首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Two halophilic archaeal strains, YC21T and YC77, were isolated from an inland salt lake of China. Both have pleomorphic rod-shaped cells that lyse in distilled water, stain Gram-negative and form red-pigmented colonies. They are neutrophilic, require at least 2.1 M NaCl for growth under the optimum growth temperature of 37 °C. The major polar lipids of the two strains were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulfate (PGS), two major glycolipids (GL1 and GL2) chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1) and mannosyl glucosyl diether (DGD-1), respectively. Trace amounts of two unidentified lipids (GL0-1 and GL0-2) were also detected. The 16S rRNA gene sequences of the two strains are 99.9 % identical, show 94.0–98.9 % similarity to the closest relative members of Halobellus of the family Halobacteriaceae. The rpoB′ gene similarity between strains YC21T and YC77 is 99.8 % and show 90.3–95.3 % similarity to the closest relative members of Halobellus. The DNA G+C content of strains YC21T and YC77 were 66.1 and 66.2 mol%, respectively. The DNA–DNA hybridization value between strain YC20T and strain YC77 was 89 %, and the two strains showed low DNA–DNA relatedness with Halobellus limi TBN53T, the most related member of Halobellus. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains YC21T and YC77 represent a novel species of the genus Halobellus, for which the name Halobellus rarus sp. nov. is proposed. The type strain is YC21T (=CGMCC 1.12121T = JCM 18362T).  相似文献   

2.
Two halophilic archaeal strains TBN4T and TBN5 were isolated from Taibei marine solar saltern in Jiangsu, China. Both strains showed light red-pigmented colonies and their cells were rod, motile and Gram-stain-negative. They were able to grow at 25–50°C (optimum 37°C), at 1.4–4.3 M NaCl (optimum 2.1 M NaCl), at 0–1.0 M MgCl2 (optimum 0.005 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.0). Their cells lyse in distilled water and minimal NaCl concentration to prevent cell lysis is 8% (w/v). The major polar lipids of the two strains were PG (phosphatidylglycerol), PGP-Me (phosphatidylglycerol phosphate methyl ester), PGS (phosphatidylglycerol sulfate) and five glycolipids chromatographically identical to S-TGD-1 (sulfated galactosyl mannosyl glucosyl diether), S-DGD-1 (sulfated mannosyl glucosyl diether), TGD-1 (galactosyl mannosyl glucosyl diether), DGD-1 (mannosyl glucosyl diether) and DGD-2 (an unknown diglycosyl diether). Phylogenetic analysis revealed that TBN4T and strain TBN5 formed a distinct clade with genus Haladaptatus (showing 90.0–90.9% 16S rRNA gene similarities). The DNA G + C content of strain TBN4T and strain TBN5 are 66.1 and 65.4 mol%, respectively. The DNA–DNA hybridization value between strain TBN4T and strain TBN5 was 94.3%. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain TBN4T and strain TBN5 represent a novel species in a new genus within the family Halobacteriaceae, for which the name Halorussus rarus gen. nov., sp. nov. is proposed. The type strain is TBN4T (=CGMCC 1.10122T = JCM 16429T).  相似文献   

3.
Halophilic archaeal strain GX31T was isolated from a marine solar saltern of China. The cells of the strain were rod-shaped and lysed in distilled water, stain Gram-negative and formed red-pigmented colonies. It was neutrophilic, and required at least 0.9 M NaCl and 0–1.0 M MgCl2 for growth under the optimum growth temperature of 37 °C. The major polar lipids of the strain were phosphatidylglycerol (PG), PG phosphate methyl ester, PG sulphate, and two major glycolipids chromatographically identical to sulphated mannosyl glucosyl diether (S-DGD-1) and mannosyl glucosyl diether (DGD-1), respectively. Trace amounts of two unidentified lipids were also detected. On the basis of 16S rRNA gene sequence analysis, strain GX31T was closely related to the members of Halobellus of the family Halobacteriaceae with similarities of 94.1–98.7 %. Strain GX31T showed 89.8–95.4 % of the rpoB′ gene similarity to the members of Halobellus. The DNA G+C content of strain GX31T was 66.8 mol%. Strain GX31T showed low DNA–DNA relatedness with two most related members of the genus Halobellus. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain GX31T represent a novel species of the genus Halobellus, for which the name Halobellus litoreus sp. nov. is proposed. The type strain is GX31T (=CGMCC 1.10387T = JCM 17118T).  相似文献   

4.
Two Gram-stain negative, rod-shaped and motile extreme halophiles, designated CBA1107T and CBA1108, were isolated from non-purified solar salt. Based on the phylogenetic analysis, strains CBA1107T and CBA1108 were shown to belong to the genus Halolamina, with similarities for the 16S rRNA gene sequences between strains CBA1107T and Halolamina pelagica TBN21T , Halolamina salina WSY15-H3T and Halolamina salifodinae WSY15-H1T of 98.3, 97.6 and 97.3 %, respectively; the similarities for the rpoB′ gene sequences between the same strains were 96.0, 95.3 and 94.6 %, respectively. The colonies of both strains were observed to be red pigmented on growth medium. Strain CBA1107T was observed to grow at 20–50 °C, in the presence of 15–30 % NaCl, at pH 6.0–9.0, and with 0.005–0.5 M Mg2+. The cells of both strains lysed in distilled water. The DNA–DNA hybridization experiments showed that strain CBA1107T shared 97 % relatedness with CBA1108 and <50 % relatedness with H. pelagica JCM 16809T, H. salina JCM 18549T and H. salifodinae JCM 18548T. The genomic DNA G+C content of strain CBA1107T was determined to be 65.1 mol%. The major polar lipids of the two strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and glycolipids including sulfated mannosyl glucosyl diether and mannosyl glucosyl diether. Based on the polyphasic taxonomic analyses, the strains are considered to represent a new taxon for which the name Halolamina rubra sp. nov. is proposed, with the type strain CBA1107T (=CECT 8421T =JCM 19436T).  相似文献   

5.
Halophilic archaeal strain TGN-42-S1T was isolated from the Tanggu marine solar saltern, China. Cells from strain TGN-42-S1T were observed to be pleomorphic rods, stained Gram-negative, and formed red-pigmented colonies on solid media. Strain TGN-42-S1T was found to be able to grow at 20–50 °C (optimum 35–37 °C), at 1.7–4.8 M NaCl (optimum 3.1 M), at 0–1.0 M MgCl2 (optimum 0.1 M), and at pH 5.0–9.0 (optimum pH 7.0–7.5). The cells lysed in distilled water, and the minimal NaCl concentration to prevent cell-lysis was found to be 10 % (w/v). The major polar lipids of the strain were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, galactosyl mannosyl glucosyl diether (TGD-1), sulfated galactosyl mannosyl glucosyl diether (S-TGD-1), sulfated galactosyl mannosyl galactofuranosyl glucosyl diether (S-TeGD), and three unidentified glycolipids which were chromatographically identical to those of the Halobacterium species. The 16S rRNA gene and rpoB′ gene of strain TGN-42-S1T were phylogenetically related to the corresponding genes of Halobacterium jilantaiense CGMCC 1.5337T (98.8 and 93.5 % nucleotide identity, respectively), Halobacterium salinarum CGMCC 1.1958T (98.4 and 91.9 %), and Halobacterium noricense JCM 15102T (96.9 and 91.1 %). The DNA G + C content of strain TGN-42-S1T was determined to be 69.2 mol %. Strain TGN-42-S1T showed low DNA–DNA relatedness with Hbt. jilantaiense CGMCC 1.5337T and Hbt. salinarum CGMCC 1.1958T, the most closely related members of the genus Halobacterium. The phenotypic, chemotaxonomic, and phylogenetic properties suggested that strain TGN-42-S1T (=CGMCC 1.12575T =JCM 19908T) represents a new species of Halobacterium, for which the name Halobacterium rubrum sp. nov. is proposed.  相似文献   

6.
Three novel isolates of haloalkaliphilic archaea, strains IHC-005T, IHC-010, and N-1311T, from soda lakes in Inner Mongolia, China, were characterized to elucidate their taxonomic positions. The three strains were aerobic, Gram-negative chemoorganotrophs growing optimally at 37–45°C, pH 9.0–9.5, and 15–20% NaCl. Cells of strains IHC-005T/IHC-010 were motile rods, while those of strain N-1311T were non-motile pleomorphic flats or cocci. The three strains contained diphytanyl and phytanyl-sesterterpanyl diether derivatives of phosphatidylglycerol and phosphatidylglycerophosphate methyl ester. No glycolipids were detected. On phylogenetic analysis of 16S rRNA gene sequences, they formed an independent cluster in the Natro group of the family Halobacteriaceae. Comparison of their morphological, physiological, and biochemical properties, DNA G+C content and 16S rRNA gene sequences, and DNA-DNA hybridization study support the view that strains IHC-005T/IHC-010 and strain N-1311T represent separate species. Therefore, we propose Natronolimnobius baerhuensis gen. nov., sp. nov. for strains IHC-005T (=CGMCC 1.3597T =JCM 12253T)/IHC-010 (=CGMCC 1.3598=JCM 12254) and Natronolimnobius innermongolicus sp. nov. for N-1311T (=CGMCC 1.2124T =JCM 12255T).  相似文献   

7.
Two halophilic archaea, strains GX21T and R35T, were isolated from a marine solar saltern and an aquaculture farm in China, respectively. Cells of the two strains were observed to be pleomorphic, flat, to contain gas vesicles, stain Gram-negative and produce red-pigmented colonies. Strain GX21T was found to be able to grow at 25–50 °C (optimum 37 °C), at 2.6–4.8 M NaCl (optimum 3.4 M NaCl), at 0.05–1.0 M MgCl2 (optimum 0.1 M MgCl2) and at pH 6.0–8.5 (optimum pH 6.5) while strain R35T was found to be able to grow at 25–45 °C (optimum 37 °C), at 2.1–4.8 M NaCl (optimum 3.1 M NaCl), at 0–0.7 M MgCl2 (optimum 0.03 M MgCl2) and at pH 5.5–9.5 (optimum pH 6.5–7.0). The cells of both isolates were observed to lyse in distilled water. The minimum NaCl concentrations that prevented cell lysis were determined to be 15 % (w/v) for strain GX21T and 12 % (w/v) for strain R35T. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, one major glycolipid and a minor lipid chromatographically identical to sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively. 16S rRNA gene sequence analysis revealed that strains GX21T and R35T show 97.1 % sequence similarity to each other and are closely related to Haloplanus aerogenes TBN37T (96.8 and 95.8 %), Haloplanus vescus RO5-8T (96.7 and 96.1 %), Haloplanus salinus YGH66T (96.4 and 95.8 %) and Haloplanus natans JCM 14081T (96.3 and 95.4 %). The rpoB′ gene similarity between strains GX21T and R35T is 90.5 % and show 88.5–90.8 % similarity to the Haloplanus species with validly published names. The DNA G+C content of strain GX21T and R35T were determined to be 65.8 and 66.0 mol%, respectively. The DNA–DNA hybridization values between strain GX21T and strain R35T, and the two strains with the Haloplanus species with validly published names, showed less than 50 % DNA–DNA relatedness. It was concluded that strain GX21T (=CGMCC 1.10456T = JCM 17092T) and strain R35T (=CGMCC 1.10594 T = JCM 17271T) represent two new species of Haloplanus, for which the names Haloplanus litoreus sp. nov. and Haloplanus ruber sp. nov. are proposed.  相似文献   

8.
The halophilic archaeal strain GX71T was isolated from the Gangxi marine solar saltern near the Weihai city of Shandong Province, China. Cells of the strain were pleomorphic and lysed in distilled water, stained Gram-negative and formed red-pigmented colonies. Strain GX71T was able to grow at 25–45 °C (optimum 30 °C), in the presence of 1.7–4.8 M NaCl (optimum 2.6 M NaCl), with 0.005–0.7 M MgCl2 (optimum 0.05 M MgCl2) and at pH 5.5–9.5 (optimum pH 7.0–7.5). Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 10 % (w/v). The major polar lipids of the strain were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-3) and an unidentified lipid was also detected. The 16S rRNA gene sequence of strain GX71T showed 94.0–97.0 % similarity to members of the genus Halorubrum of the family Halobacteriaceae. The rpoB′ gene sequence of strain GX71T was 87.3–93.4 % similarity to current members of the genus Halorubrum. The DNA G+C content of GX71T was 67.1 mol%. Strain GX71T showed low DNA–DNA relatedness with Halorubrum lipolyticum CGMCC 1.5332T, Halorubrum saccharovorum CGMCC 1.2147T, Halorubrum kocurii CGMCC 1.7018T and Halorubrum arcis CGMCC 1.5343T, the most closely related members of the genus Halorubrum. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain GX71T represents a novel species of the genus Halorubrum, for which the name Halorubrum salinum sp. nov. is proposed. The type strain is GX71T (= CGMCC 1.10458T = JCM 17093T).  相似文献   

9.
Two halophilic archaeal strains, R30T and tADLT, were isolated from an aquaculture farm in Dailing, China, and from Deep Lake, Antarctica, respectively. Both have rod-shaped cells that lyse in distilled water, stain Gram-negative and form red-pigmented colonies. They are neutrophilic, require >120?g/l NaCl and 48–67?g/l MgCl2 for growth but differ in their optimum growth temperatures (30?°C, tADLT vs. 40?°C, R30T). The major polar lipids were typical for members of the Archaea but also included a major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1). The 16S rRNA gene sequences of the two strains are 97.4?% identical, show most similarity to genes of the family Halobacteriaceae, and cluster together as a distinct clade in phylogenetic tree reconstructions. The rpoB′ gene similarity between strains R30T and tADLT is 92.9?% and less to other halobacteria. Their DNA G?+?C contents are 62.4–62.9?mol?% but DNA–DNA hybridization gives a relatedness of only 44?%. Based on phenotypic, chemotaxonomic and phylogenetic properties, we describe two new species of a novel genus, represented by strain R30T (=?CGMCC 1.10593T?=?JCM 17270T) and strain tADLT (=?JCM 15066T?=?DSMZ 22187T) for which we propose the names Halohasta litorea gen. nov., sp. nov. and Halohasta litchfieldiae sp. nov., respectively.  相似文献   

10.
Two halophilic archaeal strains, YC87T and YCA11, were isolated from Yuncheng salt lake in Shanxi, China. Cells of the two strains were observed to be pleomorphic rod-shaped, stained Gram-negative and produced red-pigmented colonies. Strain YC87T was able to grow at 20–50 °C (optimum 37 °C), at 1.4–4.8 M NaCl (optimum 2.1 M NaCl), at 0.05–1.0 M MgCl2 (optimum 0.3 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.0) while strain YCA11 was able to grow at 20–50 °C (optimum 37 °C), at 2.1–4.8 M NaCl (optimum 3.1 M NaCl), at 0.01–0.7 M MgCl2 (optimum 0.1 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.5). The cells of both isolates were observed to lyse in distilled water. The minimum NaCl concentrations that prevented cell lysis were determined to be 8 % (w/v) for strain YC87T and 12 % (w/v) for strain YCA11. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether; another major glycolipid and trace amounts of several unidentified lipids were also detected. The 16S rRNA gene sequences of the two strains were 99.8 % identical, showing 93.2–98.2 % similarity to members of the genus Halorubrum of the family Halobacteriaceae. The rpoB′ gene similarity between strains YC87T and YCA11 was 99.3 % and showed 87.5–95.2 % similarity to the closest relative members of the genus Halorubrum. The DNA G+C content of strains YC87T and YCA11 were determined to be 64.9 and 64.5 mol%, respectively. The DNA–DNA hybridization value between strain YC20T and strain YC77 was 87 % and the two strains showed low DNA–DNA relatedness with Halorubrum cibi JCM 15757T and Halorubrum aquaticum CGMCC 1.6377T, the most related members of the genus Halorubrum. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains YC87T and YCA11 represent a novel species of the genus Halorubrum, for which the name Halorubrum rubrum sp. nov. is proposed. The type strain is YC87T (=CGMCC 1.12124T = JCM 18365T).  相似文献   

11.
12.
A halophilic archaeon, designed strain CBA1103T, was isolated from non-purified solar salt. The cells of strain CBA1103T were observed to be Gram-stain negative and pleomorphic, and the colonies appear red. Strain CBA1103T was observed to grow between 20 and 55 °C (optimum 37 °C), and in NaCl concentrations of 10–30 % (w/v) (optimum 15 %) with 0–0.5 M MgSO4·7H2O (optimum 0.1 M) and at pH 6.0–9.0 (optimum pH 7.0). Additionally, the cells lyse in distilled water. The major polar lipids of strain CBA1103T are phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and two glycolipids chromatographically identical to sulfated mannosyl glucosyl diether and manosyl glucosyl diether. Strain CBA1103T is shown to belong to the Halobellus genus and exhibits similarity to related taxa; the 16S rRNA gene sequence similarity between strain CBA1103T and Halobellus rarus 18362T, Hbs. limi 16811T, Hbs. litoreus JCM 17118T, Hbs. inordinatus YC20T, Hbs. clavatus TNN18T and Hbs. salinus CSW2.24.4T is 97.3, 96.5, 96.5, 94.5, 94.5 and 93.7 %, respectively. The RNA polymerase subunit B gene sequence of strain CBA1103T shows 93.7 % similarity with the sequence of Hbs. litoreus JCM 17118T; the similarity is lower with sequences from the type strains of other species of Halobellus. The genomic DNA G+C content of strain CBA1103T was determined to be 67.0 mol% a value which is in the range of the genomic DNA G+C content of members of the genus Halobellus (61.5–69.2 mol%). These results suggest that strain CBA1103T should be considered to represent a new taxon for which the name Halobellus rufus sp. nov. is proposed, with the type strain CBA1103T (=CECT 8423T =JCM 19434T).  相似文献   

13.
Two filamentous actinomycetes isolated from a hay meadow soil were provisionally assigned to the genus Streptomyces based on morphological features. The isolates were found to have chemical and morphological properties typical of the genus Streptomyces and formed distinct phyletic lines in the 16S rRNA gene tree. Isolate I36T was most closely related to Streptomyces glauciniger NBRC 100913T and isolate I37T to Streptomyces mirabilis NBRC 13450T. Low DNA:DNA relatedness values were recorded between each of the isolates and their closest phylogenetic neighbour. The isolates were also distinguished from their nearest phylogenetic neighbour, and from one another, using a combination of phenotypic properties. These data indicate that the isolates should be recognised as new species in the genus Streptomyces. The names proposed for these new taxa are Streptomyces erringtonii sp. nov. and Streptomyces kaempferi sp. nov. with isolate I36T (=CGMCC 4.7016T = KACC 15424T) and isolate I37T (=CGMCC 4.7020T = KACC 15428T) as the respective type strains.  相似文献   

14.
Two extremely halophilic archaea, designated YIM 90917 and YIM 93656T, were isolated from saline soils in Yunnan province and Lup nur region in Xinjiang province, western China, respectively. Colonies of the two strains were observed to be pink-pigmented. The cells were found to be Gram-stain negative, coccoid and non-motile. The organisms were found to be aerobic and could grow in an NaCl range of 6–35 % (optimum 18 %), temperatures ranging from 25 to 50 °C (optimum 37–42 °C), pH range from 6.0–8.5 (optimum pH 7.0–7.5) and Mg2+ range from 0 to 1.5 M (optimum 0.5–1.0 M); Mg2+ was not necessary for growth. Cells were not observed to lyse in distilled water. Strains YIM 90917 and YIM 93656T showed the highest 16S rRNA gene sequence similarities to Haladaptatus cibarius JCM 15962T (97.6 and 97.9 %, respectively). In addition, the DNA–DNA hybridizations of strains YIM 90917 and YIM 93656T with type strains H. cibarius JCM 15962T, Haladaptatus litoreus JCM 15771T and Haladaptatus paucihalophilus JCM 13897T were 37.2 and 38.2 %, 36.6 and 39.0 % and 27.9 and 27.7 %, respectively. The DNA G+C contents of strains YIM 90917 and YIM 93656T were determined to be 56.0 and 57.4 mol%. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, sulfated mannosyl glucosyl diether and other four unidentified glycolipids. On the basis of physiological, chemotaxonomic data and phylogenetic analysis, the strains YIM 90917 and YIM 93656T can be classified as a novel species of the genus Haladaptatus, for which the name Haladaptatus pallidirubidus sp. nov. is proposed. The type strain is YIM 93656T (=JCM 17504T = CCTCC AB2010454T).  相似文献   

15.
Halophilic archaeal strain YGH66T was isolated from the Yinggehai marine solar saltern near the Sanya city of Hainan Province, China. Cells were pleomorphic, flat, stained Gram-negative, and produced pink-pigmented colonies. Strain YGH66T was able to grow at 20–50 °C (optimum 37 °C), at 0.9–4.8 M NaCl (optimum 3.1 M NaCl), at 0.005–1.0 M MgCl2 (optimum 0.05 M MgCl2), and at pH 6.0–8.0 (optimum pH 7.0). The cells of strain YGH66T were lysed in distilled water, and the minimum NaCl concentration that prevented cell lysis was 5 % (w/v). The major polar lipids of the strain were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, one major glycolipid (GL1) chromatographically identical to sulfated mannosyl glucosyl diether and a minor unidentified lipid (GL2), respectively. On the basis of 16S rRNA gene sequence analysis, strain YGH66T was closely related to Haloplanus natans JCM 14081T, Haloplanus aerogenes TBN37T, and Haloplanus vescus RO5-8T with the similarities of 98.0, 97.6, and 96.9 %, respectively. The rpoB′ gene similarity between strain YGH66T and the current three members of Haloplanus were 90.4–92.8 %. The DNA G+C content of strain YGH66T was 67.2 mol %. The DNA–DNA hybridization values between strain YGH66T and three members of Haloplanus, H. natans JCM 14081T, H. aerogenes TBN37T, H. vescus RO5-8T were 50, 46 and 39 %, respectively. It was concluded that strain YGH66T represents a novel species of the genus Haloplanus, for which the name Haloplanus salinus sp. nov. is proposed. The type strain is YGH66T (=CGMCC 1.12127T = JCM 18368T).  相似文献   

16.
Two extremely halophilic archaeal strains GX1T and GX60 were isolated from the Gangxi marine solar saltern, China. Cells from the two strains were observed to be rod-shaped and stained Gram-negative, with red-pigmented colonies. Strains GX1T and GX60 were found to be able to grow at 25–50 °C (optimum 37 °C), at 1.4–4.8 M NaCl (optimum 2.6 M), at pH 5.5–9.5 (optimum pH 7.0) and neither strain required Mg2+ for growth. The cells lysed in distilled water and the minimal NaCl concentration to prevent cell-lysis was found to be 8 % (w/v). The major polar lipids of the two strains were identified as phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and three glycolipids chromatographically identical to those of Haloarchaeobius iranensis IBRC-M 10013T. 16S rRNA gene analysis revealed that each strain had two dissimilar 16S rRNA genes and both strains were phylogenetically related to Hab. iranensis IBRC-M 10013T (94.9–98.9 % nucleotide identity). The rpoB′ gene similarity between strains GX1T and GX60, and between these strains and Hab. iranensis IBRC-M 10013T were found to be 99.6, 96.0 and 95.8 %, respectively. The DNA G + C content of strain GX1T and GX60 were determined to be 67.7 and 67.8 mol %, respectively. The DNA–DNA hybridization value of strains GX1T and GX60 was 86 % and the two strains showed low DNA–DNA relatedness with Hab. iranensis IBRC-M 10013T (38 and 32 %). It was concluded that strain GX1T (= CGMCC 1.10390T = JCM 17114T) and strain GX60 (= CGMCC 1.10389 = JCM 17120) represent a new species of Haloarchaeobius, for which the name Haloarchaeobius litoreus sp. nov. is proposed.  相似文献   

17.
Two novel marine actinobacteria, designated as SCSIO 60955T and SCSIO 61214T, were isolated from deep-sea sediment samples collected from the South China Sea. The cells of these organisms stained Gram-negative and were rod shaped. These strains were aerobic, and catalase- and oxidase-positive. Optimal growth occurred at 28 °C and pH 7 over 14 days of cultivation. Both strains possessed phospholipids and phosphoglycolipids. The main menaquinone was MK-7. The major fatty acid was C16:0. The peptidoglycan structure was type A1γ′ (meso-Dpm). Analysis of genome sequences revealed that the genome size of SCSIO 60955T was 3.37 Mbp with G + C content of 76.1%, while the genome size of SCSIO 61214T was 3.67 Mbp with a G + C content of 74.8%. The ANI and 16S rRNA gene analysis results showed that the pairwise similarities between the two strains were 73.4% and 97.7% and that with other recognized Thermoleophilia species were less than 69.1% and 87.8%, respectively. Phylogenetic analysis of the 16S rRNA gene sequences showed that strains SCSIO 60955T and SCSIO 61214T were separately clustered together and formed a well-separated phylogenetic branch distinct from their most related neighbor Gaiella occulta. Based on the data presented here, these two strains are proposed to represent two novel species of a novel genus, for which the name Miltoncostaea marina gen. nov., sp. nov., with the type strain SCSIO 60955T (=DSM 110281T =CGMCC 1.18757T), and Miltoncostaea oceani sp. nov., with the type strain SCSIO 61214T (=KCTC 49527T =CGMCC 1.18758T) are proposed. We also propose that these organisms represent a novel family named Miltoncostaeaceae fam. nov. of a novel order Miltoncostaeales ord. nov.  相似文献   

18.
A novel, red-pigmented and coccoid haloarchaeon, designated strain CBA1101T, was isolated from a marine sediment. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CBA1101T is most closely related to the genus Halococcus in the family Halobacteriaceae. Strain CBA1101T had a highest 16S rRNA gene sequence similarity of 98.4 % with Halococcus dombrowskii DSM 14522T, followed by 93.7–98.3 % with sequences of other type strains in the genus Halococcus. The RNA polymerase subunit B′ gene sequence similarity of strain CBA1101T with that of Halococcus qingdaonensis JCM 13587T is 89.5 % and lower with those of other members of the genus Halococcus. Strain CBA1101T was observed to grow at 25–40 °C, pH 6.0–9.0 and in the presence of 15–30 % (w/v) NaCl, with optimal growth at 35–40 °C, pH 7.0 and with 20 % NaCl. The cells of strain CBA1101T are Gram-negative and did not lyse in distilled water. The major polar lipids were identified as phosphatidylglyerol, phosphatidylglycerol phosphate methyl ester, sulfated diglycosyl diether, unidentified phospholipids and unidentified glycolipids. The genomic DNA G+C content was determined 66.0 mol%. The DNA–DNA hybridization experiment showed that there was less than 40 % relatedness between strain CBA1101T and the reference species in the genus Halococcus. Based on this polyphasic taxonomic analysis, strain CBA1101T is considered to represent a new species in the genus Halococcus, for which the name Halococcus sediminicola sp. nov. is proposed. The type strain is CBA1101T (=JCM 18965T = CECT 8275T).  相似文献   

19.
Two gram-positive, aerobic, spore-forming, rod-shaped bacteria, designated HB09003T and HB12160, were isolated from seawater and sediment in the northern South China Sea, respectively. Cells were found to be motile by means of peritrichous flagella. The strains were found to grow with 0–15 % (w/v) NaCl, at 10–45 °C and pH 5.0–10.7, with an optimum of 3 % NaCl, 28 °C and pH 8.5, respectively. The predominant isoprenoid quinone of strain HB09003T, selected as the representative strain, was identified as MK-7. This strain was found to possess anteiso-C15:0, iso-C15:0, anteiso-C17:0 and C16:0 as the major fatty acids. The G+C contents of strain HB09003T and HB12160 were determined to be 34.1 and 34.3 mol%, respectively. Analysis of the 16S rRNA gene sequences of the two strains showed an affiliation with the genus Gracilibacillus, with Gracilibacillus kekensis CGMCC 1.10681T (similarity of 97.4, 98.0 %, respectively) and Gracilibacillus ureilyticus CGMCC 1.7727T (similarity of 97.1, 97.8 %, respectively) as their closest relatives. The DNA–DNA hybridization values between strain HB09003T and the two type strains were 42.2 and 54.1 %, respectively. On the basis of phenotypic and genotypic data, strain HB09003T and HB12160 are proposed to represent a novel species of the genus Gracilibacillus, for which the name Gracilibacillus marinus sp. nov. is proposed. The type strain is HB09003T (=CGMCC 1.10343T = DSM 23372T).  相似文献   

20.
Bifidobacterium is one of the dominating bacterial genera in the honey bee gut, and they are the key degrader of diet polysaccharides for the host. Previous genomic analysis shows that they belong to separate phylogenetic clusters and exhibited different functional potentials in hemicellulose digestion. Here, three novel strains from the genus Bifidobacterium were isolated from the guts of the honey bee (Apis mellifera). Phylogenomic analysis showed that the isolates could be grouped into four phylogenetic clusters. The average nucleotide identity values between strains from different clusters are <95%, while strains in Cluster IV belong to the characterized species Bifidobacterium asteroides. Carbohydrate-active enzyme annotation confirmed that the metabolic capacity for carbohydrates varied between clusters of strains. Cells are Gram-positive rods; they grew both anaerobically and in a CO2-enriched atmosphere. All strains grew at a temperature range of 20–42 °C, with optimum growth at 35 °C. The pH range for growth was 5–9. Strains from different phylogenetic clusters varied in multiple phenotypic and chemotaxonomic characterizations. Thus, we propose three novel species Bifidobacterium apousia sp. nov. whose type strain is W8102T (=CGMCC 1.18893 T = JCM 34587 T), Bifidobacterium choladohabitans sp. nov., whose type strain is B14384H11T (=CGMCC 1.18892 T = JCM 34586 T), and Bifidobacterium polysaccharolyticum sp. nov. whose type strain is W8117T (=CGMCC 1.18894 T = JCM 34588 T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号