首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The potential of a number of fluorescent pseudomonad strains to promote growth of guayule plants in the greenhouse and in the field was studied. A number of bacterial strains collected from guayule roots and rhizospheres promoted growth of greenhouse-grown plants but not field-grown plants. Percent increase in shoot dry weight of 12-week-old, greenhouseinoculated guayule plants ranged from 17 to 75 nine weeks after inoculation compared to non-inoculated plants. The increased growth of plants in the greenhouse could reduce production cost by shortening the time required to maintain plants in the nursery prior to transplanting to the field.Journal Series Article no 3816 of the Arizona Agricultural Experiment Station.  相似文献   

2.
Here we characterized the effect of the ectomycorrhizal symbiosis on the genotypic and functional diversity of soil Pseudomonas fluorescens populations and analysed its possible consequences in terms of plant nutrition, development and health. Sixty strains of P. fluorescens were isolated from the bulk soil of a forest nursery, the ectomycorrhizosphere and the ectomycorrhizas of the Douglas fir (Pseudostuga menziesii) seedlings-Laccaria bicolor S238N. They were characterized in vitro with the following criteria: ARDRA, phosphate solubilization, siderophore, HCN and AIA production, genes of N2-fixation and antibiotic synthesis, in vitro confrontation with a range of phytopathogenic and ectomycorrhizal fungi, effect on the Douglas fir-L. bicolor symbiosis. For most of these criteria, we demonstrated that the ectomycorrhizosphere significantly structures the P. fluorescens populations and selects strains potentially beneficial to the symbiosis and to the plant. This prompts us to propose the ectomycorrhizal symbiosis as a true microbial complex where multitrophic interactions take place. Moreover it underlines the fact that this symbiosis has an indirect positive effect on plant growth, via its selective pressure on bacterial communities, in addition to its known direct positive effect.  相似文献   

3.
Two phosphate solubilizing bacteria (PSB), M3 and SP1, were obtained from the rhizosphere of mungbean and sweet potato, respectively and identified as strains of Pseudomonas aeruginosa. Their rock phosphate (RP) solubilizing abilities were found to be due to secretion high amount of gluconic acid. In the presence of malate and succinate, individually and as mixture, the P solubilizing ability of both the strains was considerably reduced. This was correlated with a nearly 80% decrease in the activity of the glucose dehydrogenase (GDH) but not gluconate dehydrogenase (GAD) in both the isolates. Thus, GDH enzyme, catalyzing the periplasmic production of gluconic acid, is under reverse catabolite repression control by organic acids in P. aeruginosa M3 and SP1. This is of relevance in rhizospheric conditions and is a new explanation for the lack of field efficacy of such PSB.  相似文献   

4.
Seven bacterial isolates screened from rhizosphere of common bean growing at Uttarakhand Himalaya showed potential plant growth promoting (PGP) and antagonistic activities. Based on 16S rRNA gene sequence the isolate BPR7 was identified as Bacillus sp. BPR7. The strain BPR7 produced IAA, siderophore, phytase, organic acid, ACC deaminase, cyanogens, lytic enzymes, oxalate oxidase, and solubilized various sources of organic and inorganic phosphates as well as potassium and zinc. Strain BPR7 strongly inhibited the growth of several phytopathogens such as Macrophomina phaseolina, Fusarium oxysporum, F. solani, Sclerotinia sclerotiorum, Rhizoctonia solani and Colletotricum sp. in vitro. Cell-free culture filtrate of strain BPR7 also caused colony growth inhibition of all test pathogens. PGP and antifungal activities of Bacillus sp. BPR7 suggest that it may be exploited as a potential bioinoculant agent for P. vulgaris.  相似文献   

5.
Secondary metabolites from fluorescent pseudomonads   总被引:15,自引:0,他引:15  
  相似文献   

6.
Present study deals with the isolation of rhizobacteria and selection of plant growth promoting bacteria from Crocus sativus (Saffron) rhizosphere during its flowering period (October–November). Bacterial load was compared between rhizosphere and bulk soil by counting CFU/gm of roots and soil respectively, and was found to be ~40 times more in rhizosphere. In total 100 bacterial isolates were selected randomly from rhizosphere and bulk soil (50 each) and screened for in-vitro and in vivo plant growth promoting properties. The randomly isolated bacteria were identified by microscopy, biochemical tests and sequence homology of V1–V3 region of 16S rRNA gene. Polyphasic identification categorized Saffron rhizobacteria and bulk soil bacteria into sixteen different bacterial species with Bacillus aryabhattai (WRF5-rhizosphere; WBF3, WBF4A and WBF4B-bulk soil) common to both rhizosphere as well as bulk soil. Pseudomonas sp. in rhizosphere and Bacillus and Brevibacterium sp. in the bulk soil were the predominant genera respectively. The isolated rhizobacteria were screened for plant growth promotion activity like phosphate solubilization, siderophore and indole acetic acid production. 50 % produced siderophore and 33 % were able to solubilize phosphate whereas all the rhizobacterial isolates produced indole acetic acid. The six potential PGPR showing in vitro activities were used in pot trial to check their efficacy in vivo. These bacteria consortia demonstrated in vivo PGP activity and can be used as PGPR in Saffron as biofertilizers.This is the first report on the isolation of rhizobacteria from the Saffron rhizosphere, screening for plant growth promoting bacteria and their effect on the growth of Saffron plant.  相似文献   

7.
Total aerobic bacteria and fluorescent pseudomonads were counted in bulk and rhizospheric soils of banana plants of 14 plantations in Martinique (French West Indies). Fluorescent Pseudomonas isolates were then identified and investigated for in vitro antagonism towards Cylindrocladium sp., a fungal pathogen of banana roots. Total aerobic bacteria and fluorescent pseudomonads were significantly more abundant in rhizospheric soils than in bulk soils. Among 58 fluorescent Pseudomonas isolates, 41 were identified as Pseudomonas fluorescens biovar V and 17 as Ps. putida biovar A. Six strains exhibited an antagonism towards Cylindrocladium isolates. Among them, Ps. putida strain 93.1 totally blocked fungal growth. No relationship was established between the antifungal effect and enzyme or hydrogen cyanide production by bacteria, suggesting that siderophores and other compounds were involved in fungal inhibition. Antagonistic fluorescent pseudomonads represent a potential for the biological control of banana root infections by Cylindrocladium sp.  相似文献   

8.
9.
The ability of fluorescent pseudomonads and arbuscular mycorrhizal fungi (AMF) to promote plant growth is well documented but knowledge of the impact of pseudomonad-mycorrhiza mixed inocula on root architecture is scanty. In the present work, growth and root architecture of tomato plants (Lycopersicon esculentum Mill. cv. Guadalete), inoculated or not with Pseudomonas fluorescens 92rk and P190r and/or the AMF Glomus mosseae BEG12, were evaluated by measuring shoot and root fresh weight and by analysing morphometric parameters of the root system. The influence of the microorganisms on phosphorus (P) acquisition was assayed as total P accumulated in leaves of plants inoculated or not with the three microorganisms. The two bacterial strains and the AMF, alone or in combination, promoted plant growth. P. fluorescens 92rk and G. mosseae BEG12 when co-inoculated had a synergistic effect on root fresh weight. Moreover, co-inoculation of the three microorganisms synergistically increased plant growth compared with singly inoculated plants. Both the fluorescent pseudomonads and the myco-symbiont, depending on the inoculum combination, strongly affected root architecture. P. fluorescens 92rk increased mycorrhizal colonization, suggesting that this strain is a mycorrhization helper bacterium. Finally, the bacterial strains and the AMF, alone or in combination, improved plant mineral nutrition by increasing leaf P content. These results support the potential use of fluorescent pseudomonads and AMF as mixed inoculants for tomato and suggest that improved tomato growth could be related to the increase in P acquisition.  相似文献   

10.
In the present investigation, the effect of three beneficial organisms (root endophytic fungus Piriformospora indica (Pi) and pseudomonads strains R62 and R81) and their four different consortia (Pi+R62, Pi+R81, R62+R81, Pi+R62+R81) was investigated on the plant Vigna mungo through their inorganic carrier-based (talcum powder and vermiculite) formulations. All the treatments resulted in significant increase in growth parameters under glasshouse as well as field conditions and showed a consistency in their performance on moving from glasshouse to field conditions. In glasshouse conditions, a maximum increase of 4.5-fold in dry root weight and 3.9-fold in dry shoot weight compared to control was obtained with vermiculite-based consortium formulation of Pi+R81. In field studies using vermiculite as carrier, a maximum enhancement of 3.2-fold in dry root weight, 3.0-fold in dry shoot weight, 8.4-fold in number of nodules and 4.0-fold in number of pods in comparison to control was obtained with the bio-inoculant formulation containing consortium of Pi+R81. The same treatment also caused the highest improvement of 1.9-fold in nitrogen content and 1.7-fold in phosphorus content, while the highest increase of 1.4-fold in potassium content was obtained with Pi alone.  相似文献   

11.
The exponential substrate feeding (open-loop) and automated feedback substrate feeding (closed loop) strategies were developed to obtain high cell densities of fluorescent pseudomonad strains R62 and R81 and enhanced production of antifungal compound 2,4-diacetylphloroglucinol (DAPG) from glycerol as a sole carbon source. The exponential feeding strategy resulted in increased glycerol accumulation during the fed-batch cultivation when the predetermined specific growth rate (μ) was set at 0.10 or 0.20 h?1 (<μm = 0.29 h?1). Automated feeding strategies using dissolved oxygen (DO) or pH as feedback signals resulted in minimal to zero accumulation of glycerol for both the strains. In case of DO-based feeding strategy, biomass productivity of 0.24 g/(L h) and 0.29 g/(L h) was obtained for R62 and R81, respectively. Using pH-based feeding strategy, biomass productivity could be increased to a maximum of 0.51 and 0.54 g/(L h), for the strains R62 and R81, respectively, whereas the DAPG concentration was enhanced to 298 mg/L for R62 and 342 mg/L for R81 strains. These yields of DAPG are thus far the highest reported from GRAS organisms.  相似文献   

12.
The taxonomic status of a bacterium, strain NCCP-246T, isolated from rhizosphere of Vigna mungo, was determined using a polyphasic taxonomic approach. The strain NCCP-246T can grow at 16–37 °C (optimum 32 °C), at pH ranges of 6–8 (optimum growth occurs at pH 7) and in 0–4 % (w/v) NaCl. Phylogenetic analysis based upon on 16S rRNA gene sequence comparison revealed that strain NCCP-246T belonged to genus Sphingobacterium. Strain NCCP-246T showed highest similarity to the type strain of Sphingobacterium canadense CR11T (97.67 %) and less than 97 % with other species of the genus. The DNA–DNA relatedness value of strain NCCP-246T with S. canadense CR11T and Sphingobacterium thalpophilum JCM 21153T was 55 and 44.4 %, respectively. The chemotaxonomic data revealed the major menaquinone as MK-7 and dominant cellular fatty acids were summed feature 3 [C16:1 ω7c/C16:1 ω6c] (37.07 %), iso-C15:0 (28.03 %), C16:0 (11.85 %), C17:0 cyclo (8.84 %) and C14:0 (2.42 %). The G+C content of the strain was 39.2 mol%. On the basis of DNA–DNA hybridization, phylogenetic analyses, physiological and, biochemical data, strain NCCP-246T can be differentiated from the validly named members of genus Sphingobacterium and thus represents as a new species, for which the name, Sphingobacterium pakistanensis sp. nov. is proposed with the type strain NCCP-246T (= JCM18974 T = KCTC 23914T).  相似文献   

13.
《Genomics》2020,112(2):1318
A plant growth promoting Pseudomonas aeruginosa AJD 2 was isolated from monocropic cotton rhizosphere of Maharashtra state, India. The strain was identified as per physiological, biochemical and 16S rRNA gene sequencing (Accession number MG234531). The strain possess multiple functional plant growth promoting traits and antifungal activity. The genome was extracted, purified and library of avg.515 bp was prepared and sequenced by over Illumina platform. The sequenced genome was studied by using CLC workbench and NCBI pipeline using Pseudomonas aeruginosa PAO1 and Pseudomonas aeruginosa YL84 as reference assembler. The size of the genome is 6.1 Mb with 5802 genes within it. The study over strain may give an insight into its plant growth promotion mechanism.  相似文献   

14.
Wilt and root rot are the major constraints in chickpea production and very difficult to manage through agrochemicals. Hence, for an ecofriendly and biological management, 240 strains of Bacillus and Bacillus derived genera were isolated from chickpea rhizosphere, further narrowed down to 14 strains on the basis of in vitro production of indole acetic acid, siderophore, phosphate solubilization, hydrolytic enzymes and were evaluated for antagonism against chickpea pathogens (Fusarium oxysporum f. sp. ciceri race 1, F. solani and Macrophomina phaseolina). The strains were identified on the basis of physiological characters and 16S RNA gene sequencing. The genotypic comparisons of strains were determined by BOX-polymerase chain reaction profiles and amplified rDNA restriction analysis. These isolates were evaluated in greenhouse assay in which B. subtilis (B-CM191, B-CV235, B-CL-122) proved to be effective in reducing wilt incidence and significant enhancement in growth (root and shoot length) and dry matter of chickpea plants. PCR amplification of bacillomycin (bmyB) and β-glucanase genes suggests that amplified genes from the Bacillus could have a role to further define the diversity, ecology, and biocontrol activities in the suppression of soil-borne pathogens.  相似文献   

15.

Aims

Bacteria possessing ACC deaminase activity reduce the level of stress ethylene conferring resistance and stimulating growth of plants under various biotic and abiotic stresses. The present study aims at isolating efficient ACC deaminase producing PGPR strains from the rhizosphere of rice plants grown in coastal saline soils and quantifying the effect of potent PGPR isolates on rice seed germination and seedling growth under salinity stress and ethylene production from rice seedlings inoculated with ACC deaminase containing PGPR.

Methods

Soils from root region of rice growing in coastal soils of varying salinity were used for isolating ACC deaminase producing bacteria and three bacterial isolates were identified following polyphasic taxonomy. Seed germination, root growth and stress ethylene production in rice seedlings following inoculation with selected PGPR under salt stress were quantified.

Results

Inoculation with selected PGPR isolates had considerable positive impacts on different growth parameters of rice including germination percentage, shoot and root growth and chlorophyll content as compared to uninoculated control. Inoculation with the ACC deaminase producing strains reduced ethylene production under salinity stress.

Conclusions

This study demonstrates the effectiveness of rhizobacteria containing ACC deaminase for enhancing salt tolerance and consequently improving the growth of rice plants under salt-stress conditions.  相似文献   

16.
The genetic diversity of plant growth-promoting rhizobacterial (PGPR) fluorescent pseudomonads associated with the sugarcane (Saccharum officinarum L.) rhizosphere was analyzed. Selected isolates were screened for plant growthpromoting properties including production of indole acetic acid, phosphate solubilization, denitrification ability, and production of antifungal metabolites. Furthermore, 16S rDNA sequence analysis was performed to identify and differentiate these isolates. Based on 16S rDNA sequence similarity, the isolates were designated as Pseudomonas plecoglossicida, P. fluorescens, P. libaniensis, and P. aeruginosa. Differentiation of isolates belonging to the same group was achieved through different genomic DNA fingerprinting techniques, including randomly amplified polymorphic DNA (RAPD), amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic (REP), enterobacterial repetitive intergenic consensus (ERIC), and bacterial repetitive BOX elements (BOX) analyses. The genetic diversity observed among the isolates and rep-PCR-generated fingerprinting patterns revealed that PGPR fluorescent pseudomonads are associated with the rhizosphere of sugarcane and that P. plecoglossicida is a dominant species. The knowledge obtained herein regarding the genetic and functional diversity of fluorescent pseudomonads associated with the sugarcane rhizosphere is useful for understanding their ecological role and potential utilization in sustainable agriculture.  相似文献   

17.
Characterization of plasmids from plant pathogenic pseudomonads   总被引:5,自引:0,他引:5  
Physical characterization of the resident plasmids from Pseudomonas tabaci, P. angulata, and P. coronafaciens strains indicated that they harbored five different plasmid DNA species. Two ATCC strains of P. tabaci contained indistinguishable plasmids that we have named pJP1 and pJP2. An isolate of one of these strains contained a spontaneous variant of pJP1, pJP11, which contains an insertion of 3.9 Mdal. This 3.9-Mdal region did not hybridize to pJP1 indicating that the region was foreign DNA and not a duplication of a segment of DNA already present in pJP1. Another P. tabaci strain, PT27881, contained a third plasmid species, pJP27, which had few similarities to pJP1 or pJP2, but was indistinguishable from the plasmids from all three P. angulata strains. pJP27 and pJP1 had a small region, 8.8 Mdal, of sequence homology. The one strain of P. coronafaciens examined contained a plasmid, pJP50, which was different from the P. tabaci plasmids, but had the 8.8-Mdal region and additional regions of sequence homology with pJP1 and pJP27 as well as homology with a portion of the pJP11 insertion. A fourth strain of P. tabaci, PTBR-2, a pathogen on beans, contained plasmid pBW, the only plasmid that lacked detectable regions of homology with the other plasmids.  相似文献   

18.
19.
Experiments were conducted to evaluate the efficacy of calliterpenone, a natural plant growth promoter from a shrub Callicarpa macrophylla Vahl., in enhancing the growth and yield promoting effects of plant growth promoting rhizobacteria (PGPRs), in menthol mint (Mentha arvensis L).This study is based on our previous results indicating the microbial growth promotion by calliterpenone and assumption that application of calliterpenone along with PGPRs will improve the population of PGPRs resulting in higher impacts on plant growth and yield. Of the 15 PGPRs (identified as potent ones in our laboratory), 25 μl of 0.01 mM calliterpenone (8.0 μg/100 ml) was found to be useful in improving the population of nine PGPRs in culture media. The five selected strains of PGPRs exhibiting synergy with calliterpenone in enhancing growth of maize compared to PGPR or calliterpenone alone were selected and tested on two cultivars (cvs. Kosi and Kushal) of M. arvensis. Of the five strains, Bacillus subtilis P-20 (16S rDNA sequence homologous to Accession No NR027552) and B. subtilis Daz-26 (16SrDNA sequence homologuos to Accession No GU998816) were found to be highly effective in improving the herb and essential oil yield in the cultivars Kushal and Kosi respectively when co-treated with calliterpenone. The results open up the possibilities of using a natural growth promoter along with PGPRs as a bio-agri input for sustainable and organic agriculture.  相似文献   

20.
Many species of pseudomonads produce fluorescent siderophores involved in iron uptake. We have investigated the DNA homology between the siderophore synthesis genes of an opportunist animal pathogen, Pseudomonas aeruginosa, and three plant-associated species Pseudomonas syringae, Pseudomonas putida and Pseudomonas sp. B10. There is extensive homology between the DNA from the different species, consistent with the suggestion that the different siderophore synthesis genes have evolved from the same ancestral set of genes. The existence of DNA homology allowed us to clone some of the siderophore synthesis genes from P. aeruginosa, and genetic mapping indicates that the cloned DNA lies in a locus previously identified as being involved in siderophore production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号