首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
Ostracods are important members of the benthos and littoral communities of lake ecosystems. Ostracods respond to hydrochemistry (water chemistry) which is influenced by climatic factors such as water balance, temperature, and chemicals in rainfall runoff from the land. Thus, at local scales, environmental preferences of ostracods and characteristics of lakes are used to infer changes in climate, hydrology, and erosion of lake catchments. This study addresses potential drivers of ostracod community structure and biodiversity at multiple spatial scales using NMS, CART?, and multiple regression models. We identified 23 ostracod species from 12 lake sites. Lake area, maximum depth, spring conductivity, chlorophyll a, pH, dissolved oxygen, sedimentary carbonate, and organic matter all influence ostracod community structure based on our NMS. Based on regression analysis, lake depth, chlorophyll a, and total dissolved solids best explained ostracod richness and abundance. Land uses are also important community structuring elements that varied with scale; locally and regionally agriculture, wetlands, and grasslands were important. Nationally, using regression tree analysis of lakes sites in the North American Non-marine ostracod database (NANODe), row-crop agriculture was the most important predictor of biodiversity. Low agriculture corresponded to low species richness but greater landscape heterogeneity produced sites of high ostracod richness.  相似文献   

2.
1. Predicting spread of non-indigenous species requires an understanding of where propagules are being transported, and whether these propagules can survive in the novel habitat and successfully integrate into the recipient community. In this study, we model potential spread of invading Cabomba caroliniana in Ontario, Canada, using a combination of passive and active dispersal models coupled with an environmental suitability model, thereby considering the first two stages of the invasion process.
2. Measures of propagule pressure incorporated both human-mediated dispersal via trailered boats, and advective flow from invaded to non-invaded systems, while habitat suitability was forecasted by combining native and global data sets and using boosted regression trees.
3. Risk of invasion differed depending on the combination of approaches used and the time period considered. Three lakes appear to be at greatest risk owing to a combination of high boater and water movement from invaded sources, and high environmental suitability. The best predictors of lake suitability were pH, mean lake temperature and dissolved calcium concentration. Hundreds of lakes in Ontario may be suitable for establishment of Cabomba , highlighting the need for vector management.  相似文献   

3.
Aim  To estimate the relative importance of climate and soil nutritional variables for predicting the distribution of Acer campestre (L.) in French forests.
Location  France.
Methods  We used presence/absence information for A. campestre in 3286 forest plots scattered all over France, coupled with climatic and edaphic data. More than 150 climatic variables (temperature, precipitation, solar radiation, evapotranspiration, water balance) were obtained using a digital elevation model (DEM) and a geographical information system (GIS). Six direct soil variables (pH, C/N ratio, base saturation rate, concentrations of calcium, magnesium and potassium) were available from EcoPlant, a phytoecological data base for French forests. Using a forward stepwise logistic regression technique, we derived two distinct predictive models for A. campestre ; the first with climatic variables alone and the second with both climatic and edaphic variables.
Results  The distribution of A. campestre was poorly modelled when including only climatic variables. The inclusion of edaphic variables significantly improved the quality of predictions for this species, allowing prediction of patches of presence/absence within the study region.
Main conclusion  Soil nutritional variables may improve the performance of fine-scale (grain) plant species distribution models.  相似文献   

4.
Aim  In order to understand how ground squirrels ( Spermophilus beecheyi ) may respond to future environmental change, we investigated five biotic and environmental factors potentially responsible for explaining body-size variation in this species across California. We examined the concordance of spatial patterns with temporal body-size change since the last glacial maximum (LGM).
Location  California, western North America.
Methods  We quantified body size of modern populations of ground squirrels ( n  = 81) and used a model-selection approach to determine the best variables (sex, vegetation, number of congeners, temperature and/or precipitation) explaining geographical variation in body size among modern populations. We also quantified body size of one fossil population in northern California ( n  = 39) and compared temporal body-size change in S. beecheyi at this location since the LGM with model predictions.
Results  Body size of modern populations conformed to Bergmann's rule, with larger individuals in northern (wetter and cooler) portions of California. However, the models suggest that precipitation, rather than temperature or other variables, may best explain variation in body size across modern spatial gradients. Our conclusion is supported by the temporal data, demonstrating that the body size of S. beecheyi has increased in northern California since the LGM, concordant with precipitation but not temperature change in the region.
Main conclusions  Precipitation, rather than temperature, vegetation or number of congeneric species, was the main factor explaining both spatial and temporal patterns of body-size variation in S. beecheyi . The integration of space and time provides a powerful mechanism for predicting how local populations may respond to current and future climatic changes.  相似文献   

5.
6.
1. We surveyed eighty-five lakes located in the Adirondack Mountain Region of New York State, U.S.A., to characterize the attenuation of photosynthetically active (PAR) and ultraviolet radiation (UVR) in relation to dissolved organic carbon (DOC) concentrations and pH. Attenuation of PAR was quantified in situ . Attenuation was also inferred by measuring the light absorption of filtered lake water samples at wavelengths (300, 340 and 440 nm) representing UV-B, UV-A and PAR.
2. Substantial variation in transparency was observed among lakes in this region. Attenuation depths ( z 1%) for PAR ranged from 0.5 to greater than 20 m, while inferred values for UV-B and UV-A ranged from a few centimetres to > 5 m. Median values of UV-A penetration (0.75 m) and UV-B penetration (0.45 m) corresponded to 11% (UV-A) and 6% (UV-B) of lake maximum depth.
3. Much of the variation in PAR and UVR attenuation was explained by differences in lake DOC. Univariate power models based solely on DOC accounted for 85% (PAR), 90% (UV-A) and 91% (UV-B) of the variation in absorption.
4. Attenuation and absorption coefficients were generally lower for recently acidified lakes compared to acidic and circumneutral lakes which have not undergone recent acidification. However, differences among these three groups of lakes were not statistically significant. Our results suggest that the effects of acidification on the optical properties of a regional population of lakes, even in an area experiencing widespread acidification, are relatively subtle in comparison with other factors contributing to inter-lake variability.
5. The presence of near-shore wetlands is probably a key factor influencing regional variability in DOC and light climate among Adirondack lakes. Temporal variability in climatic factors influencing wetland DOC production and export may mask more subtle influences on lake DOC associated with anthropogenic acidification.  相似文献   

7.
1. Within a region with common climatic conditions, lake thermal variables should exhibit coherent variability patterns to the extent to which they are not influenced by lake specific features such as morphometry and water clarity. We tested the degree of temporal coherence in interannual variability for climatic variables (air temperature and solar radiation) among four lake districts in the Upper Great Lakes Region. We also tested the degree of coherence of lake thermal variables (near‐surface temperature, eplimnetic temperature, hypolimnetic temperature and thermocline depth) for lakes within these districts. 2. Our four lake districts included the Experimental Lakes Area in north‐western Ontario, the Dorset Research Centre area north of Toronto, Ontario, the Northern Highland Lake District in northern Wisconsin, and the Yahara Lakes near Madison in southern Wisconsin. Seventeen lakes were analyzed for lake thermal variables dependent on stratification. Another five lakes were added for the analysis of near‐surface temperature. 3. The analysis tested whether for monthly and summer means, the climate (air temperature and solar radiation) across the four lake districts was coherent interannually and whether variables which measure the thermal structure of the lakes were coherent interannually among lakes within each lake district and across the four lake districts. 4. Temporal coherence was estimated by the correlation between lake districts for meteorological variables and between lake pairs for lake thermal variables. Mean coherence and the percentage of correlations exceeding the 5% significance level were derived both within and between lake districts for lake thermal variables. 5. Across the four lake districts, summer mean air temperature was highly coherent while summer solar radiation was less coherent. Approximately 60–80% of the interannual variation in mean summer air temperature at a site occurred across the entire region. Less than 45% of the variation in solar radiation occurred across sites. 6. Epilimnetic temperature and the near‐surface temperature were highly coherent both within and between lake districts. The coherence of thermocline depth within and between lake districts was weaker. Hypolimnetic temperature was not coherent between lake districts for most lake pairs. It was coherent among lakes within some lake districts. 7. The influences of local weather and differences among lakes in water clarity are discussed in the context of differences in levels of coherence among lake thermal variables and among lake pairs for a given variable.  相似文献   

8.
It has been suggested that shallow lakes in warm climates have a higher probability of being turbid, rather than macrophyte dominated, compared with lakes in cooler climates, but little field evidence exists to evaluate this hypothesis. We analyzed data from 782 lake years in different climate zones in North America, South America, and Europe. We tested if systematic differences exist in the relationship between the abundance of submerged macrophytes and environmental factors such as lake depth and nutrient levels. In the pooled dataset the proportion of lakes with substantial submerged macrophyte coverage (> 30% of the lake area) decreased in a sigmoidal way with increasing total phosphorus (TP) concentration, falling most steeply between 0.05 and 0.2 mg L−1. Substantial submerged macrophyte coverage was also rare in lakes with total nitrogen (TN) concentrations above 1–2 mg L−1, except for lakes with very low TP concentrations where macrophytes remain abundant until higher TN concentrations. The deviance reduction of logistic regression models predicting macrophyte coverage from nutrients and water depth was generally low, and notably lowest in tropical and subtropical regions (Brazil, Uruguay, and Florida), suggesting that macrophyte coverage was strongly influenced by other factors. The maximum TP concentration allowing substantial submerged macrophyte coverage was clearly higher in cold regions with more frost days. This is in agreement with other studies which found a large influence of ice cover duration on shallow lakes' ecology through partial fish kills that may improve light conditions for submerged macrophytes by cascading effects on periphyton and phytoplankton. Our findings suggest that, in regions where climatic warming is projected to lead to fewer frost days, macrophyte cover will decrease unless the nutrient levels are lowered.  相似文献   

9.
Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals.  相似文献   

10.
11.
Freshwater ecosystems are threatened by multiple anthropogenic stressors acting over different spatial and temporal scales, resulting in toxic algal blooms, reduced water quality and hypoxia. However, while catchment characteristics act as a ‘filter’ modifying lake response to disturbance, little is known of the relative importance of different drivers and possible differentiation in the response of upland remote lakes in comparison to lowland, impacted lakes. Moreover, many studies have focussed on single lakes rather than looking at responses across a set of individual, yet connected lake basins. Here we used sedimentary algal pigments as an index of changes in primary producer assemblages over the last ~200 years in a northern temperate watershed consisting of 11 upland and lowland lakes within the Lake District, United Kingdom, to test our hypotheses about landscape drivers. Specifically, we expected that the magnitude of change in phototrophic assemblages would be greatest in lowland rather than upland lakes due to more intensive human activities in the watersheds of the former (agriculture, urbanization). Regional parameters, such as climate dynamics, would be the predominant factors regulating lake primary producers in remote upland lakes and thus, synchronize the dynamic of primary producer assemblages in these basins. We found broad support for the hypotheses pertaining to lowland sites as wastewater treatment was the main predictor of changes to primary producer assemblages in lowland lakes. In contrast, upland headwaters responded weakly to variation in atmospheric temperature, and dynamics in primary producers across upland lakes were asynchronous. Collectively, these findings show that nutrient inputs from point sources overwhelm climatic controls of algae and nuisance cyanobacteria, but highlights that large‐scale stressors do not always initiate coherent regional lake response. Furthermore, a lake's position in its landscape, its connectivity and proximity to point nutrients are important determinants of changes in production and composition of phototrophic assemblages.  相似文献   

12.
Despite recent interest in microbial diversity and community structure of lakes across various spatial scales, a global biogeographic distribution pattern and its controlling factors have not been fully disclosed. Here, we compiled and analyzed 88,334,735 environmental 16S rRNA sequences from 431 lakes across a wide range of geographical distance and environmental conditions(in particular, salinity, 0–373.3 gL~(–1)). Our results showed that lake sediments inhabit significantly(ANOVA: P0.001) more diverse microbial communities than lake waters. Non-metric dimensional scaling(NMDS) ordinations indicated that microbial community compositions differed distinctly among sample types(freshwater vs. saline, water vs. sediment) and geographic locations. Mantel and partial Mantel tests showed that microbial community composition in lake water was significantly(P=0.001) correlated with geographic distance, salinity, and pH. Statistical analyses based on neutral community and null models indicated that stochastic processes may play predominant roles in shaping the microbial biogeographic distribution patterns in the studied global lake waters. The dispersal-related stochasticity(e.g., homogenizing dispersal) exhibited a stronger influence on the distribution of microbial community in freshwater lakes than in saline lakes. Overall, this work expands our understanding of the impact of geographic distance, environmental conditions, and stochastic processes on microbial distribution in global lakes.  相似文献   

13.
Although limnologists have long been interested in regional patterns in lake attributes, only recently have they considered lakes connected and organized across the landscape, rather than as spatially independent entities. Here we explore the spatial organization of lake districts through the concept of landscape position, a concept that considers lakes longitudinally along gradients of geomorphology and hydrology. We analyzed long-term chemical and biological data from nine lake chains (lakes in a series connected through surface or groundwater flow) from seven lake districts of diverse hydrologic and geomorphic settings across North America. Spatial patterns in lake variables driven by landscape position were surprisingly common across lake districts and across a wide range of variables. On the other hand, temporal patterns of lake variables, quantified using synchrony, the degree to which pairs of lakes exhibit similar dynamics through time, related to landscape position only for lake chains with lake water residence times that spanned a wide range and were generally long (close to or greater than 1 year). Highest synchrony of lakes within a lake chain occurred when lakes had short water residence times. Our results from both the spatial and temporal analyses suggest that certain features of the landscape position concept are robust enough to span a wide range of seemingly disparate lake types. The strong spatial patterns observed in this analysis, and some unexplained patterns, suggest the need to further study these scales and to continue to view lake ecosystems spatially, longitudinally, and broadly across the landscape.  相似文献   

14.
Small lakes dominate a random sample of regional lake characteristics   总被引:1,自引:0,他引:1  
1. Lakes are a prominent feature of the Northern Highland Lake District (NHLD) of Wisconsin, covering 13% of the landscape. Summarising the physical, chemical, or biological nature of NHLD lakes at a regional scale requires a representative sample of the full size distributions of lakes. In this study, we selected at random 168 lakes from the full size distribution of lakes in the NHLD and sampled each lake for a broad suite of limnological variables.
2. Most lakes were small. The median lake area was 1.1 ha, however, half of the surface area of water was in a relatively small number of lakes larger than 162 ha. Smaller lakes tended to be low in dissolved inorganic carbon (DIC) and high in dissolved organic carbon (DOC). Inclusion of small lakes (<4 ha) in the survey resulted in an acid neutralising capacity (ANC) median (76.5  μ Eq L−1) much lower than previous estimates, and a DOC median (10.1 mg L−1) about 50% higher than it would have been without the smaller lakes. Unlike DOC, total P tended to be evenly distributed across lake sizes.
3. The implications of these findings are that regional summaries of lake characteristics for the NHLD are influenced by the inclusion of small lakes in the sample, even though most of the water surface area is in lakes larger than 162 ha. Excluding small lakes introduces bias in the estimates of organic carbon and inorganic carbon values, for example. Similar biases may be introduced for lake characteristics at the global scale if small lakes are not sampled, because the size distribution of lakes globally is dominated in number by small lakes.  相似文献   

15.
Subfossil biotic assemblages in lakes’ surface sediments have been used to infer ecological conditions across environmental gradients. Local variables are usually the major drivers of assemblage composition, but in remote oceanic islands biogeographic filters may play a significant role. To assess the contribution of local and regional filters in the composition of subfossil diatom and chironomid assemblages in surface sediments, 41 lakes in Azores archipelago were studied and related to environmental variables. Ordination techniques were used to identify the forcing factors that best explain the composition of these assemblages. Both assemblages are influenced by multiple limnological variables (conductivity, pH and nutrients). However, diatom assemblages differed mainly in the proportion of planktonic versus benthic species along lakes’ depth gradient while chironomids differed significantly among islands but not among lake depths. Thus, biogeographic filters play an important role in shaping islands’ freshwater communities, particularly insect ones, more influenced by geographic variables. Results demonstrate the accuracy and potential of biotic remains in sediments for applied studies of lake ecology, trophic status, climatic trends and ecological reconstruction and evolution of lakes. In the Azores, the application of this information for the development of inference models is envisaged as a further step to accomplish these goals.  相似文献   

16.
17.
18.
Abstract.  1. The habitat heterogeneity hypothesis states that the more complex the habitat, the higher the species richness. The present study analyzes the effect of local factors on regional spider ( Araneidae and Thomisidae ) richness. The main objective is to disentangle the relative importance of habitat structure and other environmental variables.
2. Fifteen territorial units of 1 km2 were sampled to obtain reliable and comparable inventories of the two spider families. Richness values were modelled using general regression models and a set of climate, topographic and vegetation structure variables. Pure and joint effects were computed via variation partitioning.
3. The results highlight the great importance of vegetation complexity, especially of grass and sub-shrub cover, in determining spider species richness.
4. The maximum temperature is the only climate variable significantly related to species richness, although its effect is combined with that of spatial and vegetation structure variables.
5. These results support the habitat heterogeneity hypothesis, and highlight the importance of taking vegetation complexity into account when managing habitats and where spider conservation is desired.  相似文献   

19.
《HOMO》2014,65(2):101-114
Previous studies have shown that ecological factors had a significant role in shaping the patterns of craniofacial variation among South American populations. Here, we evaluate whether temperature and diet contributed to facial diversification in small geographic areas. Facial size and shape of 9 osteological samples from central Patagonia (Argentina) were described using 2D landmarks and semilandmarks. Data on mean annual temperature, diet composition (δ13C and δ15N values) and femoral head maximum breadth, used as a proxy of body mass, were obtained for each sample. We then tested the association of body mass and the ecological variables with facial morphology using spatial regression techniques and a model selection approach. Akaike Information Criterion produced disparate results for both components of facial morphology. The best model for facial size included temperature and body mass proxy, and accounted for more than 80% of variation in size. Lower temperatures were related to larger facial sizes. Body mass was negatively associated with facial size and showed no relationship with the temperature. This suggests a relatively independent variation of cranial traits and body mass at the spatial scale studied here. Facial shape was not associated with the temperature or diet composition, contrasting with the patterns observed at larger spatial scales. Our results point out that the effect of climatic variables on cranial traits might be a source of morphological differentiation not only at large scales but also in small geographic areas, and that size and shape display a differential preservation of environmental signals.  相似文献   

20.
SUMMARY. 1. Temporal coherence between pairs of lakes over 7 years was measured for thirty-seven limnological variables in seven lakes at the North Temperate Lakes Long Term Ecological Research site in Northern Wisconsin. This analysis tested. First, whether lakes more similar in exposure to the atmosphere were more temporally coherent than lakes which differed more in exposure and, second, whether temporal coherence in lakes progressively decreased from variables more directly influenced by climatic factors such as thermal and hydrologic properties, to those chemical and biological properties which may be less directly influenced by climatic factors. 2. The lakes were a heterogeneous set in respect to exposure to climatic factors as estimated by the ratio of‘lake area/mean depth’and by other morphometric features, and they also differed in their position in the landscape, fertility and fish assemblages. Limnological variables formed a progression from those expected to respond directly to climatic factors to those which would not. They ranged from water level and temperatures to chemical variables such as pH, calcium concentrations and total dissolved phosphorus to biological variables such as chlorophyll concentrations, invertebrate and fish abundances. 3. Coherence was estimated by the correlation between lake pairs for each of the different variables. The mean correlation and the percentage of strong correlations were calculated for each lake pair across all variables, and for each variable across all lake pairs, and both measures of coherence gave similar answers to the questions posed above. 4. Temporal coherence between takes was higher for lakes similar in their exposure to climatic factors; mean correlation (r?) being +0.3 to +0.7 for these lakes and <+0.3 for lakes not similar in exposure. None of the lake pairs had high coherence across all variables. 5. Temporal coherence between lakes was greater for limnological variables directly influenced by climatic factors than for variables either indirectly affected by climate or complexly influenced by other types of factors. Water-level variables had a coherence near 1, r?=0.9. All biological variables had low coherence, some near r?=0.0. Chemical variables more likely to be influenced directly by climatic factors appeared to be more coherent than those more influenced by hydrology or biology. Most silica and phosphorus variables had coherences less than r?=0.15. 6. Coherence was not as strongly related to similarity in landscape position as it was to similarity in exposure to climatic factors, and was not jelated to the proximity of the lake pairs or to their similarity in fertility. 7. A conceptual model was presented to explain how climatic signals are filtered by the lake's exposure to climatic factors and by terrestrially mediated and in-lakc processes to reduce the coherence of lake pairs owing to time lags, frequency shifts and complex interference pattems. 8. Coherence is an important property to evaluate because it influences how broadly we can extrapolate results from a lake or set of lakes (for example, to a lake district) and because manipulative whole lake experiments often use adjacent lakes as reference lakes to evaluate treatment effects. The low coherence in this set of lakes in general and of individual variables such as chlorophyll concentrations and yellow perch year-class strength are discussed. 9. We found no studies that explicitly addressed interlake coherence; one long-term study of forest production made it clear that coherence among sites in a landscape will be a function of scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号