not inhibitory. The maximal rate of methane formation from CO was approximately fivefold lower than that from methanol, consistent with the previously observed significant downregulation of the energy converting sodium-dependent methyltransferase. The rate of dimethylsulfide formation from CO was only 1–2% of that of methane formation under any conditions tested. Implications of the data presented for previously proposed pathways of CO utilization are discussed.  相似文献   

6.
Formate dehydrogenase has traditionally been assumed to play an essential role in energy generation during growth on C(1) compounds. However, this assumption has not yet been experimentally tested in methylotrophic bacteria. In this study, a whole-genome analysis approach was used to identify three different formate dehydrogenase systems in the facultative methylotroph Methylobacterium extorquens AM1 whose expression is affected by either molybdenum or tungsten. A complete set of single, double, and triple mutants was generated, and their phenotypes were analyzed. The growth phenotypes of the mutants suggest that any one of the three formate dehydrogenases is sufficient to sustain growth of M. extorquens AM1 on formate, while surprisingly, none is required for growth on methanol or methylamine. Nuclear magnetic resonance analysis of the fate of [(13)C]methanol revealed that while cells of wild-type M. extorquens AM1 as well as cells of all the single and the double mutants continuously produced [(13)C]bicarbonate and (13)CO(2), cells of the triple mutant accumulated [(13)C]formate instead. Further studies of the triple mutant showed that formate was not produced quantitatively and was consumed later in growth. These results demonstrated that all three formate dehydrogenase systems must be inactivated in order to disrupt the formate-oxidizing capacity of the organism but that an alternative formate-consuming capacity exists in the triple mutant.  相似文献   

7.
Methanosarcina acetivorans C2A is able to convert several substrates to methane via at least four distinct methanogenic pathways. A common step in each of these pathways is the reduction of methyl-coenzyme M (CoM) to methane catalyzed by methyl-CoM reductase (MCR). Because this enzyme is used in each of the known pathways, the mcrBDCGA operon, which encodes MCR, is expected to be essential. To validate this prediction, a system for conditional gene inactivation was developed. A heterologous copy of the mcrBDCGA operon was placed under the control of the highly regulated mtaC1 promoter, which directs the expression of genes involved in methanol utilization, and recombined onto the M. acetivorans chromosome. This allowed for disruption of the endogenous mcr operon in the presence of methanol. Because the PmtaC1 promoter is transcribed only during growth on methanol, mcrBDCGA was rendered methanol dependent and the strain was unable to grow in trimethylamine media, strongly suggesting that mcrBDCGA is essential. Upon prolonged incubation, suppressed mutants which expressed mcrBDCGA constitutively could be selected. Expression analysis of PmtaC1::uidA gene fusions in several isolated suppressed mutants suggests that they carry trans-active mutations leading to deregulation of all genes under control of this promoter. Subsequently, proteome analysis of one such suppressed mutant revealed that all known proteins derived from mtaC1 promoter-dependent expression were constitutively expressed in this mutant. This genetic system can therefore be employed for the testing of essential genes and for the identification of genes under a common regulatory mechanism by making regulatory mutations phenotypically selectable.  相似文献   

8.
Methanosarcina acetivorans, a member of the methanogenic archaea, can grow with carbon monoxide (CO) as the sole energy source and generates, unlike other methanogens, substantial amounts of acetate and formate in addition to methane. Phenotypic analyses of mutant strains lacking the cooS1F operon and the cooS2 gene suggest that the monofunctional carbon monoxide dehydrogenase (CODH) system contributes to, but is not required for, carboxidotrophic growth of M. acetivorans. Further, qualitative proteomic analyses confirm a recent report (Lessner et al., Proc Natl Acad Sci USA, 103:17921–17926, 2006) in showing that the bifunctional CODH/acetyl-CoA synthase (ACS) system, two enzymes involved in CO2-reduction, and a peculiar protein homologous to both corrinoid proteins and methyltransferases are synthesized at elevated levels in response to CO; however, the finding that the latter protein is also abundant when trimethylamine serves as growth substrate questions its proposed involvement in the reduction of methyl-groups to methane. Potential catabolic mechanisms and metabolic adaptations employed by M. acetivorans to effectively utilize CO are discussed.  相似文献   

9.
We used (13)C-labeled methane to document the extent of trace methane oxidation by Archaeoglobus fulgidus, Archaeoglobus lithotrophicus, Archaeoglobus profundus, Methanobacterium thermoautotrophicum, Methanosarcina barkeri and Methanosarcina acetivorans. The results indicate trace methane oxidation during growth varied among different species and among methanogen cultures grown on different substrates. The extent of trace methane oxidation by Mb. thermoautotrophicum (0.05 +/- 0.04%, +/- 2 standard deviations of the methane produced during growth) was less than that by M. barkeri (0.15 +/- 0.04%), grown under similar conditions with H(2) and CO(2). Methanosarcina acetivorans oxidized more methane during growth on trimethylamine (0.36 +/- 0.05%) than during growth on methanol (0.07 +/- 0.03%). This may indicate that, in M. acetivorans, either a methyltransferase related to growth on trimethylamine plays a role in methane oxidation, or that methanol is an intermediate of methane oxidation. Addition of possible electron acceptors (O(2), NO(3) (-), SO(4) (2-), SO(3) (2-)) or H(2) to the headspace did not substantially enhance or diminish methane oxidation in M. acetivorans cultures. Separate growth experiments with FAD and NAD(+) showed that inclusion of these electron carriers also did not enhance methane oxidation. Our results suggest trace methane oxidized during methanogenesis cannot be coupled to the reduction of these electron acceptors in pure cultures, and that the mechanism by which methane is oxidized in methanogens is independent of H(2) concentration. In contrast to the methanogens, species of the sulfate-reducing genus Archaeoglobus did not significantly oxidize methane during growth (oxidizing 0.003 +/- 0.01% of the methane provided to A. fulgidus, 0.002 +/- 0.009% to A. lithotrophicus and 0.003 +/- 0.02% to A. profundus). Lack of observable methane oxidation in the three Archaeoglobus species examined may indicate that methyl-coenzyme M reductase, which is not present in this genus, is required for the anaerobic oxidation of methane, consistent with the "reverse methanogenesis" hypothesis.  相似文献   

10.
We describe a CCCH type of zinc finger domain in a replication protein A (RPA) homolog found in members of different lineages of the Euryarchaeota, a subdomain of Archaea. The zinc finger is characterized by CX(2)CX(8)CX(2)H, where X is any amino acid. Using MacRPA3, a representative of this new group of RPA in Methanosarcina acetivorans, we made two deletion mutants: a C-terminal deletion mutant lacking the zinc finger and an N-terminal deletion mutant containing the zinc finger domain. Whereas the N-terminal deletion mutant contained zinc at a level comparable to the wild-type protein level, the C-terminal deletion mutant was devoid of zinc. We further created four different mutants of MacRPA3 by replacing each of the four invariable amino acids in the zinc finger with alanine. Each single mutation at an invariable position resulted in a protein containing less than 35% of the zinc found in the wild-type protein. Circular dichroism spectra suggested that although the mutation at the first cysteine resulted in minor perturbation of protein structure, mutations at the other invariable positions led to larger structural changes. All proteins harboring a mutation at one of the invariable positions bound to single-stranded DNA weakly, and this translated into reduced capacity to stimulate DNA synthesis by M. acetivorans DNA polymerase BI. By subjecting the protein and its mutants to oxidizing and reducing conditions, we demonstrated that ssDNA binding by MacRPA3 may be regulated by redox through the zinc finger. Thus, the zinc finger modules in euryarchaeal RPA proteins may serve as a means by which the function of these proteins is regulated in the cell.  相似文献   

11.
Efficiency of yeast cell surface display can serve as a proxy screening variable for enhanced thermal stability and soluble secretion efficiency of mutant proteins. Several single-chain T cell receptor (scTCR) single-site mutants that enable yeast surface display, along with their double and triple mutant combinations, were analyzed for soluble secretion from the yeast Saccharomyces cerevisiae. While secretion of the wild-type scTCR was not detected, each of the single, double, and triple mutants were produced in yeast supernatants, with increased expression resulting from the double and triple mutants. Soluble secretion levels were strongly correlated with the quantity of active scTCR displayed as a fusion to Aga2p on the surface of yeast. Thermal stability of the scTCR mutants correlated directly with the secreted and surface levels of scTCR, with evidence suggesting that intracellular proteolysis by the endoplasmic reticulum quality control apparatus dictates display efficiency. Thus, yeast display is a directed evolution scaffold that can be used for the identification of mutant eucaryotic proteins with significantly enhanced stability and secretion properties.  相似文献   

12.
As in mammalian systems, heterotrimeric G proteins, composed of alpha, beta and gamma subunits, are present in plants and are involved in the regulation of development and cell signaling. Besides the sole prototypical G protein alpha subunit gene, GPA1, the Arabidopsis thaliana genome has three extra-large GTP-binding protein (XLG)-encoding genes: XLG1 (At2g23460), XLG2 (At4g34390) and XLG3 (At1g31930). The C-termini of the XLGs are Galpha domains that are homologous to GPA1, whereas their N-termini each contain a cysteine-rich region and a putative nuclear localization signal (NLS). GFP fusions with each XLG confirmed nuclear localization. All three XLG genes are expressed in essentially all plant organs, with strong expression in vascular tissues, primary root meristems and lateral root primordia. Analysis of single, double and triple T-DNA insertional mutants of the XLG genes revealed redundancy in XLG function. Dark-grown xlg1-1 xlg2-1 xlg3-1 triple mutant plants showed markedly increased primary root length compared with wild-type plants. This phenotype was not observed in dark-grown xlg single mutants, and was suppressed upon complementation of the xlg triple mutant with each XLG. Root cell sizes of the xlg triple mutant and root morphology were highly similar to those of wild-type roots, suggesting that XLGs may regulate cell proliferation. Dark-grown roots of the xlg triple mutants also showed altered sensitivity to sugars, ABA hyposensitivity and ethylene hypersensitivity, whereas seed germination in xlg triple mutants was hypersensitive to osmotic stress and ABA. As plant-specific proteins, regulatory mechanisms of XLGs may differ from those of conventional Galphas.  相似文献   

13.
14.
Methanosarcina barkeri was adapted to grow on carbon monoxide by sequential transfer of the culture in medium that contained CO (100% of culture headspace). These experiments document the ability of the organism to grow slowly (65-h doubling time) and to produce methane and CO2 either on CO as the sole carbon and energy source or by the simultaneous consumption of methanol and CO. During growth on CO as carbon and energy source, net hydrogen formation occurred when the CO partial pressure in the culture headspace was greater than 20% CO, but hydrogen was consumed when the CO concentration was below this value.  相似文献   

15.
Lam AF  Krogh BO  Symington LS 《DNA Repair》2008,7(4):655-662
The Mre11 and Pso2 nucleases function in homologous recombination and interstrand cross-link (ICL) repair pathways, respectively, while the Exo1 nuclease is involved in homologous recombination and mismatch repair. Characterization of the sensitivity of single, double and triple mutants for these nucleases in Saccharomyces cerevisiae to various DNA damaging agents reveals complex interactions that depend on the type of DNA damage. The pso2 mutant is uniquely sensitive to agents that generate ICLs and mre11-H125N shows the highest sensitivity of the single mutants for ionizing radiation and methyl methane sulfonate. However, elimination of all three nucleases confers higher sensitivity to IR than any of the single or double mutant combinations indicating a high degree of redundancy and versatility in the response to DNA damage. In response to ICL agents, double-strand breaks are still formed in the triple nuclease mutant indicating that none of these nucleases are responsible for unhooking cross-links.  相似文献   

16.
Cell extracts of acetate-grown Methanosarcina strain TM-1 and Methanosarcina acetivorans both contained CH3-S-CoM methylreductase activity. The methylreductase activity was supported by CO and H2 but not by formate as electron donors. The CO-dependent activity was equivalent to the H2-dependent activity in strain TM-1 and was fivefold higher than the H2-dependent activity of M. acetivorans. When strain TM-1 was cultured on methanol, the CO-dependent activity was reduced to 5% of the activity in acetate-grown cells. Methanobacterium formicicum grown on H2-CO2 contained no CO-dependent methylreductase activity. The CO-dependent methylreductase of strain TM-1 had a pH optimum of 5.5 and a temperature optimum of 60 degrees C. The activity was stimulated by the addition of MgCl2 and ATP. Both acetate-grown strain TM-1 and acetate-grown M. acetivorans contained CO dehydrogenase activities of 9.1 and 3.8 U/mg, respectively, when assayed with methyl viologen. The CO dehydrogenase of acetate-grown cells rapidly reduced FMN and FAD, but coenzyme F420 and NADP+ were poor electron acceptors. No formate dehydrogenase was detected in either organism when grown on acetate. The results suggest that a CO-dependent CH3-S-CoM methylreductase system is involved in the pathway of the conversion of acetate to methane and that free formate is not an intermediate in the pathway.  相似文献   

17.
Two mutants of Streptococcus lactis ATCC 11454 have been isolated which possess an impaired lactose-fermenting capacity; galactose utilization is also affected, but to a lesser extent. Although the Embden-Meyerhof-Parnas pathway is the major, if not the sole, pathway of carbohydrate metabolism in the three strains, the fermentation end products of the mutants are dramatically different from the typical homolactic pattern of the wild type. Under conditions of low oxygen tension and growth-limiting lactose concentrations, mutant strain T-1 produces largely formic acid, acetic acid (2:1), and ethanol rather than lactic acid. Aerated cultures produce acetic acid, CO(2) (1:1), acetyl-methylcarbinol, and diacetyl. When the mutants use galactose as an energy source, lactic acid is the major end product, but significant heterofermentative activity is observed. The aberrations responsible for the mutant phenotypes reside in the proteins which catalyze the transport and hydrolysis of galactosides. It is hypothesized that the impaired transport system of the mutants reduces the intracellular pool of glycolytic intermediates below that of the wild type. Since fructose-1, 6-diphosphate is an activator of lactic dehydrogenase in S. lactis, lactic acid production is reduced, and pathways leading to the formation of other products are expressed.  相似文献   

18.
The strain Saccharomyces cerevisiae W303-1a, able to grow in a medium containing acetic acid as the sole carbon and energy source, was subjected to mutagenesis in order to obtain mutants deficient in monocarboxylate permeases. Two mutant clones exhibiting growth in ethanol, but unable to grow in a medium with acetic acid as the sole carbon and energy source, were isolated (mutants Ace12 and Ace8). In both mutants, the activity for the acetate carrier was strongly affected. The mutant Ace8 revealed not to be affected in the transport of lactate, while the mutant Ace12 did not display activity for that carrier. These results reinforced those previously found in the strain IGC 4072, where two distinct transport systems for monocarboxylates have been described, depending on the growth carbon source. It is tempting to postulate that the Ace8 mutant seems to be affected in the gene coding for an acetate permease. In contrast, the absence of activity for both monocarboxylate permeases in mutant Ace12 could be attributed to a mutation in a gene coding for a regulatory protein not detected before.  相似文献   

19.
20.
Creatinase (creatine amidinohydrolase, EC 3.5.3.3) from Pseudomonas putida is a homodimer of 45 kDa subunit molecular mass, the three-dimensional structure of which is known at 1.9 A resolution. Three point mutants, A109V, V355M, and V182I, as well as one double mutant combining A109V and V355M, and the triple mutant with all three replacements, were compared with wild-type creatinase regarding their physical and enzymological properties. High-resolution crystal data for wild-type creatinase and the first two mutants suggest isomorphism at least for these three proteins (R. Huber, pers. comm.). Physicochemical measurements confirm this prediction, showing that the mutations have no effect either on the quaternary structure and gross conformation or the catalytic properties as compared to wild-type creatinase. The replacement of V182 (at the solvent-exposed end of the first helix of the C-terminal domain) does not cause significant differences in comparison with the wild-type enzyme. The other point mutations stabilize the first step in the biphasic denaturation transition without affecting the second one. In sum, the enhanced stability seems to reflect slight improvements in the local packing without creating new well-defined bonds. The increase in hydrophobicity generated by the introduction of additional methyl groups (A109V, V182I) must be compensated by minor readjustments of the global structure. Secondary or quaternary interactions are not affected. In going from single to double and triple mutants, to a first approximation, the increments of stabilization are additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号