首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal outbreeding theory predicts fitness benefits to intermediate levels of inbreeding. In the present study, we test for linear (consistent with inbreeding depression) and nonlinear (consistent with optimal outbreeding) effects of inbreeding on reproductive fitness in male and female Drosophila melanogaster . We found linear declines in fitness associated with increased inbreeding for egg-to-adult viability, but not the number of eggs laid or sperm competitive ability. Egg-to-adult viability was also lower in the progeny of inbred males and females mated to unrelated individuals. However, there was no evidence for optimal fitness at intermediate levels of inbreeding for any trait. The present study highlights the importance of considering biologically realistic levels of inbreeding and cross-generational effects when investigating the costs and benefits of mating with relatives.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 501–510.  相似文献   

2.
Recent investigations of mate choice indicate that the genetic effect of sires on offspring fitness may depend on the interaction between maternal and paternal genotypes and the environmental conditions experienced by the offspring. Alternative colour morphs of the pygmy grasshopper, Tetrix subulata , represent ecological strategies that differ in body size, life history, thermoregulatory behaviour, and habitat selection. The hypothesis that selection promotes behaviours maintaining coadapted gene complexes predicts individuals to mate assortatively with respect to colour morph. On the other hand, the bet-hedging hypothesis predicts that the temporal variability of the environment inhabited by these animals may select for disassortative mating behaviour resulting in heterogeneous offspring. To distinguish between these competing hypotheses, we investigated mating behaviours using dual-choice experiments. Our results were not in agreement with the prediction of assortative mating but suggest instead that matings were random with regard to colour morph. Polyandry was common, and females mated with the second male regardless of whether the first mating was assortative or disassortative. Polyandry also was equally frequent among females in triads in which the two males belonged to different colour morphs as in triads where both males belonged to the same colour morph. A field experiment confirmed that polyandry occurred also among free-ranging individuals, and uncovered variation in mating success among male colour morphs, probably due to indirect effects of coloration on activity or habitat use. The consequences of this random and polyandrous mating strategy for the evolutionary dynamics of the colour polymorphism remain to be explored.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 491–499.  相似文献   

3.
Eurosta solidaginis Fitch (Diptera: Tephritidae) has formed host races on Solidago altissima L. and Solidago gigantea Ait. (Asteraceae), and reproductive isolation between these host races is brought about in part by host‐associated assortative mating. Any non‐assortative mating creates the potential for gene flow between the populations, and we investigated the conditions that favored non‐assortative mating. We hypothesized that the frequency of non‐assortative mating would be influenced by differences in the behaviors of the host races and sexes and by the presence and pattern of distribution of the two host species. To test these hypotheses, we caged flies on four combinations of 32 potted host plants: all S. altissima, all S. gigantea, and cages with both host species arranged in either two pure species blocks or randomly dispersed. We recorded the number of flies of each host race that alighted on each host species and the frequency of mating within and between the host races. Males of both host races were observed on plants more frequently than females. Flies of the host race from S. gigantea (gig flies) were observed on plants in greater absolute numbers, and they mated more frequently than flies of the host race from S. altissima (alt flies). In all treatments, gig flies of both sexes were found on non‐natal host plants significantly more frequently than alt flies, and gig females showed a weaker preference for their host species than did gig males or alt flies of either gender for their respective natal hosts. Assortative mating predominated in all treatments, and flies from each host race mated more frequently in cages containing their own host plant. The frequency of non‐assortative mating varied among treatments, with the matings between alt ♀ × gig ♂ being more common in the pure S. altissima treatment and the gig ♀ × alt ♂ being more frequent in the pure S. gigantea and random treatments. Matings between gig ♂ × alt ♀ were more common overall than the reciprocal mating, because gig males were more active in pursuing matings and in alighting on the non‐natal host plant than alt flies. Non‐assortative matings were more frequent in the random than in the block treatments, but this difference was not significant. Because of strong selection against oviposition into the alternate host, we hypothesized that host plant distribution would not affect oviposition preference. We tested this hypothesis by examining the oviposition behavior of naïve, mated females in two treatments in which both host species were present: either arranged in blocks or randomly dispersed. Females oviposited only into their natal host, regardless of host plant distribution.  相似文献   

4.
Sperm competition is a pervasive force. One adaptation is the male ability to displace the rivals' sperm that females have stored from previous copulations. In the damselfly, Calopteryx haemorrhoidalis asturica , males with wider aedeagi displace more spermathecal sperm. The present study documents that the same mechanism operates in another damselfly, Hetaerina americana . However, this genital width in both species decreases along the season, but late-emerging females have more sperm displaced than early-emerging females. Because territorial males mated more and were larger in body and genital size than nonterritorial males, late-season females mated with considerably larger males with respect to female size and this produced higher sperm displacement. Assuming female benefits from storing sperm but that such benefit does not prevail if males displace sperm, it is predicted that, along the season, females will mate less and male harassment (in terms of male mating attempts and oviposition duration) will increase. These predictions were corroborated. In H. americana , it was also tested whether spermathecal sperm became less viable along the season. The results obtained did not corroborate this. This is the first evidence indicating that season affects sperm displacement ability and female mating frequency due to changes in male body and genital size.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 815–829.  相似文献   

5.
Understanding why females mate multiply is a major issue in evolutionary ecology. We investigated the consequences of an asynchronous arrival pattern on male competition and multiple paternity in the apparently monoandrous agile frog ( Rana dalmatina ). The largest frogs arrived first and both males and females lost weight significantly during the spawning period. Asynchronous arrival at breeding sites resulted in a male-biased operational sex ratio (OSR). The OSR was more strongly male-biased at the beginning and at the end of the breeding period when the number of satellite males increased. All females mated only once, but multiple paternity within clutches occurred at the beginning and the end of the breeding period. The influence of asynchronous arrival and biased sex ratio suggests that reduced variance or bet-hedging promoting female fitness had only a reduced role in the evolution of polyandry, and polyandry is likely to be associated with male benefits. Polyandry in frogs can be explained either by forced mating as a result of sexual conflict or by clutch piracy. By modifying intrasexual competition, asynchronous arrival and changes in OSR may have a decisive influence upon the evolution of mating systems and favour both polyandry and stable coexistence of alternative mating behaviour.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 191–200.  相似文献   

6.
7.
One of the various male strategies to prevent or impede female remating is the production of a mating plug that covers the female genital opening or remains inside of the female genital tract after mating. Such structures have been described for many species in many animal taxa; however, in most cases, we know little or nothing about their specific adaptive value. Our investigations demonstrate that females of the dwarf spider species Oedothorax retusus (Westring, 1851) (Linyphiidae, Erigoninae) exhibit a substance on one or both of her paired genital openings only after copulation. We performed double-mating trials and forced the second male to mate into the previously used or unused spermathecal duct of the female by amputating one of his paired male gonopods (pedipalps). Furthermore, to investigate whether the duration of the first mating has an effect on the size and efficiency of the mating plug, we interrupted first matings after either 1 or 3 min, categorized plug size and recorded mating behaviour of subsequent males. The amount of secretion transferred was larger in long compared to short copulations. A long first copulation successfully prevented subsequent males from mating into the used ducts, whereas mating success after short first matings was similar to matings into unused copulatory ducts of the females. The present study demonstrates that a male O. retusus can prevent a rival from transferring sperm into the same spermatheca by applying a mating plug, but only if he mates for long enough.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 574–583.  相似文献   

8.
Field and laboratory studies were used to assess: (1) whether size assortative mating occurred in the New Zealand amphipod Paracalliope fluviatilis and (2) hypotheses developed to explain size assortative mating. We found that assortative mating occurred and that larger females carried more eggs, suggesting they may be more valuable as mates. Laboratory experiments were then used to determine whether: (1) male size influenced the size of the female selected (mechanical constraints hypothesis); (2) male size influenced pairing success in the presence of competition (intrasexual selection hypothesis); (3) take‐overs of females occurred and whether large males were more successful (intrasexual selection hypothesis); (4) guard duration varied relative to male and female size (guard duration hypothesis); and (5) females had control over pairing success and guard duration (intersexual selection hypothesis). Although there was evidence to suggest the existence of intrasexual competition for mates (i.e. both small and large males preferred large females), there was no evidence of overt competition (i.e. takeovers of paired females). There was also no difference with respect to how long small and large males guarded females, but large females were guarded longer by both male size classes. Females handicapped by having their mobility reduced were guarded for the same duration as control females but males were more likely to pair with handicapped females, suggesting that they were easier to amplex. Given the lack of evidence for direct male–male competition or female choice, we suggest that assortative mating may be the result of: (1) indirect competition (e.g. in situ large males may be better able to access and amplex the largest females) or (2) female resistance to small males in combination with higher costs that small males may incur in securing large females. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92 , 173–181.  相似文献   

9.
Divergent host preference (i.e. host fidelity) plays a significant role in the speciation process in phytophagous insects. However, how and to what extent this divergence reduces gene flow between populations has rarely been measured. Here, we estimated the intensity of assortative mating caused solely by host fidelity in two host races of the phytophagous ladybird beetle Henosepilachna diekei, specialized on Mikania micrantha (Asteraceae) and Leucas lavandulifolia (Lamiaceae) in West Java, Indonesia. These host races mated randomly in the absence of host plants under laboratory conditions, but demonstrated nearly complete assortative mating in field cages with the two host plants, by spending almost all of their time on their respective host plants. The frequency of assortative mating in the field cages was not affected drastically by host plant patch structure. These results suggest that fidelity to the different host plants yields directly almost complete reproductive isolation between the host races by limiting the habitat on the respective host plant. In addition, the high host fidelity also ensures female oviposition on the original host plant. As larvae cannot survive on non‐host plants, a positive association between female oviposition preference and larval performance on the host plant on which the beetles are specialized will further facilitate the evolution of host fidelity. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 606–614.  相似文献   

10.
In many sexually reproducing organisms, females choose mates based on multiple male traits. This study examined how two temporal components of the male mating call – chirp rate and chirp duration – affect female mating preference in five populations of a widely distributed North American cricket, Allonemobius socius (Orthoptera, Gryllidae). Chirp rate and chirp duration of the A. socius mating call were varied independently, and the responses of virgin females to these experimentally manipulated calls were repeatedly measured using a sequential single-stimulus design. Significant among- and within-population variation in chirp-duration preferences of females were found. Contrary to many previous studies, call chirp rate had no effect on female phonotaxis. Also there was no evidence of an interaction between chirp rate and chirp duration on female response to male mating calls. Moreover, female responsiveness to average and above-average chirp duration appeared to decline with female (adult) age. Overall, these results suggest evolved differences among populations in chirp-duration preferences, and that selection can act within populations on female chirp-duration preference.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 461–472.  相似文献   

11.
Diversification of phytophagous insects is often associated with changes in the use of host taxa and host parts. We focus on a group of newly discovered Neotropical tephritids in the genus Blepharoneura , and report the discovery of an extraordinary number of sympatric, morphologically cryptic species, all feeding as larvae on calyces of flowers of a single functionally dioecious and highly sexually dimorphic host species ( Gurania spinulosa ) in eastern Ecuador. Molecular analyses of the mitochondrial cytochrome oxidase-I gene from flies reared from flowers of G. spinulosa reveal six distinct haplotype groups that differ by 7.2–10.1% bp (uncorrected pairwise distances; N  = 624 bp). Haplotype groups correspond to six distinct and well-supported clades. Members of five clades specialize on the calyces of flowers of a particular sex: three clades comprise male flower specialists; two clades comprise female flower specialists; the sixth clade comprises generalists reared from male and female flowers. The six clades occupy significantly different morphological spaces defined by wing pigmentation patterns; however, diagnostic morphological characters were not discovered. Behavioural observations suggest specific courtship behaviours may play a role in maintaining reproductive isolation among sympatric species. Journal compilation  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 779–797. No claim to original US government works.  相似文献   

12.
The role of fluctuating asymmetry as an indicator of fitness to females in mate choice remains controversial. Previous studies indicated that male medflies with symmetrical supra-fronto-orbital (SFO) bristles achieve relatively high mating success under laboratory conditions. Here we present data from field cage studies of wild collected medflies in Guatemala and Crete, which reveal the same association between fluctuating asymmetry in SFO bristle length and mating success as that seen in the laboratory. The experiments in Crete included males that were missing one or both of their bristles. A comparison of mating success between the three groups indicated that the mere presence of bristles did not exert a major influence. Analysis of attempted courtships suggests that the association between male mating success and FA in bristle length appears to be generated as a result of females being more likely to enter into courtships with symmetrical males, rather than through a rejection of asymmetrical males during or after it. This raises the possibility that the primary stimulus that makes a symmetrical male attractive is acting at too great a distance to depend on symmetry itself. Alternatives might include superior pheromone emissions or the occupation of a prime location within the lek.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 347–355.  相似文献   

13.
Cooperatively breeding animals commonly avoid incestuous mating through pre-mating dispersal. However, a few group-living organisms, including the social spiders, have low pre-mating dispersal, intra-colony mating, and inbreeding. This results in limited gene flow among colonies and sub-structured populations. The social spiders also exhibit female-biased sex ratios because survival benefits to large colonies favour high group productivity, which selects against 1 : 1 sex ratios. Although propagule dispersal of mated females may occasionally bring about limited gene flow, little is known about the role of male dispersal. We assessed the extent of male movement between colonies in natural populations both experimentally and by studying colony sex ratios over the mating season. We show that males frequently move to neighbouring colonies, whereas only 4% of incipient nests were visited by dispersing males. Neighbouring colonies are genetically similar and movement within colony clusters does not contribute to gene flow. Post-mating sex ratio bias was high early in the mating season due to protandry, and also in colonies at the end of the season, suggesting that males remain in the colony when mated females have dispersed. Thus, male dispersal is unlikely to facilitate gene flow between different matrilineages. This is consistent with models of non-Fisherian group-level selection for the maintenance of female biased sex ratios, which predict the elimination of male dispersal.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society 2009, 97 , 227–234.  相似文献   

14.
During mating, male bushcrickets transfer a spermatophore that consists of a sperm-containing ampulla and a product of the accessory glands, the spermatophylax, which females directly ingest. In the present study, we demonstrate male spermatophore allocation in the bushcricket Poecilimon zimmeri . Males of this species show condition-dependent spermatophore investment. This investment depended upon the age at first mating of males, with older individuals transferring larger spermatophores than younger ones of the same body mass. Independently of age, heavier males transfer larger spermatophores, but the size of males (as measured by femur length) was not a good predictor. Heavier males allocate a lower proportion of their mass to spermatophores and reach their maximal investment point earlier than less heavy males. Spermatophylax production levelled off to a species specific maximum earlier than that of sperm investment (measured as ampulla mass), suggesting that males face high levels of sperm competition.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 354–360.  相似文献   

15.
邓顺  张友军 《昆虫知识》2009,46(1):17-26
从生物学、生态和遗传的角度阐述昆虫同域物种形成过程中涉及到的可能性机制。昆虫同域种的分化与作用于同域初始种群的歧化选择密切相关,歧化选择间接导致种群生态特征和遗传特征的分化,促进同域近缘种群间的生殖隔离。同域物种形成的过程中涉及到性状替换、性选择、同型交配等机制。寄主专化型多见于昆虫同域种的分化过程中,一般以植食性昆虫为主。有关昆虫同域物种形成的检验机制有多种,归纳起来主要包括同型交配的检验、遗传漂流的量化、遗传分化程度和连锁不平衡(LD)的检测、杂交后代适合度的估算等。目前发现在许多昆虫种类中存在同域物种形成的可能性,但是有关其隔离机制并没有得到充分的解释。  相似文献   

16.
Sexual cannibalism, the capture and consumption of one sex by the other resulting from sexual interactions, provides an intriguing set of conditional fitness payoffs. Usually these payoffs will only benefit the cannibal, but under certain circumstances advantages might accrue to the cannibalized individual as well. Here I test three models of sexual cannibalism with data from a sit-and-wait predator, the crab spider Misumena vatia , whose lifestyle differs from the species for which these models were generated. The models include both precopulatory mechanisms (no gametes exchanged) and postcopulatory ones (gametes exchanged) perceived to generate adult fitness payoffs and situations in which cannibalism is not adaptive in the adult stage (aggressive spillover). In M. vatia , females sometimes cannibalize males before mating can occur. Precopulatory cannibalism is unlikely to reward female M. vatia significantly because of the diminutive size of the males, but it could be part of a broader syndrome that provides the females with large food payoffs earlier in the life cycle. Although the frequency of cannibalism is low (3.8–7.6%), this level suffices to be an important selective factor, a point accentuated by the extremely cautious behaviour of the males toward the females. I then compare the traits associated with these models to the species for which they were designed and certain others for which adequate data also exist. None of the sets of responses to these traits closely resembles each other in the different species. These results suggest that sexual cannibalism has developed in response to a heterogeneous collection of lifestyles and phylogenetic constraints.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 427–437.  相似文献   

17.
Rare male mating advantage (a form of negative frequency dependence) is frequently proposed as a mechanism for the maintenance of genetic variation within populations. This hypothesis is attractive for systems with pronounced male colour polymorphism because it can maintain particularly high levels of variation. We tested for negative frequency-dependent mating success between yellow and red male colour patterns in bluefin killifish, Lucania goodei . Lucania goodei populations harbour substantial colour pattern polymorphism, and a large proportion of this variation has a genetic basis. We established outdoor mesocosms with red and yellow males in three different ratios: yellow rare (one yellow ♂ : five red ♂), even (three yellow ♂ : three red ♂), and red rare (five yellow ♂ : one red ♂). We obtained eggs and used microsatellites to determine paternity. By contrast to expectations, we found no support for a rare male mating advantage. Red males had slightly higher spawning success than yellow males, particularly in replicates with large clutches and when red males were rare. However, yellow males did not have higher mating success when rare. We discuss alternative mechanisms for the maintenance of the polymorphism as well as the potential reasons for the lack of a rare male mating advantage.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 489–500.  相似文献   

18.
Hymenopterans under single‐locus complementary sex determination (sl‐CSD) face inbreeding costs due to this sex determination mode. Under sl‐CSD, homozygote eggs at the sl‐CSD locus usually develop into unviable or sterile diploid males. Production of such costly males increases when sib‐mating happens because related individuals share half of their genome. In the hymenopteran Venturia canescens (a solitary parasitoid wasp), diploid males are sterile, leading to fitness costs through genetic incompatibility between parents. Whereas the costs of producing diploid males and behavioural strategies that would reduce such costs have been studied in females, the potential fitness costs faced by males have not. Here, we aimed to investigate fitness costs that males endure after a single sib‐mating and tested whether they have the ability to avoid sib‐mating through kin recognition. Our results show that males have a reduced fitness (i.e. they produce fewer daughters) when mating with their sibs. We also show that males have the ability to distinguish between non‐sib and sib females (i.e. kin). They use chemical marks emitted by the females to discriminate kin from non‐kin. We discuss the evolution of kin recognition in males in the context of mate choice for genetic compatibility. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 279–286.  相似文献   

19.
Speciation processes initiated by divergent selection often fail to complete; yet, how sexual selection is involved in the progress of ecological speciation is rarely understood. Intraspecific body‐size variation affects mate preference and male–male competition, which can consequently lead to assortative mating based on body size. In the present study, we tested the importance of body size difference in the potential of assortative mating between the two eastern newt subspecies, larger Notophthalmus viridescens viridescens and smaller Notophthalmus viridescens dorsalis. Through differential expression of life‐cycle polyphenism, these two subspecies are adapted to contrasting environments, which has likely led to the subspecific body‐size difference. We found that males of both subspecies preferred larger females of N. v. viridescens as mates presumably because of the fecundity advantage of larger females. On the other hand, no evidence of female choice was found. Larger males of N. v. viridescens exhibited greater competitive ability and gained primary access to larger females of their own kind. However, smaller males were able to overcome their inferior competitive ability by interfering with larger males' spermatophore transfer and sneakily mating with larger females. Thus, the subspecific body‐size difference importantly affected sexual selection processes, resulting in nonrandom but not completely assortative mating patterns between the larger and smaller subspecies. Although life‐cycle polyphenism facilitates the intraspecific ecological divergence within N. v. viridescens sexual selection processes, namely smaller males' mate preference for larger females and sexual interference during spermatophore transfer, may be halting completion of the ecological speciation. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 884–897.  相似文献   

20.
Predation is the main cause of passerine nesting failure. Traditionally, large intraspecific group size is thought to accrue individuals with fitness benefits from increased predator vigilance and hence lower predation risk. To date, few studies have investigated interspecific group size in relation to predation risk. In the present study, we examined predation outcome in Darwin's small tree finch, Camarhynchus parvulus , in nests with many or few interspecific neighbours. We tested the predictions: (1) nests in mixed associations have lower predation than do more solitary nests; (2) mixed species nesting associations covary with nest site vegetation characteristics; (3) older (i.e. presumably experienced) males more commonly nest in mixed associations than younger males; (4) older males select more concealed nesting sites; and (5) controlling male age, females prefer to pair with males in mixed associations than at solitary nests. Almost half of all nests occurred in mixed associations (46%) compared to solitary nests (54%), and the overall distribution of nests was decidedly nonrandom, displaying a bimodal pattern. Nest site vegetation characteristics of the focal species were inconsistently associated with nesting pattern, but older males did select more concealed nesting sites. Controlling differences in surrounding vegetation characteristics, mixed nesting associations experienced markedly lower predation than solitary nests, and females showed a preference for males in mixed associations, as demonstrated by higher male pairing success.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 313–324.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号