首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Caspase 9 is a critical component of the mitochondrial or intrinsic apoptotic pathway and is activated by Apaf-1 following release of cytochrome c from mitochondria in response to a variety of stimuli. Caspase 9 cleaves and activates effector caspases, mainly caspase 3, leading to the demise of the cell. Survival signaling pathways can impinge on this pathway to restrain apoptosis. Here, we have identified Ser144 of human caspase 9as an inhibitory site that is phosphorylated in a cell-free system and in cells in response to the protein phosphatase inhibitor okadaic acid. Inhibitor sensitivity and interactions with caspase 9 indicate that the predominant kinase that targets Ser144 is the atypical protein kinase C isoform zeta (PKCzeta). Prevention of Ser144 phosphorylation by inhibition of PKCzeta or mutation of caspase 9 promotes caspase 3 activation. Phosphorylation of serine 144 in cells is also induced by hyperosmotic stress, which activates PKCzeta and regulates its interaction with caspase 9, but not by growth factors, phorbol ester, or other cellular stresses. These results indicate that phosphorylation and inhibition of caspase 9 by PKCzeta restrain the intrinsic apoptotic pathway during hyperosmotic stress. This work provides further evidence that caspase 9 acts as a focal point for multiple protein kinase signaling pathways that regulate apoptosis.  相似文献   

2.
Iron is an essential element for the neoplastic cell growth, and iron chelators have been tested for their potential anti-proliferative and cytotoxic effects. To determine the mechanism of cell death induced by iron chelators, we explored the pathways of the three structurally related mitogen-activated protein (MAP) kinase subfamilies during apoptosis induced by iron chelators. We report that the chelator deferoxamine (DFO) strongly activates both p38 MAP kinase and extracellular signal-regulated kinase (ERK) at an early stage of incubation, but slightly activates c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) at a late stage of incubation. Among three MAP kinase blockers used, however, the selective p38 MAP kinase inhibitor SB203580 could only protect HL-60 cells from chelator-induced cell death, indicating that p38 MAP kinase serves as a major mediator of apoptosis induced by iron chelator. DFO also caused release of cytochrome c from mitochondria and induced activation of caspase 3 and caspase 8. Interestingly, treatment of HL-60 cells with SB203580 greatly abolished cytochrome c release, and activation of caspase 3 and caspase 8. Collectively, the current study reveals that p38 MAP kinase plays an important role in iron chelator-mediated cell death of HL-60 cells by activating downstream apoptotic cascade that executes cell death pathway.  相似文献   

3.
Although oxidative stress causes activation of c-Jun N-terminal kinase (JNK) and apoptosis in many cell types, how the JNK pathway is connected to the apoptosis pathway is unclear. The molecular mechanism of JNK-mediated apoptosis was investigated in adult rat cardiac myocytes in culture as a model system that is sensitive to oxidative stress. Oxidative stress caused JNK activation, cytochrome c release, and apoptosis without new protein synthesis. Oxidative stress-induced apoptosis was abrogated by dominant negative stress-activated protein kinase/extracellular signal-regulated kinase kinase-1 (SEK1)-mediated inhibition of the JNK pathway, whereas activation of the JNK pathway by constitutively active SEK1 was sufficient to cause apoptosis. Inhibition of caspase-9, an apical caspase in the mitochondrial apoptosis pathway, suppressed oxidative stress-induced apoptosis, whereas inhibition of caspase-8 had no effect, indicating that both the JNK pathway and the mitochondrial apoptosis machinery are central to oxidative stress-induced apoptosis. Both JNK and SEK1 localized on mitochondria where JNK was activated by oxidative stress. Furthermore, active JNK caused the release of apoptogenic factors such as cytochrome c from isolated mitochondria in a cell-free assay. These findings indicate that the JNK pathway is a direct activator of mitochondrial death machinery without other cellular components and provide a molecular linkage from oxidative stress to the mitochondrial apoptosis machinery.  相似文献   

4.
5.
氧化还原与细胞凋亡的关联   总被引:3,自引:0,他引:3  
石荣  贺福初 《生命科学》2004,16(2):81-83,95
细胞内氧化还原状态与细胞凋亡相互关联的机理仍然存在很大争议。细胞内氧化还原状态的改变促进了氧自由基(ROS)的产生和凋亡诱导因子的激活,致使细胞凋亡的同时又加剧了细胞内氧化还原状态的改变。通过激活细胞凋亡信号激酶(ASK-1)、氧化还原转录因子NF-κB、AP-1及Caspase激活,揭示了细胞内氧化还原状态伴随细胞凋亡的不同阶段。  相似文献   

6.
Tauroursodeoxycholic acid (TUDCA), an endogenous bile acid, modulates cell death by interrupting classic pathways of apoptosis. Amyloid-beta (Abeta) peptide has been implicated in the pathogenesis of Alzheimer's disease, where a significant loss of neuronal cells is thought to occur by apoptosis. In this study, we explored the cell death pathway and signaling mechanisms involved in Abeta-induced toxicity and further investigated the anti-apoptotic effect(s) of TUDCA. Our data show significant induction of apoptosis in isolated cortical neurons incubated with Abeta peptide. Apoptosis was associated with translocation of pro-apoptotic Bax to the mitochondria, followed by cytochrome c release, caspase activation, and DNA and nuclear fragmentation. In addition, there was almost immediate but weak activation of the serine/threonine protein kinase Akt. Inhibition of the phosphatidylinositide 3 prime-OH kinase (PI3K) pathway with wortmannin did not markedly affect Abeta-induced cell death, suggesting that this signaling pathway is not crucial for Abeta-mediated toxicity. Notably, co-incubation with TUDCA significantly modulated each of the Abeta-induced apoptotic events. Moreover, wortmannin decreased TUDCA protection against Abeta-induced apoptosis, reduced Akt phosphorylation, and increased Bax translocation to mitochondria. Together, these findings indicate that Abeta-induced apoptosis of cortical neurons proceeds through a Bax mitochondrial pathway. Further, the PI3K signaling cascade plays a role in regulating the anti-apoptotic effects of TUDCA.  相似文献   

7.
Endoplasmic reticulum (ER) stress signaling is an adaptive cellular response to the loss of ER Ca(2+) homeostasis and/or the accumulation of misfolded, unassembled, or aggregated proteins in the ER lumen. ER stress-activated signaling pathways regulate protein synthesis initiation and can also trigger apoptosis through the ER-associated caspase 12. Viruses that utilize the host cell ER as an integral part of their life cycle would be predicted to cause some level of ER stress. Bovine viral diarrhea virus (BVDV) is a positive-stranded RNA virus of the Flaviviridae family. BVDV and related flaviviruses use the host ER as the primary site of envelope glycoprotein biogenesis, genomic replication, and particle assembly. We are using a cytopathic strain of BVDV (cpBVDV) that causes cellular apoptosis as a model system to determine how virus-induced ER stress contributes to pathogenesis. We show that, in a natural infection of MDBK cells, cpBVDV activates the ER transmembrane kinase PERK (PKR-like ER kinase) and causes hyperphosphorylation of the translation initiation factor eIF2 alpha, consistent with the induction of an ER stress response. Additionally, we show that initiation of cellular apoptosis correlates with downregulation of the antiapoptotic Bcl-2 protein, induced expression of caspase 12, and a decrease in intracellular glutathione levels. Defining the molecular stress pathways leading to cpBVDV-induced apoptosis provides the basis to study how other ER-tropic viruses, such as hepatitis C and B viruses, modulate the host cell ER stress response during the course of persistent infection.  相似文献   

8.
9.
Caspase-8 is the most proximal caspase in the caspase cascade and possesses a prodomain consisting of two homologous death effector domains (DEDs). We have discovered that caspase-8 and its homologs can physically interact with tumor necrosis factor receptor-associated factor family members and activate the c-Jun N-terminal kinase (JNK, or stress-activated protein kinase) pathway. This ability resides in the DED-containing prodomain of these proteins and is independent of their role as cell death proteases. A point mutant in the first DED of caspase-8 can block JNK activation induced by several death domain receptors. Inhibition of JNK activation blocks apoptosis mediated by caspase-10, Mach-related inducer of toxicity/cFLIP, and Fas/CD95, thereby suggesting a cooperative role of this pathway in the mediation of caspase-induced apoptosis.  相似文献   

10.
Yonekawa H  Akita Y 《The FEBS journal》2008,275(16):4005-4013
Mitochondria, which are the cellular energy plants, also act as the integration center of cellular signaling pathways. Apoptosis is a well-known pathway in which mitochondria are involved. Protein kinase Cepsilon has been classified as a novel type of protein kinase C and is involved in many cellular events regulating mitochondrial function. Much evidence has accumulated regarding the relationships between mitochondria-mediated apoptosis and protein kinase Cepsilon. Therefore, by focusing on these relationships, in particular the anti-apoptotic effects of protein kinase Cepsilon on mitochondrial function, we highlight the importance and significance of protein kinase Cepsilon in cell survival and death.  相似文献   

11.
Mitochondrial Redox Signaling during Apoptosis   总被引:9,自引:0,他引:9  
The regulatory role of cellular redox state during apoptosis is still controversial. Early redoxsignaling can transduce divergent upstream signals to mitochondria and initiate apoptosis. Onthe other hand, release of mitochondrial cytochrome c triggers generation of reactive oxygenspecies (ROS) and renders apoptotic cells much more oxidized. Although the sequential caspaseactivation does not have apparent redox-sensitive components, redox signaling provides aseparate pathway that is parallel with the caspase cascade. The function of theapoptosis-associated redox change is uncertain. It could provide positive feedback mechanisms, such asactivating mitochondrial permeability transition and apoptosis signaling kinase (ASK-1). Sinceapoptotic cells are designated to be quickly eliminated, the dramatic cellular oxidation couldbe involved in the final degradation of apoptotic bodies and even the termination of theproteolytic activity after phagocytosis.  相似文献   

12.
Normal cell growth requires a precisely controlled balance between cell death and survival. This involves activation of different types of intracellular signaling cascades within the cell. While some types of signaling proteins regulate apoptosis, or programmed cell death, other proteins within the cell can promote survival. The serine/threonine kinase PAK4 can protect cells from apoptosis in response to several different types of stimuli. As is the case for other members of the p21-activated kinase (PAK) family, one way that PAK4 may promote cell survival is by phosphorylating and thereby inhibiting the proapoptotic protein Bad. This leads in turn to the inhibition of effector caspases such as caspase 3. Here we show that in response to cytokines which activate death domain-containing receptors, such as the tumor necrosis factor and Fas receptors, PAK4 can inhibit the death signal by a different mechanism. Under these conditions, PAK4 inhibits apoptosis early in the caspase cascade, antagonizing the activation of initiator caspase 8. This inhibition, which does not require PAK4's kinase activity, may involve inhibition of caspase 8 recruitment to the death domain receptors. This role in regulating initiator caspases is an entirely novel role for the PAK proteins and suggests a new mechanism by which these proteins promote cell survival.  相似文献   

13.
Double-stranded RNA (dsRNA) is produced during replicative viral infection or genotoxic stress. Thus knowledge of the cellular response to dsRNA is necessary to understand the effects of DNA damage or viral infection in biliary epithelia. We assessed the effect of dsRNA on biliary epithelial cell proliferation and apoptosis and the role of the stress-activated p38 MAPK signaling pathway in these responses. dsRNA did not induce apoptosis or proliferation in Mz-ChA-1 human malignant cholangiocytes, but decreased cytotoxicity induced by camptothecin or tumor necrosis factor-related apoptosis inducing ligand and decreased activity of caspases 3, 8, and 9. Furthermore, dsRNA increased p38 MAPK and JNK kinase active site phosphorylation but had no effect on either MAPK kinase (MEK)1/2 or protein kinase R phosphorylation. Inhibition of p38 MAPK with SB-203580 increased basal caspase activity. Thus dsRNA stimulates a p38 MAPK-dependent cell-survival pathway in biliary epithelial cells that may modulate the response of the biliary epithelia to dsRNA produced during genotoxic injury or virus infection.  相似文献   

14.
Apoptosis is a mechanism that regulates hepatic tissue homeostasis and contributes to both acute and chronic injury in liver disease. The apoptotic signaling cascade involves activation of the death-inducing signaling complex (DISC) and subsequent recruitment of proteins containing death effector domains (DED), which regulate downstream effector molecules. Prominent among these are the Fas-associated death domain (FADD) and the cellular caspase 8-like inhibitory protein (cFLIP), and alterations in these proteins can lead to severe disruption of physiological processes, including acute liver failure or hepatocellular carcinoma. Their role in cell signaling events independent of the DISC remains undetermined. Oxidative stress can cause cell injury from direct effects on molecules or by activating intracellular signaling pathways including the mitogen-activated protein kinases (MAPKs). In this context, prolonged activation of the cJun N-terminal kinase (JNK)/AP-1/cJun signaling pathway promotes hepatocellular apoptosis, whereas activation of the extracellular signal-regulated kinase (Erk) exerts protection. We investigated the roles of FADD and cFLIP in acute oxidant stress induced by the superoxide generator menadione in hepatocytes. Menadione resulted in dose-dependent predominantly necrotic cell death. Hepatocytes expressing a truncated, dominant-negative FADD protein were partially protected, whereas cFLIP-deficient hepatocytes displayed increased cell death from menadione. In parallel, Erk phosphorylation was enhanced in hepatocytes expressing dnFADD and decreased in cFLIP-deficient hepatocytes. Hepatocyte injury was accompanied by increased release of proapoptotic factors and increased JNK/cJun activation. Thus, FADD and cFLIP contribute to the regulation of cell death from acute oxidant stress in hepatocytes involving MAPK signaling. This implies that DED-containing proteins are involved in the regulation of cellular survival beyond their role in cell death receptor-ligand-mediated apoptosis.  相似文献   

15.
16.
DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation.  相似文献   

17.
Cdc7 is a serine/threonine kinase that plays essential roles in the initiation of eukaryotic DNA replication and checkpoint response. In previous studies, depletion of Cdc7 by small interfering RNA was shown to induce an abortive S phase that led to the cell cycle arrest in normal human fibroblasts and apoptotic cell death in various cancer cells. Here we report that stress-activated p38 MAP kinase was activated and responsible for apoptotic cell death in Cdc7-depleted HeLa cells. The activation of p38 MAP kinase in the Cdc7-depleted cells was shown to depend on ATR, a major sensor kinase for checkpoint or DNA damage responses. Only the p38 MAP kinase, and not the other stress-activated kinases such as JNK or ERK, was activated, and both caspase 8 and caspase 9 were activated for the induction of apoptosis. Activation of apoptosis in Cdc7-depleted cells was completely abolished in cells treated with small interfering RNA or an inhibitor of the p38 MAP kinase, suggesting that p38 MAP kinase activation was responsible for apoptotic cell death. Taken together, we suggest that the ATR-dependent activation of the p38 MAP kinase is a major signaling pathway that induces apoptotic cell death after depletion of Cdc7 in cancer cells.  相似文献   

18.
19.
Epigallocatechin-3-gallate (EGCG) is a potent chemopreventive agent in many test systems and has been shown to inhibit tumor promotion and induce apoptosis. In the present study, we determined the effect of vanadate, a potent inhibitor of tyrosine phosphatase, on EGCG-induced apoptosis. Investigation of the mechanism of EGCG or vanadate-induced apoptosis revealed induction of caspase 3 activity and cleavage of phospholipase-gamma1 (PLC-gamma1). Furthermore, vanadate potentiated EGCG-induced apoptosis by mitogen-activated protein kinase (MAPK) signaling pathway. Treatment with EGCG plus vanadate for 24h produced morphological features of apoptosis and DNA fragmentation in U937 cells. This was associated with cytochrome c release, caspase 3 activation, and PLC-gamma1 degradation. EGCG plus vanadate activates multiple signal transduction pathways involved in coordinating cellular responses to stress. We demonstrate a requirement for extracellular signal-regulated protein kinase (ERK), a member of the mitogen-activated protein kinase family in EGCG plus vanadate-induced apoptosis in U937 cells. Elevated ERK activity that contributed to apoptosis by EGCG plus vanadate was supported by PD98059 and U0126, chemical inhibitor of MEK/ERK signaling pathway, prevented apoptosis. Taken together, our finding suggests that ERK activation plays an active role in mediating EGCG plus vanadate-induced apoptosis of U937 cells and functions upstream of caspase activation to initiate the apoptotic signal.  相似文献   

20.
The intrinsic, or mitochondrial, pathway of caspase activation is essential for apoptosis induction by various stimuli including cytotoxic stress. It depends on the cellular context, whether cytochrome c released from mitochondria induces caspase activation gradually or in an all-or-none fashion, and whether caspase activation irreversibly commits cells to apoptosis. By analyzing a quantitative kinetic model, we show that inhibition of caspase-3 (Casp3) and Casp9 by inhibitors of apoptosis (IAPs) results in an implicit positive feedback, since cleaved Casp3 augments its own activation by sequestering IAPs away from Casp9. We demonstrate that this positive feedback brings about bistability (i.e., all-or-none behaviour), and that it cooperates with Casp3-mediated feedback cleavage of Casp9 to generate irreversibility in caspase activation. Our calculations also unravel how cell-specific protein expression brings about the observed qualitative differences in caspase activation (gradual versus all-or-none and reversible versus irreversible). Finally, known regulators of the pathway are shown to efficiently shift the apoptotic threshold stimulus, suggesting that the bistable caspase cascade computes multiple inputs into an all-or-none caspase output. As cellular inhibitory proteins (e.g., IAPs) frequently inhibit consecutive intermediates in cellular signaling cascades (e.g., Casp3 and Casp9), the feedback mechanism described in this paper is likely to be a widespread principle on how cells achieve ultrasensitivity, bistability, and irreversibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号