首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of human immunodeficiency virus type 1 (HIV-1) structural proteins requires the action of the viral trans-regulatory protein Rev. Rev is a nuclear shuttle protein that directly binds to its cis-acting Rev response element (RRE) RNA target sequence. Subsequent oligomerization of Rev monomers on the RRE and interaction of Rev with a cellular cofactor(s) result in the cytoplasmic accumulation of RRE-containing viral mRNAs. Moreover, Rev by itself is exported from the nucleus to the cytoplasm. Although it has been demonstrated that Rev multimerization is critically required for Rev activity and hence for HIV-1 replication, the number of Rev monomers required to form a trans-activation-competent complex on the RRE is unknown. Here we report a systematic analysis of the putative multimerization domains within the Rev trans-activator protein. We identify the amino acid residues which are part of the proposed single hydrophobic surface patch in the Rev amino terminus that mediates intermolecular interactions. Furthermore, we show that the expression of a multimerization-deficient Rev mutant blocks HIV-1 replication in a trans-dominant (dominant-negative) fashion.  相似文献   

2.
3.
The HIV-1 Rev protein plays a pivotal role in viral replication, and therefore, inhibition of its function should block the progression of the virus-induced immune deficiency syndrome (AIDS). Here, RNA molecules have been shown to inhibit import of the HIV-1 Rev protein into nuclei of permeabilized cells. Nuclear uptake of biotinylated recombinant His-tagged Rev-GFP was assessed in nuclear extracts from digitonin-permeabilized cells by binding to either importin beta-receptors or nickel molecules immobilized on a microtiter plate. Using this method together with fluorescence microscopy, we determined that nuclear import of Rev is inhibited by the addition of a reticulocyte lysate which routinely is used as a source of nuclear import receptors. This inhibition was released by treatment with the RNase enzyme. Also t-RNA molecules and the oligoribonucleotide RRE IIB, namely, the second stem structure of the Rev responsive element (RRE) of the viral RNA, inhibit Rev nuclear import. Similar results were obtained when BSA molecules with covalently attached Rev-arginine rich motif (ARM) peptides were used as a nuclear transport substrate, indicating that the nuclear import inhibition of the Rev protein is due to the presence of the ARM domain. Binding experiments revealed that the RNA molecules inhibit the interaction between the ARM region and importin beta, implying that the RNA prevents the formation of the import complex. The implication of our results for the regulation of the nuclear import of Rev as well as for the use of RNA molecules as antiviral drugs is discussed.  相似文献   

4.
The human immunodeficiency virus type 1 (HIV-1) Rev protein facilitates the nuclear export of viral mRNA containing the Rev response element (RRE). Although several host proteins co-operating with Rev in viral RNA export have been reported, little is known about the innate host defense factors that Rev overcomes to mediate the nuclear export of unspliced viral mRNAs. We report here that an anti-apoptotic protein, HS1-associated protein X-1 (Hax-1), a target of HIV-1 Vpr, interacts with Rev and inhibits its activity in RRE-mediated gene expression. Co-expression of Sam68 emancipates Rev activity from Hax-1-mediated inhibition. Hax-1 does not bind to RRE RNA by itself, but inhibits Rev from binding to RRE RNA in vitro. The impact of Hax-1 on Rev/RRE interactions in vitro correlates well with the reduced level of RRE-containing mRNA in vivo. Immunofluorescence studies further reveal that Hax-1 and Rev are cytoplasmic and nuclear proteins, respectively, when expressed independently. However, in Hax-1 co-expressing cells, Rev is translocated from the nucleus to the cytoplasm, where it is co-localized with Hax-1 in the cytoplasm. We propose that over-expression of Hax-1, possibly through binding to Rev, may interfere with the stability/export of RRE-containing mRNA and target the RNA for degradation.  相似文献   

5.
6.
Luedtke NW  Tor Y 《Biopolymers》2003,70(1):103-119
RNA plays a pivotal role in the replication of all organisms, including viral and bacterial pathogens. The development of small molecules that selectively interfere with undesired RNA activity is a promising new direction for drug design. Currently, there are no anti-HIV treatments that target nucleic acids. This article presents the HIV-1 Rev response element (RRE) as an important focus for the development of antiviral agents that target RNA. The Rev binding site on the RRE is highly conserved, even between different groups of HIV-1 isolates. Compounds that inhibit HIV replication by binding to the RRE and displacing Rev are therefore expected to retain activity across groups of genetically diverse HIV infections. Systematic evaluations of both the RRE affinity and specificity of numerous small molecule inhibitors are essential for deciphering the parameters that govern effective RRE recognition. This article discusses fluorescence-based techniques that are useful for probing a small molecule's RRE affinity and its ability to inhibit Rev-RRE binding. Rev displacement experiments can be conducted by observing the fluorescence anisotropy of a fluorescein-labeled Rev peptide, or by quantifying its displacement from a solid-phase immobilized RRE. Experiments conducted in the presence of competing nucleic acids are useful for evaluating the RRE specificity of Rev-RRE inhibitors. The discovery and characterization of new RRE ligands are described. Eilatin is a polycyclic aromatic heterocycle that has at least one binding site on the RRE (apparent Kd is approximately 0.13 microM), but it does not displace Rev upon binding the RRE (IC50 > 3 microM). In contrast, ethidium bromide and two eilatin-containing metal complexes show better consistency between their RRE affinity and their ability to displace a fluorescent Rev peptide from the RRE. These results highlight the importance of conducting orthogonal binding assays that establish both the RNA affinity of a small molecule and its ability to inhibit the function of the RNA target. Some Rev-RRE inhibitors, including ethidium bromide, Lambda-[Ru(bpy)(2)eilatin]2+, and Delta-[Ru(bpy)(2)eilatin]2+ also inhibit HIV-1 gene expression in cell cultures (IC50 = 0.2-3 microM). These (and similar) results should facilitate the future discovery and implementation of anti-HIV drugs that are targeted to viral RNA sites. In addition, a deeper general understanding of RNA-small molecule recognition will assist in the effective targeting of other therapeutically important RNA sites.  相似文献   

7.
8.
9.
A human immunodeficiency virus type 1 (HIV-1)-based vector expressing an antisense RNA directed against HIV-1 is currently in clinical trials. This vector has shown a remarkable ability to inhibit HIV-1 replication, in spite of the fact that therapeutic use of unmodified antisense RNAs has generally been disappointing. To further analyze the basis for this, we examined the effects of different plasmid-based HIV-1 long-terminal-repeat-driven constructs expressing antisense RNA to the same target region in HIV-1 but containing different export elements. Two of these vectors were designed to express antisense RNA containing either a Rev response element (RRE) or a Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE). In the third vector, no specific transport element was provided. Efficient inhibition of HIV-1 virus production was obtained with the RRE-driven antisense RNA. This construct also efficiently inhibited p24 production from a pNL4-3 provirus that used the MPMV CTE for RNA export. In contrast, little inhibition was observed with the constructs lacking an RRE. Furthermore, when the RRE-driven antisense RNA was redirected to the Tap/Nxf1 pathway, utilized by the MPMV CTE, through the expression of a RevM10-Tap fusion protein, the efficiency of antisense inhibition was greatly reduced. These results indicate that efficient inhibition requires trafficking of the antisense RNA through the Rev/RRE pathway. Mechanistic studies indicated that the Rev/RRE-mediated inhibition did not involve either nuclear retention or degradation of target mRNA, since target RNA was found to export and associate normally with polyribosomes. However, protein levels were significantly reduced. Taken together, our results suggest a new mechanism for antisense inhibition of HIV mediated by Rev/RRE.  相似文献   

10.
The HIV Rev protein forms a complex with a 351 nucleotide sequence present in unspliced and incompletely spliced human immunodeficiency virus (HIV) mRNAs, the Rev response element (RRE), to recruit the cellular nuclear export receptor Crm1 and Ran-GTP. This complex facilitates nucleo-cytoplasmic export of these mRNAs. The precise secondary structure of the HIV-1 RRE has been controversial, since studies have reported alternative structures comprising either four or five stem-loops. The published structures differ only in regions that lie outside of the primary Rev binding site. Using in-gel SHAPE, we have now determined that the wt NL4-3 RRE exists as a mixture of both structures. To assess functional differences between these RRE ‘conformers’, we created conformationally locked mutants by site-directed mutagenesis. Using subgenomic reporters, as well as HIV replication assays, we demonstrate that the five stem-loop form of the RRE promotes greater functional Rev/RRE activity compared to the four stem-loop counterpart.  相似文献   

11.

Background

HIV-1 Rev response element (RRE) is a functional region of viral RNA lying immediately downstream to the junction of gp120 and gp41 in the env coding sequence. The RRE is essential for HIV replication and binds with the Rev protein to facilitate the export of viral mRNA from nucleus to cytoplasm. It has been suggested that changes in the predicted secondary structure of primary RRE sequences impact the function of the RREs; however, functional assays have not yet been performed. The aim of this study was to characterize the genetic, structural and functional variation in the RRE primary sequences selected in vivo by Enfuvirtide pressure.

Results

Multiple RRE variants were obtained from viruses isolated from patients who failed an Enfuvirtide-containing regimen. Different alterations were observed in the predicted RRE secondary structures, with the abrogation of the primary Rev binding site in one of the variants. In spite of this, most of the RRE variants were able to bind Rev and promote the cytoplasmic export of the viral mRNAs with equivalent efficiency in a cell-based assay. Only RRE45 and RRE40-45 showed an impaired ability to bind Rev in a gel-shift binding assay. Unexpectedly, this impairment was not reflected in functional capacity when RNA export was evaluated using a reporter assay, or during virus replication in lymphoid cells, suggesting that in vivo the RRE would be highly malleable.

Conclusions

The Rev-RRE functionality is unaffected in RRE variants selected in patients failing an ENF-containing regimen. Our data show that the current understanding of the Rev-RRE complex structure does not suffice and fails to rationally predict the function of naturally occurring RRE mutants. Therefore, this data should be taken into account in the development of antiviral agents that target the RRE-Rev complex.  相似文献   

12.
The main function attributed to the Rev proteins of immunodeficiency viruses is the shuttling of viral RNAs containing the Rev responsive element (RRE) via the CRM-1 export pathway from the nucleus to the cytoplasm. This restricts expression of structural proteins to the late phase of the lentiviral replication cycle. Using Rev-independent gag-pol expression plasmids of HIV-1 and simian immunodeficiency virus and lentiviral vector constructs, we have observed that HIV-1 and simian immunodeficiency virus Rev enhanced RNA encapsidation 20- to 70-fold, correlating well with the effect of Rev on vector titers. In contrast, cytoplasmic vector RNA levels were only marginally affected by Rev. Binding of Rev to the RRE or to a heterologous RNA element was required for Rev-mediated enhancement of RNA encapsidation. In addition to specific interactions of nucleocapsid with the packaging signal at the 5' end of the genome, the Rev/RRE system provides a second mechanism contributing to preferential encapsidation of genomic lentiviral RNA.  相似文献   

13.
A cis-acting RNA regulatory element, the Rev-responsive element (RRE), has essential roles in replication of lentiviruses, including human immunodeficiency virus (HIV-1) and equine infection anemia virus (EIAV). The RRE binds the viral trans-acting regulatory protein, Rev, to mediate nucleocytoplasmic transport of incompletely spliced mRNAs encoding viral structural genes and genomic RNA. Because of its potential as a clinical target, RRE-Rev interactions have been well studied in HIV-1; however, detailed molecular structures of Rev-RRE complexes in other lentiviruses are still lacking. In this study, we investigate the secondary structure of the EIAV RRE and interrogate regulatory protein-RNA interactions in EIAV Rev-RRE complexes. Computational prediction and detailed chemical probing and footprinting experiments were used to determine the RNA secondary structure of EIAV RRE-1, a 555 nt region that provides RRE function in vivo. Chemical probing experiments confirmed the presence of several predicted loop and stem-loop structures, which are conserved among 140 EIAV sequence variants. Footprinting experiments revealed that Rev binding induces significant structural rearrangement in two conserved domains characterized by stable stem-loop structures. Rev binding region-1 (RBR-1) corresponds to a genetically-defined Rev binding region that overlaps exon 1 of the EIAV rev gene and contains an exonic splicing enhancer (ESE). RBR-2, characterized for the first time in this study, is required for high affinity binding of EIAV Rev to the RRE. RBR-2 contains an RNA structural motif that is also found within the high affinity Rev binding site in HIV-1 (stem-loop IIB), and within or near mapped RRE regions of four additional lentiviruses. The powerful integration of computational and experimental approaches in this study has generated a validated RNA secondary structure for the EIAV RRE and provided provocative evidence that high affinity Rev binding sites of HIV-1 and EIAV share a conserved RNA structural motif. The presence of this motif in phylogenetically divergent lentiviruses suggests that it may play a role in highly conserved interactions that could be targeted in novel anti-lentiviral therapies.  相似文献   

14.
The Rev protein of human immunodeficiency virus type 1 (HIV-1) differentially transactivates the expression of viral structural proteins by allowing the accumulation of unspliced and singly spliced viral mRNA in the cytoplasm. The cis-acting RNA target sequence for the Rev protein, termed the Rev response element (RRE), is present in the env gene and is predicted to form a highly ordered RNA secondary structure. Recent data indicate that Rev directly binds to RRE and, further, that this binding can be mapped to a 90-nucleotide subfragment at the 5' end of RRE. We now report that RRE also binds specifically and predominantly to a nuclear factor of approximately 56 kD. Mapping of the binding site reveals that the same subfragment that binds Rev also binds this nuclear factor. We designate this protein as NFRRE for nuclear factor, RRE binding. Rev and NFRRE appear to bind simultaneously to RRE. NFRRE is widely distributed in various mammalian cells. We speculate that this factor plays an important role in Rev-mediated transactivation and is likely to be involved in the processing or transport of cellular mRNA.  相似文献   

15.
Interaction between the viral protein Rev and the RNA motifs known as Rev response elements (RREs) is required for transport of unspliced and partially spliced human immunodeficiency virus (HIV)-1 and HIV-2 RNAs from the nucleus to the cytoplasm during the later stages of virus replication. A more detailed understanding of these nucleoprotein complexes and the host factors with which they interact should accelerate the development of new antiviral drugs targeting cis-acting RNA regulatory signals. In this communication, the secondary structures of the HIV-2 RRE and two RNA folding precursors have been identified using the SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) chemical probing methodology together with a novel mathematical approach for determining the secondary structures of RNA conformers present in a mixture. A complementary chemical probing technique was also used to support these secondary structure models, to confirm that the RRE2 RNA undergoes a folding transition and to obtain information about the relative positioning of RRE2 substructures in three dimensions. Our analysis collectively suggests that the HIV-2 RRE undergoes two conformational transitions before assuming the energetically most favorable conformer. The 3D models for the HIV-2 RRE and folding intermediates are also presented, wherein the Rev-binding stem–loops (IIB and I) are located coaxially in the former, which is in agreement with previous models for HIV-1 Rev-RRE binding.  相似文献   

16.
The rate of viral replication appears to play a pivotal role in human immunodeficiency virus type 1 (HIV-1) pathogenesis and disease progression as it outstrips the capacity of the immune system to respond. Important cellular sites for HIV-1 production include T lymphocytes and tissue macrophages. Antiviral strategies, including newer treatment modalities such as gene therapy of HIV-1-susceptible cell populations, must be capable of engendering durable inhibitory effects to HIV-1 replication in both of these primary cell types in order to be effective. Among the potential genetic targets for intervention in the HIV-1 life cycle, the Rev regulatory system, consisting of Rev and its binding site, the Rev-responsive element (RRE), stands out as particularly attractive. Rev is essential for maintaining the stability of the viral genomic RNA as well as viral mRNAs encoding key structural and regulatory proteins. Moreover, it exhibits favorable threshold kinetics, in that Rev concentrations must rise above a critical level to exert their effect. To disable Rev function, primary T cells or macrophages were transduced with anti-Rev single-chain immunoglobulin (SFv) or RRE decoy genes either singly or in combination by employing adeno-associated virus vectors and then challenged with HIV-1. By directing both a protein and a nucleic acid against the normal interaction between Rev and the RRE, this genetic antiviral strategy effectively inhibited infection by either clinical or laboratory virus isolates. These results provide a framework for novel interventions to reduce virus production in the infected host.  相似文献   

17.
Sam68 is absolutely required for Rev function and HIV-1 production   总被引:3,自引:0,他引:3       下载免费PDF全文
Sam68 functionally complements for, as well as synergizes with, HIV-1 Rev in Rev response element (RRE)-mediated gene expression and virus production. Furthermore, C-terminal deletion/point mutants of Sam68 (Sam68ΔC/Sam68-P21) exert a transdominant negative phenotype for Rev function and HIV-1 production. However, the relevance of Sam68 in Rev/RRE function is not well defined. To gain more insight into the mechanism of Sam68 in Rev function, we used an RNAi (RNA interference) strategy to create stable Sam68 knockdown HeLa (SSKH) cells. In SSKH cells, Rev failed to activate both RRE-mediated reporter gene [chloramphenicol acetyltransferase (CAT) and/or gag] expressions. Importantly, reduction of Sam68 expression led to a dramatic inhibition of HIV-1 production. Inhibition of the reporter gene expression and HIV production correlated with the failure to export RRE-containing CAT mRNA and unspliced viral mRNAs to the cytoplasm, confirming that SSKH cells are defective for Rev-mediated RNA export. Taken together, these results suggest that Sam68 is involved in Rev-mediated RNA export and is absolutely required for HIV production.  相似文献   

18.
Expression of human immunodeficiency virus type 1 structural proteins requires both the viral Rev trans-activator and its cis-acting RNA target sequence, the Rev response element (RRE). The RRE has been mapped to a conserved region of the HIV-1 env gene and is predicted to form a complex, highly stable RNA stem-loop structure. Site-directed mutagenesis was used to define a small subdomain of the RRE, termed stem-loop II, that is essential for biological activity. Gel retardation assays demonstrated that the Rev trans-activator is a sequence-specific RNA binding protein. The RRE stem-loop II subdomain was found to be both necessary and sufficient for the binding of Rev by the RRE. We propose that the HIV-1 Rev trans-activator belongs to a new class of sequence-specific RNA binding proteins characterized by the presence of an arginine-rich binding motif.  相似文献   

19.
E Bhnlein  J Berger    J Hauber 《Journal of virology》1991,65(12):7051-7055
Expression of human immunodeficiency virus type 1 (HIV-1) structural proteins requires the direct interaction of the viral trans-activator protein Rev with its cis-acting RNA sequence (Rev-response element [RRE]). A stretch of 14 amino acid residues of the 116-amino-acid Rev protein is sufficient to impose nucleolar localization onto a heterologous protein. Our results demonstrated that these same amino acid residues confer Rev-specific RRE binding to the heterologous human T-cell leukemia virus type I Rex protein. In addition, our results indicated that amino acids distinct from the nuclear localization signal are important for Rex-specific RRE RNA binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号