共查询到20条相似文献,搜索用时 15 毫秒
1.
Human loss-of-function gene variants in GPR120 have recently been identified that confer increased risk for obesity and metabolic syndrome. In addition, GPR120 KO mice develop obesity, increased inflammation, and insulin resistance, consistent with a role for GPR120 signaling in the metabolic syndrome and diabetes mellitus. 相似文献
2.
Collett ED Davidson LA Fan YY Lupton JR Chapkin RS 《American journal of physiology. Cell physiology》2001,280(5):C1066-C1075
Ras proteins are critical regulators of cell function, including growth, differentiation, and apoptosis, with membrane localization of the protein being a prerequisite for malignant transformation. We have recently demonstrated that feeding fish oil, compared with corn oil, decreases colonic Ras membrane localization and reduces tumor formation in rats injected with a colon carcinogen. Because the biological activity of Ras is regulated by posttranslational lipid attachment and its interaction with stimulatory lipids, we investigated whether docosahexaenoic acid (DHA), found in fish oil, compared with linoleic acid (LA), found in corn oil, alters Ras posttranslational processing, activation, and effector protein function in young adult mouse colon cells overexpressing H-ras (YAMC-ras). We show here that the major n-3 polyunsaturated fatty acid (PUFA) constituent of fish oil, DHA, compared with LA (an n-6 PUFA), reduces Ras localization to the plasma membrane without affecting posttranslational lipidation and lowers GTP binding and downstream p42/44(ERK)-dependent signaling. In view of the central role of oncogenic Ras in the development of colon cancer, the finding that n-3 and n-6 PUFA differentially modulate Ras activation may partly explain why dietary fish oil protects against colon cancer development. 相似文献
3.
Recent evidence has suggested that dietary polyunsaturated fatty acids (PUFAs) modulate inflammation; however, few studies have focused on the pathobiology of PUFA using isocaloric and isolipidic diets and it is unclear if the associated pathologies are due to dietary PUFA composition, lipid metabolism or obesity, as most studies compare diets fed ad libitum. Our studies used isocaloric and isolipidic liquid diets (35% of calories from fat), with differing compositions of omega (ω)-6 or long chain (Lc) ω-3 PUFA that were pair-fed and assessed hepatic pathology, inflammation and lipid metabolism. Consistent with an isocaloric, pair-fed model we observed no significant difference in diet consumption between the groups. In contrast, the body and liver weight, total lipid level and abdominal fat deposits were significantly higher in mice fed an ω-6 diet. An analysis of the fatty acid profile in plasma and liver showed that mice on the ω-6 diet had significantly more arachidonic acid (AA) in the plasma and liver, whereas, in these mice ω-3 fatty acids such as eicosapentaenoic acid (EPA) were not detected and docosahexaenoic acid (DHA) was significantly lower. Histopathologic analyses documented that mice on the ω-6 diet had a significant increase in macrovesicular steatosis, extramedullary myelopoiesis (EMM), apoptotic hepatocytes and decreased glycogen storage in lobular hepatocytes, and hepatocyte proliferation relative to mice fed the Lc ω-3 diet. Together, these results support PUFA dietary regulation of hepatic pathology and inflammation with implications for enteral feeding regulation of steatosis and other hepatic lesions. 相似文献
4.
Synthesis of n-3 and n-6 very long chain-PUFAs (VLC-PUFAs) from 18-carbon essential fatty acids is differentially regulated. The predominant product arising from n-3 fatty acids is docosahexaenoic acid (22:6n-3), with the liver serving as the main site of production. The synthetic pathway requires movement of a 24-carbon intermediate from the endoplasmic reticulum to peroxisomes for retroconversion to 22:6n-3. The mechanism of this intra-organelle flux is unknown, but could be binding-protein facilitated. We thus investigated binding of a series of previously untested VLC-PUFAs to liver fatty acid-binding protein (L-FABP). Three fluorometric assays were employed, all of which showed strong binding (K(d)' approximately 10(-8) to 10(-7) M) of 20-, 22-, and 24-carbon n-3 PUFAs to L-FABP. In contrast, synthesis of the predominant n-6 PUFA product, arachidonic acid, does not require intra-organelle transport. However, we found that n-6 VLC-PUFAs bound to L-FABP with affinities (K(d)' approximately 10(-8) to 10(-7) M) comparable to their n-3 counterparts.Although these results raise the possibility that L-FABP may participate in the cytoplasmic processing of n-3 and n-6 VLC-PUFAs, there is no evidence on the basis of binding affinities that L-FABP accounts for differences in the predominant products formed by the n-3 and n-6 PUFA metabolic pathways. 相似文献
5.
Interactions of saturated, n-6 and n-3 polyunsaturated fatty acids to modulate arachidonic acid metabolism 总被引:6,自引:0,他引:6
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed. 相似文献
6.
Guizy M Arias C David M González T Valenzuela C 《American journal of physiology. Cell physiology》2005,289(5):C1251-C1260
Dietary polyunsaturated fatty acids (PUFAs) have been reported to exhibit antiarrhythmic properties, which have been attributed to their availability to modulate Na+, Ca2+, and several K+ channels. However, their effects on human ether-a-go-go-related gene (HERG) channels are unknown. In this study we have analyzed the effects of arachidonic acid (AA, -6) and docosahexaenoic acid (DHA, -3) on HERG channels stably expressed in Chinese hamster ovary cells by using the whole cell patch-clamp technique. At 10 µM, AA and DHA blocked HERG channels, at the end of 5-s pulses to 10 mV, to a similar extent (37.7 ± 2.4% vs. 50.2 ± 8.1%, n = 710, P > 0.05). 5,6,11,14-Eicosatetrayenoic acid, a nonmetabolizable AA analog, induced effects similar to those of AA on HERG current. Both PUFAs shifted the midpoint of activation curves of HERG channels by 5.1 ± 1.8 mV (n = 10, P < 0.05) and 11.2 ± 1.1 mV (n = 7, P < 0.01). Also, AA and DHA shifted the midpoint of inactivation curves by +12.0 ± 3.9 mV (n = 4; P < 0.05) and +15.8 ± 4.3 mV (n = 4; P < 0.05), respectively. DHA and AA accelerated the deactivation kinetics and slowed the inactivation kinetics at potentials positive to +40 mV. Block induced by DHA, but not that produced by AA, was higher when measured after applying a pulse to 120 mV (IO). Finally, both AA and DHA induced a use-dependent inhibition of HERG channels. In summary, block induced by AA and DHA was time, voltage, and use dependent. The results obtained suggest that both PUFAs bind preferentially to the open state of the channel, although an interaction with inactivated HERG channels cannot be ruled out for AA. K+ channel; membrane currents; ion channels; arrhythmia; antiarrhythmics 相似文献
7.
William C. Schumann Edward Hemmelgarn Bernard R. Landau 《Archives of biochemistry and biophysics》1978,190(1):345-350
Pathways followed by the carbons of long chain fatty acids in their conversion to 3-hydroxybutyric acid were traced and the contribution of ω-oxidation to fatty acid oxidation was determined in the cellular environment where ketone body formation occurs. 1-14C-, 2-14C-, and ω-14C-labeled fatty acids were injected into alloxan-induced diabetic rats in ketosis. 3-Hydroxybutyric acid was isolated from their urines and degraded. About 1.2 to 1.4 times as much 14C was found in carbon 1 as carbon 3 of 3-hydroxybutyric acid when the 1-14C-labeled fatty acids were injected and in carbon 2 as carbon 4 when the 2-14C-labeled fatty acids were injected. There was about 4 times as much incorporation into carbon 4 as carbon 2 of 3-hydroxybutyric acid formed from the ω-14C-labeled fatty acids. This means that 50% or more of the fatty acids were oxidized, so that the terminal two carbons of the fatty acids were converted to acetoacetyl-CoA without acetyl-CoA as an intermediate. Incorporation of 14C into carbons 1 and 2 of the hydroxybutyric acid reflects the distribution of 14C in acetyl-CoA. Incorporation into carbon 1 was very small when the ω-14C-labeled fatty acids were substrate. This means that ω-oxidation of fatty acids makes, at most, a small contribution to the formation of the acetyl-CoA pool from which acetoacetate is derived. 相似文献
8.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in cellular responses to inflammatory stimuli and environmental stress. Activation of p38 is mediated through phosphorylation by upstream MAPKK, which in turn is activated by MAPKKK. However, the mechanism of how different upstream MAP2Ks and MAP3Ks specifically contribute to p38 activation in response to different stimuli is still not clearly understood. By using double-stranded RNA-mediated interference (RNAi) in Drosophila cells, we demonstrate that D-MKK3 is a major MAP2K responsible for D-p38 activation by UV, heat shock, NaCl or peptiodglycan (PGN). Stimulation of UV and PGN activates D-p38 through D-MEKK1, heat shock-induced activation of D-p38 signals through both D-MEKK1 and D-ASK1. On the other hand, maximal activation of D-p38 by NaCl requires the expression of four MAP3Ks. 相似文献
9.
Mats Johnson Jan-Eric M?nsson Sven ?stlund Gunnar Fransson Bj?rn Areskoug Kerstin Hjalmarsson Magnus Landgren Bj?rn Kadesj? Christopher Gillberg 《Attention deficit and hyperactivity disorders》2012,4(4):199-204
The aim of this study was to assess baseline levels and changes in plasma fatty acid profiles in children and adolescents with ADHD, in a placebo-controlled study with Omega 3/6 supplementation, and to compare with treatment response. Seventy-five children and adolescents aged 8?C18?years with DSM-IV ADHD were randomized to 3?months of Omega 3/6 (Equazen eye q) or placebo, followed by 3?months of open phase Omega 3/6 for all. n-3, n-6, n-6/n-3 ratio, EPA and DHA in plasma were measured at baseline, 3 and 6?months. Subjects with more than 25?% reduction in ADHD symptoms were classified as responders. At baseline, no significant differences in mean fatty acid levels were seen across active/placebo groups or responder/non-responder groups. The 0?C3?month changes in all parameters were significantly greater in the active group (p?<?0.01). Compared to non-responders, the 6-month responders had significantly greater n-3 increase at 3?months and decrease in n-6/n-3 ratio at 3 and 6?months (p?<?0.05). Omega 3/6 supplementation had a clear impact on fatty acid composition of plasma phosphatidyl choline in active versus placebo group, and the fatty acid changes appear to be associated with treatment response. The most pronounced and long-lasting changes for treatment responders compared to non-responders were in the n-6/n-3 ratio. 相似文献
10.
Kaur R Liu X Gjoerup O Zhang A Yuan X Balk SP Schneider MC Lu ML 《The Journal of biological chemistry》2005,280(5):3323-3330
The p21-activated kinases (PAKs) contain an N-terminal Cdc42/Rac interactive binding domain, which in the group 1 PAKs (PAK1, 2, and 3) regulates the activity of an adjacent conserved autoinhibitory domain. In contrast, the group 2 PAKs (PAK4, 5, and 6) lack this autoinhibitory domain and are not activated by Cdc42/Rac binding, and the mechanisms that regulate their kinase activity have been unclear. This study found that basal PAK6 kinase activity was repressed by a p38 mitogen-activated protein (MAP) kinase antagonist and could be strongly stimulated by constitutively active MAP kinase kinase 6 (MKK6), an upstream activator of p38 MAP kinases. Mutation of a consensus p38 MAP kinase target site at serine 165 decreased PAK6 kinase activity. Moreover, PAK6 was directly activated by MKK6, and mutation of tyrosine 566 in a consensus MKK6 site (threonine-proline-tyrosine, TPY) in the activation loop of the PAK6 kinase domain prevented activation by MKK6. PAK6 activation by MKK6 was also blocked by mutation of an autophosphorylated serine (serine 560) in the PAK6 activation loop, indicating that phosphorylation of this site is necessary for MKK6-mediated activation. PAK4 and PAK5 were similarly activated by MKK6, consistent with a conserved TPY motif in their activation domains. The activation of PAK6 by both p38 MAP kinase and MKK6 suggests that PAK6 plays a role in the cellular response to stress-related signals. 相似文献
11.
Larson MK Shearer GC Ashmore JH Anderson-Daniels JM Graslie EL Tholen JT Vogelaar JL Korth AJ Nareddy V Sprehe M Harris WS 《Prostaglandins, leukotrienes, and essential fatty acids》2011,84(3-4):93-98
Dietary intake of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) results in cardioprotective benefits. However, the cellular and physiological bases for these benefits remain unclear. We hypothesized that EPA and DHA treatments would interfere with collagen-mediated platelet signaling. Thirty healthy volunteers received 28 days of 3.4 g/d EPA+DHA with and without a single dose of aspirin. Clinical hematologic parameters were then measured along with assays of collagen-stimulated platelet activation and protein phosphorylation. Omega-3 therapy led to a small but significant reduction in platelets (6.3%) and red blood cells (1.7%), but did not impair clinical time-to-closure assays. However, collagen-mediated platelet signaling events of integrin activation, α-granule secretion, and phosphatidylserine exposure were all reduced by roughly 50% after omega-3 incorporation, and collagen-induced tyrosine phosphorylation was significantly impaired. The diminished platelet response to collagen may account for some of the cardioprotective benefits provided by DHA and EPA. 相似文献
12.
13.
Sullivan JE Holdgate GA Campbell D Timms D Gerhardt S Breed J Breeze AL Bermingham A Pauptit RA Norman RA Embrey KJ Read J VanScyoc WS Ward WH 《Biochemistry》2005,44(50):16475-16490
Inhibition of p38alpha MAP kinase is a potential approach for the treatment of inflammatory disorders. MKK6-dependent phosphorylation on the activation loop of p38alpha increases its catalytic activity and affinity for ATP. An inhibitor, BIRB796, binds at a site used by the purine moiety of ATP and extends into a "selectivity pocket", which is not used by ATP. It displaces the Asp168-Phe169-Gly170 motif at the start of the activation loop, promoting a "DFG-out" conformation. Some other inhibitors bind only in the purine site, with p38alpha remaining in a "DFG-in" conformation. We now demonstrate that selectivity pocket compounds prevent MKK6-dependent activation of p38alpha in addition to inhibiting catalysis by activated p38alpha. Inhibitors using only the purine site do not prevent MKK6-dependent activation. We present kinetic analyses of seven inhibitors, whose crystal structures as complexes with p38alpha have been determined. This work includes four new crystal structures and a novel assay to measure K(d) for nonactivated p38alpha. Selectivity pocket compounds associate with p38alpha over 30-fold more slowly than purine site compounds, apparently due to low abundance of the DFG-out conformation. At concentrations that inhibit cellular production of an inflammatory cytokine, TNFalpha, selectivity pocket compounds decrease levels of phosphorylated p38alpha and beta. Stabilization of a DFG-out conformation appears to interfere with recognition of p38alpha as a substrate by MKK6. ATP competes less effectively for prevention of activation than for inhibition of catalysis. By binding to a different conformation of the enzyme, compounds that prevent activation offer an alternative approach to modulation of p38alpha. 相似文献
14.
Protein kinase inhibition by omega-3 fatty acids 总被引:13,自引:0,他引:13
Mirnikjoo B Brown SE Kim HF Marangell LB Sweatt JD Weeber EJ 《The Journal of biological chemistry》2001,276(14):10888-10896
Recent data suggest that omega-3 fatty acids may be effective in epilepsy, cardiovascular disorders, arthritis, and as mood stabilizers for bipolar disorder; however, the mechanism of action of these compounds is unknown. Based on earlier studies implicating omega-3 fatty acids as inhibitors of protein kinase C activity in intact cells, we hypothesized that omega-3 fatty acids may act through direct inhibition of second messenger-regulated kinases and sought to determine whether the omega-3 double bond might uniquely confer pharmacologic efficacy and potency for fatty acids of this type. In our studies we observed that omega-3 fatty acids inhibited the in vitro activities of cAMP-dependent protein kinase, protein kinase C, Ca(2+)/calmodulin-dependent protein kinase II, and the mitogen-activated protein kinase (MAPK). Our results with a series of long-chain fatty acid structural homologs suggest an important role for the omega-3 double bond in conferring inhibitory efficacy. To assess whether omega-3 fatty acids were capable of inhibiting protein kinases in living neurons, we evaluated their effect on signal transduction pathways in the hippocampus. We found that omega-3 fatty acids could prevent serotonin receptor-induced MAPK activation in hippocampal slice preparations. In addition, we evaluated the effect of omega-3 fatty acids on hippocampal long-term potentiation, a form of synaptic plasticity known to be dependent on protein kinase activation. We observed that omega-3 fatty acids blocked long-term potentiation induction without inhibiting basal synaptic transmission. Overall, our results from both in vitro and live cell preparations suggest that inhibition of second messenger-regulated protein kinases is one locus of action of omega-3 fatty acids. 相似文献
15.
ShcA proteins mediate Erk1/Erk2 activation by integrins and epidermal growth factor (EGF), and are expressed as p46ShcA, p52ShcA, and p66ShcA. Although p52ShcA and p46ShcA mediate Erk1/Erk2 activation, p66ShcA antagonizes Erk activation. p66ShcA is spatially regulated during lung development, leading us to hypothesize that integrin signaling regulates p66ShcA expression and, consequently, EGF signaling. Fetal lung mesenchymal cells were isolated from E16 Swiss-Webster mice, stimulated with oligopeptide extracellular matrix analogs or anti-integrin antibodies, and subjected to ShcA Western analyses and EGF-stimulated Erk1/Erk2 kinase assays. p66ShcA expression was decreased by anti-alpha1 integrin antibody and DGEA collagen analog, and increased by anti-beta1, anti-alpha4, and anti-alpha5 integrin antibodies and RGDS fibronectin analog. Paradoxically, beta1 integrin stimulation increased EGF-induced Erk activation while increasing expression of the inhibitory p66ShcA isoform. This paradox was resolved by demonstrating that Erk inhibition attenuates integrin-mediated p66ShcA induction. These results suggest that p66ShcA is up-regulated as inhibitory feedback on integrin-mediated Erk activation. 相似文献
16.
Haag M Magada ON Claassen N Böhmer LH Kruger MC 《Prostaglandins, leukotrienes, and essential fatty acids》2003,68(6):423-429
Dietary supplementation with fish oil that contains omega-3 polyunsaturated fatty acids has been shown to enhance bone density as well as duodenal calcium uptake in rats. The latter process is supported by membrane ATPases. The present in vitro study was undertaken to test the effect of omega-3 fatty acids on ATPase activity in isolated basolateral membranes from rat duodenal enterocytes. Ca-ATPase in calmodulin-stripped membranes was activated in a biphasic manner by docosahexanoic acid (DHA) (10-30 microg/ml) but not by eicosapentanoic acid (EPA). This effect was blocked partially by 0.5 microM calphostin (a protein kinase C blocker). DHA inhibited Na,K-ATPase (-49% of basal activity, [DHA]=30 microg/ml, P <0.01). This effect could be reversed partially by 50 microM genistein, a tyrosine kinase blocker. EPA also inhibited Na,K-ATPase: (-47% of basal activity, [EPA]=30 microg/ml, P <0.01), this effect was partially reversed by 100 microM indomethacin, a cyclo-oxygenase blocker. Omega-3 fatty acids are thus involved in multiple signalling effects that effect ATPases in BLM. 相似文献
17.
Bosch-Presegué L Iarriccio L Aguilà M Toledo D Ramon E Cordomí A Garriga P 《Archives of biochemistry and biophysics》2011,506(2):142-149
Rhodopsin is the visual photoreceptor responsible for dim light vision. This receptor is located in the rod cell of the retina and is a prototypical member of the G-protein-coupled receptor superfamily. The structural details underlying the molecular recognition event in transducin activation by photoactivated rhodopsin are of key interest to unravel the molecular mechanism of signal transduction in the retina. We constructed and expressed rhodopsin mutants in the second and third cytoplasmic domains of rhodopsin – where the natural amino acids were substituted by the human M3 acetylcholine muscarinic receptor homologous residues – in order to determine their potential involvement in G-protein recognition. These mutants showed normal chromophore formation and a similar photobleaching behavior than WT rhodopsin, but decreased thermal stability in the dark state. The single mutant V1383.53 and the multiple mutant containing V2275.62 and a combination of mutations at the cytoplasmic end of transmembrane helix 6 caused a reduction in transducin activation upon rhodopsin photoactivation. Furthermore, combination of mutants at the second and third cytoplasmic domains revealed a cooperative role, and partially restored transducin activation. The results indicate that hydrophobic interactions by V1383.53, V2275.62, V2506.33, V2546.37 and I2556.38 are critical for receptor activation and/or efficient rhodopsin–transducin interaction. 相似文献
18.
K Tobe T Kadowaki K Hara Y Gotoh H Kosako S Matsuda H Tamemoto K Ueki Y Akanuma E Nishida 《The Journal of biological chemistry》1992,267(29):21089-21097
An insulin-stimulated phosphorylation cascade was examined in rat liver after insulin injection via a portal vein by the use of immune complex kinase assays specific to the mitogen-activated protein (MAP) kinase and S6 kinase II homologue (rsk) kinase. We have prepared an antibody against the peptide consisting of a carboxyl-terminal portion of the extracellular signal-regulated kinase 1 (alpha C92), one of the MAP kinases, and an antibody against the peptide consisting of the carboxyl terminus of the mouse S6 kinase II homologue (alpha rsk(m)C). In alpha C92 immune complex assay, maximal activation of rat liver MAP kinases (approximately 4.3-fold) were observed 4.5 min after insulin injection. We also observed an insulin-stimulated MAP kinase activity (approximately 3-fold) in liver extracts from insulin-treated rat in fractions eluted from phenyl-Sepharose with 30-50% ethylene glycol. Kinase assay in myelin basic protein (MBP)-containing gel after sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by denaturation with 6 M guanidine HCl, and renaturation revealed that insulin injection stimulated the kinase activity of the 42- and 44-kDa proteins, which corresponded to the two distinct MAP kinases. In alpha rsk(m)C immune complex assay, maximal stimulation (approximately 5-fold) of the S6 peptide (Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala) kinase activity was observed 7.5 min after insulin injection. In addition, MAP kinases purified from insulin-treated rat liver were able to activate S6 peptide kinase activity in vitro in alpha rsk(m)C immunoprecipitates from untreated rat liver, accompanied by the appearance of several phosphorylated bands including a major band at 88 kDa. We also examined whether insulin injection stimulates the MAP kinase activator (Ahn, N. G., Seger, R., Bratlien, R. L., Diltz, C. D., Tonks, N. K., and Krebs, E. G. (1991) J. Biol. Chem. 266, 4220-4227) in rat liver. Using recombinant Xenopus MAP kinase, fractions of Q-Sepharose eluted early in the NaCl gradient were found to have MAP kinase activator activity accompanied by the phosphorylation of 42-kDa recombinant Xenopus MAP kinase. From these data, we demonstrate three tiers of a cascade composed of the MAP kinase activator, MAP kinases, and an S6 peptide kinase activity in rat liver under physiological conditions in the intact animal. 相似文献
19.
Hemodynamic forces play a key role in the modulation of the morphology and function of the endothelium by activating several kinases. We have previously shown that cyclic strain, a repetitive mechanical stretch, induces activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), members of the mitogen activated protein (MAP) kinase family. In order to investigate the upstream pathway of strain-induced ERK1/2 activation, we examined p21ras activation by cyclic strain and the effect of wortmannin and LY294002, phosphatidylinositol-3 kinase (PI 3-kinase) inhibitors on ERK1/2 phosphorylation. Cyclic strain induced a transient and rapid activation of p21ras at 1 min after strain. Wortmannin inhibited strain-induced ERK1/2 activation by 56.3 and 86.3 %, respectively. LY294002 inhibited ERK1 activation completely and ERK2 activation by 42.9%. These results suggest a possible involvement of p21ras and PI 3-kinase in the signal transduction pathway leading to the strain-induced ERK1/2 activation. 相似文献
20.
Shalom-Feuerstein R Levy R Makovski V Raz A Kloog Y 《Biochimica et biophysica acta》2008,1783(6):985-993
Galectin-3 (Gal-3) is a pleiotropic beta-galactoside-binding protein expressed at relatively high levels in human neoplasms. Its carbohydrate recognition domain (CRD) contains a hydrophobic pocket that can accommodate the farnesyl moiety of K-Ras. Binding of K-Ras to Gal-3 stabilizes K-Ras in its active (GTP-bound) state. Gal-3, which does not interact with N-Ras, was nevertheless shown to reduce N-Ras-GTP in BT-549 cells by an unknown mechanism that we explored here. First, comparative analysis of various cancer cell lines (glioblastomas, breast cancer cells and ovarian carcinomas) showed a positive correlation between low N-Ras-GTP/high K-Ras-GTP phenotype and Gal-3 expression levels. Next we found that epidermal growth factor-stimulated GTP loading of N-Ras, but not of K-Ras, is blocked in cells expressing high levels of Gal-3. Activation of Ras guanine nucleotide releasing proteins (RasGRPs) by phorbol 12-myristate 13-acetate (PMA) or downregulation of Gal-3 by Gal-3 shRNA increased the levels of N-Ras-GTP in Gal-3 expressing cells. We further show that the N-terminal domain of Gal-3 interacts with and inhibits RasGRP4-mediated GTP loading on N-Ras and H-Ras proteins. Growth of BT-549 cells stably expressing the Gal-3 N-terminal domain was strongly attenuated. Overall, these experiments demonstrate a new control mechanism of Ras activation in cancer cells whereby the Gal-3 N-terminal domain inhibits activation of N-Ras and H-Ras proteins. 相似文献