首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Experiments are described in which tobacco (Nicotiana tabacum L.) transformed with antisense rbcS to decrease expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) was used to evaluate the contribution of Rubisco to the control of photosynthetic rate, and the impact of a changed rate of photosynthesis on whole plant composition, allocation and growth. (1) The concept of flux control coefficients is introduced. It is discussed how, with adequate precautions, a set of wild-type and transgenic plants with varying expression of an enzyme can be used to obtain experimental values for its flux control coefficient. (2) The flux control coefficient of Rubisco for photosynthesis depends on the short-term conditions. It increases in high light, or low CO2. (3) When plants are grown under constant irradiance, the flux control coefficient in the growth conditions is low (<0.2) at irradiances of up to 1000μmol quanta m−2 s−1. In a natural irradiance regime exceeding 1500μmol quanta m−2 s−2 over several hours the flux coefficient rose to 0.8–0.9. It is concluded that plants are able to adjust the balance between Rubisco and the remainder of the photosynthetic machinery, and thereby avoid a one-sided limitation of photosynthesis by Rubisco over a wide range of ambient growth irradiance regimes. (4) When the plants were grown on limiting inorganic nitrogen, Rubisco had a higher flux control coefficient (0.5). It is proposed that, in many growth conditions, part of the investment in Rubisco may be viewed as a nitrogen store, albeit bringing additional marginal advantages with respect to photosynthetic rate and water use efficiency. (5) A change in the rate of photosynthesis did not automatically translate into a change in growth rate. Several factors are identified which contribute to this buffering of growth against a changed photosynthetic rate. (6) There is an alteration in whole plant allocation, resulting in an increase in the leaf area ratio. The increase is mainly due to a higher leaf water content, and not to changes in shoot/root allocation. This increased investment in whole plant leaf area partly counteracts the decreased efficiency of photosynthesis at the biochemical level. (7) Plants with decreased Rubisco have a lower intrinsic water use efficiency and contain high levels of inorganic cations and anions. It is proposed that these are a consequence of the increased rate of transpiration, and that the resulting osmotic potential might be a contributory factor to the increased water content and expansion of the leaves. (8) Starch accumulation in source leaves is decreased when unit leaf photosynthesis is reduced, allowing a more efficient use of the fixed carbon. (9) Decreased availability of carbohydrates leads to a down-regulation of nitrate assimilation, acting via a decrease in nitrate reductase activity.  相似文献   

2.
Hemp (Cannabis sativa L.) may be a suitable crop for the bio‐economy as it requires low inputs while producing a high and valuable biomass yield. With the aim of understanding the physiological basis of hemp's high resource‐use efficiency and yield potential, photosynthesis was analysed on leaves exposed to a range of nitrogen and temperature levels. Light‐saturated net photosynthesis rate (Amax) increased with an increase in leaf nitrogen up to 31.2 ± 1.9 μmol m?2 s?1 at 25 °C. The Amax initially increased with an increase in leaf temperature (TL), levelled off at 25–35 °C and decreased when TL became higher than 35 °C. Based on a C3 leaf photosynthesis model, we estimated mesophyll conductance (gm), efficiency of converting incident irradiance into linear electron transport under limiting light (κ2LL), linear electron transport capacity (Jmax), Rubisco carboxylation capacity (Vcmax), triose phosphate utilization capacity (Tp) and day respiration (Rd), using data obtained from gas exchange and chlorophyll fluorescence measurements at different leaf positions and various levels of incident irradiance, CO2 and O2. The effects of leaf nitrogen and temperature on photosynthesis parameters were consistent at different leaf positions and among different growth environments except for κ2LL, which was higher for plants grown in the glasshouse than for those grown outdoors. Model analysis showed that compared with cotton and kenaf, hemp has higher photosynthetic capacity when leaf nitrogen is <2.0 g N m?2. The high photosynthetic capacity measured in this study, especially at low nitrogen level, provides additional evidence that hemp can be grown as a sustainable bioenergy crop over a wide range of climatic and agronomic conditions.  相似文献   

3.
This paper deals with changes in leaf photosynthetic capacity with depth in a rose (Rosa hybrida cv. Sonia) plant canopy. Measurements of leaf net CO2 assimilation (Al) and total nitrogen content (Nl) were performed in autumn under greenhouse conditions on mature leaves located at different layers within the plant canopy, including the flower stems and the main shoots. These leaves were subjected (i) to contrasting levels of CO2 partial pressure (pa) at saturating photosynthetic photon flux density (I about 1000 μ mol m ? 2 s ? 1) and (ii) to saturating CO2 partial pressure (pa about 100 Pa) and varying I, while conditions of temperature were those prevailing in the greenhouse (20–38 °C). A biochemical model of leaf photosynthesis relating Al to intercellular CO2 partial pressure (pi) was parameterized for each layer of leaves, supplying corresponding values of the photosynthetic Rubisco capacity (Vlm) and the maximum rate of electron transport (Jm). The results indicated that rose leaves growing at the top of the canopy had higher values of Jm and Vlm, which resulted from a higher allocation of nitrogen to the uppermost leaves. Mean values of total leaf nitrogen, Nl, decreased about 35% from the uppermost leaves of flower stem to leaves growing at the bottom of the plant. The derived values of non‐photosynthetic nitrogen, Nb, varied from 76 mmolN m ? 2leaf (layer 1) to 60 mmolN m ? 2leaf (layer 4), representing a large fraction of Nl (50 and 60% in layer 1 and 4, respectively). Comparison of leaf photosynthetic nitrogen (Np = NlNb) and I profiles supports the hypothesis that rose leaves acclimate to the time‐integrated absorbed I. The relationships between I and Np, obtained during autumn, spring and summer, indicate that rose leaves seem also to acclimate their photosynthetic capacity seasonally, by allocating more photosynthetic nitrogen to leaves in autumn and spring than in summer.  相似文献   

4.
Nuphar lutea is an amphibious plant with submerged and aerial foliage, which raises the question how do both leaf types perform photosynthetically in two different environments. We found that the aerial leaves function like terrestrial sun-leaves in that their photosynthetic capability was high and saturated under high irradiance (ca. 1,500 μmol photons m−2 s−1). We show that stomatal opening and Rubisco activity in these leaves co-limited photosynthesis at saturating irradiance fluctuating in a daily rhythm. In the morning, sunlight stimulated stomatal opening, Rubisco synthesis, and the neutralization of a night-accumulated Rubisco inhibitor. Consequently, the light-saturated quantum efficiency and rate of photosynthesis increased 10-fold by midday. During the afternoon, gradual closure of the stomata and a decrease in Rubisco content reduced the light-saturated photosynthetic rate. However, at limited irradiance, stomatal behavior and Rubisco content had only a marginal effect on the photosynthetic rate, which did not change during the day. In contrast to the aerial leaves, the photosynthesis rate of the submerged leaves, adapted to a shaded environment, was saturated under lower irradiance. The light-saturated quantum efficiency of these leaves was much lower and did not change during the day. Due to their low photosynthetic affinity for CO2 (35 μM) and inability to utilize other inorganic carbon species, their photosynthetic rate at air-equilibrated water was CO2-limited. These results reveal differences in the photosynthetic performance of the two types of Nuphar leaves and unravel how photosynthetic daily rhythm in the aerial leaves is controlled.  相似文献   

5.
We have examined the photosynthetic acclimation of wheat leaves grown at an elevated CO2 concentration, and ample and limiting N supplies, within a field experiment using free-air CO2 enrichment (FACE). To understand how leaf age and developmental stage affected any acclimation response, measurements were made on a vertical profile of leaves every week from tillering until maturity. The response of assimilation (A) to internal CO2 concentration (Ci) was used to estimate the in vivo carboxylation capacity (Vcmax) and maximum rate of ribulose-1,5-bisphosphate limited photosynthesis (A sat). The total activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and leaf content of Rubisco and the Light Harvesting Chlorophyll a/b protein associated with Photosystem II (LHC II), were determined. Elevated CO2 did not alter Vcmax in the flag leaf at either low or high N. In the older shaded leaves lower in the canopy, acclimatory decline in Vcmax and A sat was observed, and was found to correlate with reduced Rubisco activity and content. The dependency of acclimation on N supply was different at each developmental stage. With adequate N supply, acclimation to elevated CO2 was also accompanied by an increased LHC II/Rubisco ratio. At low N supply, contents of Rubisco and LHC II were reduced in all leaves, although an increased LHC II/Rubisco ratio under elevated CO2 was still observed. These results underscore the importance of leaf position, leaf age and crop developmental stage in understanding the acclimation of photosynthesis to elevated CO2 and nutrient stress. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The mechanisms responsible for photosynthetic acclimation are not well understood, effectively limiting predictability under future conditions. Least‐cost optimality theory can be used to predict the acclimation of photosynthetic capacity based on the assumption that plants maximize carbon uptake while minimizing the associated costs. Here, we use this theory as a null model in combination with multiple datasets of C3 plant photosynthetic traits to elucidate the mechanisms underlying photosynthetic acclimation to elevated temperature and carbon dioxide (CO2). The model‐data comparison showed that leaves decrease the ratio of the maximum rate of electron transport to the maximum rate of Rubisco carboxylation (Jmax/Vcmax) under higher temperatures. The comparison also indicated that resources used for Rubisco and electron transport are reduced under both elevated temperature and CO2. Finally, our analysis suggested that plants underinvest in electron transport relative to carboxylation under elevated CO2, limiting potential leaf‐level photosynthesis under future CO2 concentrations. Altogether, our results show that acclimation to temperature and CO2 is primarily related to resource conservation at the leaf level. Under future, warmer, high CO2 conditions, plants are therefore likely to use less nutrients for leaf‐level photosynthesis, which may impact whole‐plant to ecosystem functioning.  相似文献   

7.
The present study was undertaken to test for the hypothesis that the rate of development in the capacity for photosynthetic electron transport per unit area (Jmax;A), and maximum carboxylase activity of Rubisco (Vcmax;A) is proportional to average integrated daily quantum flux density (Qint) in a mixed deciduous forest dominated by the shade‐intolerant species Populus tremula L., and the shade‐tolerant species Tilia cordata Mill. We distinguished between the age‐dependent changes in net assimilation rates due to modifications in leaf dry mass per unit area (MA), foliar nitrogen content per unit dry mass (NM), and fractional partitioning of foliar nitrogen in the proteins of photosynthetic electron transport (FB), Rubisco (FR) and in light‐harvesting chlorophyll‐protein complexes (Vcmax;AMANMFR; Jmax;AMANMFB). In both species, increases in Jmax;A and Vcmax;A during leaf development were primarily determined by nitrogen allocation to growing leaves, increases in leaf nitrogen partitioning in photosynthetic machinery, and increases in MA. Canopy differences in the rate of development of leaf photosynthetic capacity were mainly controlled by the rate of change in MA. There was only small within‐canopy variation in the initial rate of biomass accumulation per unit Qint (slope of MA versus leaf age relationship per unit Qint), suggesting that canopy differences in the rate of development of Jmax;A and Vcmax;A are directly proportional to Qint. Nevertheless, MA, nitrogen, Jmax;A and Vcmax;A of mature leaves were not proportional to Qint because of a finite MA in leaves immediately after bud‐burst (light‐independent component of MA). MA, leaf chlorophyll contents and chlorophyll : N ratio of mature leaves were best correlated with the integrated average quantum flux density during leaf development, suggesting that foliar photosynthetic apparatus, once developed, is not affected by day‐to‐day fluctuations in Qint. However, for the upper canopy leaves of P. tremula and for the entire canopy of T. cordata, there was a continuous decline in N contents per unit dry mass in mature non‐senescent leaves on the order of 15–20% for a change of leaf age from 40 to 120 d, possibly manifesting nitrogen reallocation to bud formation. The decline in N contents led to similar decreases in leaf photosynthetic capacity and foliar chlorophyll contents. These data demonstrate that light‐dependent variation in the rate of developmental changes in MA determines canopy differences in photosynthetic capacity, whereas foliar photosynthetic apparatus is essentially constant in fully developed leaves.  相似文献   

8.
The light–nitrogen hypothesis suggests canopy photosynthesis is maximized when there is a positive relationship between irradiance received by foliage, its nitrogen content (per unit area Narea), and maximum rate of photosynthesis (Amax). Relationships among relative irradiance and Narea, allocation of nitrogen within the photosynthetic apparatus to Rubisco and chlorophyll, and Amax were examined in Pinus pinaster Ait. needles up to 6 years of age. Measurements were made before bud break in August 1998, and in May 1999 after the first ‘winter’ rains. In August, Narea in P. pinaster needles decreased from 5·1 to 5·7 g m?2 in sunlit 1‐year‐old needles to 2·3 g m?2 in shaded 6‐year‐old needles. In May, Narea was 5–40% less but spatial trends were the same. At both sampling dates, Amax was less in old shaded needles compared with young sunlit needles, and was thus consistent with the light–nitrogen hypothesis. Relationships between Narea and Amax were positive at both dates yet varied in strength and form. Allocation of nitrogen within the photosynthetic apparatus was qualitatively consistent with acclimation to light (i.e. Rubisco/Chl decreased with shading), but quantitatively suboptimal with respect to photosynthesis owing to consistent over‐investment in Rubisco. This over‐investment increased with height in the canopy and was greater in May than in August.  相似文献   

9.
Wheat (Triticum aestivum L.) was grown under CO2 partial pressures of 36 and 70 Pa with two N-application regimes. Responses of photosynthesis to varying CO2 partial pressure were fitted to estimate the maximal carboxylation rate and the nonphotorespiratory respiration rate in flag and preceding leaves. The maximal carboxylation rate was proportional to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content, and the light-saturated photosynthetic rate at 70 Pa CO2 was proportional to the thylakoid ATP-synthase content. Potential photosynthetic rates at 70 Pa CO2 were calculated and compared with the observed values to estimate excess investment in Rubisco. The excess was greater in leaves grown with high N application than in those grown with low N application and declined as the leaves senesced. The fraction of Rubisco that was estimated to be in excess was strongly dependent on leaf N content, increasing from approximately 5% in leaves with 1 g N m−2 to approximately 40% in leaves with 2 g N m−2. Growth at elevated CO2 usually decreased the excess somewhat but only as a consequence of a general reduction in leaf N, since relationships between the amount of components and N content were unaffected by CO2. We conclude that there is scope for improving the N-use efficiency of C3 crop species under elevated CO2 conditions.  相似文献   

10.
To understand how light quality influences plant photosynthesis, we investigated chloroplastic ultrastructure, chlorophyll fluorescence and photosynthetic parameters, Rubisco and chlorophyll content and photosynthesis-related genes expression in cucumber seedlings exposed to different light qualities: white, red, blue, yellow and green lights with the same photosynthetic photon flux density of 100 μmol m?2 s?1. The results revealed that plant growth, CO2 assimilation rate and chlorophyll content were significantly reduced in the seedlings grown under red, blue, yellow and green lights as compared with those grown under white light, but each monochromatic light played its special role in regulating plant morphogenesis and photosynthesis. Seedling leaves were thickened and slightly curled; Rubisco biosynthesis, expression of the rca, rbcS and rbcL, the maximal photochemical efficiency of PSII (Fv/Fm) and quantum yield of PSII electron transport (ФPSII) were all increased in seedlings grown under blue light as compared with those grown under white light. Furthermore, the photosynthetic rate of seedlings grown under blue light was significantly increased, and leaf number and chlorophyll content of seedlings grown under red light were increased as compared with those exposed to other monochromatic lights. On the contrary, the seedlings grown under yellow and green lights were dwarf with the new leaves etiolated. Moreover, photosynthesis, Rubisco biosynthesis and relative gene expression were greatly decreased in seedlings grown under yellow and green light, but chloroplast structural features were less influenced. Interestingly, the Fv/Fm, ФPSII value and chlorophyll content of the seedlings grown under green light were much higher than those grown under yellow light.  相似文献   

11.
Trees growing in natural systems undergo seasonal changes in environmental factors that generate seasonal differences in net photosynthetic rates. To examine how seasonal changes in the environment affect the response of net photosynthetic rates to elevated CO2, we grew Pinus taeda L. seedlings for three growing seasons in open-top chambers continuously maintained at either ambient or ambient + 30 Pa CO2. Seedlings were grown in the ground, under natural conditions of light, temperature nd nutrient and water availability. Photosynthetic capacity was measured bimonthly using net photosynthetic rate vs. intercellular CO2 partial pressure (A-Ci) curves. Maximum Rubisco activity (Vcmax) and ribulose 1,5-bisphosphate regeneration capacity mediated by electron transport (Jmax) and phosphate regeneration (PiRC) were calculated from A-Ci curves using a biochemically based model. Rubisco activity, activation state and content, and leaf carbohydrate, chlorophyll and nitrogen concentrations were measured concurrently with photosynthesis measurements. This paper presents results from the second and third years of treatment. Mean leaf nitrogen concentrations ranged from 13.7 to 23.8 mg g?1, indicating that seedlings were not nitrogen deficient. Relative to ambient CO2 seedlings, elevated CO2 increased light-saturated net photosynthetic rates 60–110% during the summer, but < 30% during the winter. A relatively strong correlation between leaf temperature and the relative response of net photosynthetic rates to elevated CO2 suggests a strong effect of leaf temperature. During the third growing season, elevated CO2 reduced Rubisco activity 30% relative to ambient CO2 seedlings, nearly completely balancing Rubisco and RuBP-regeneration regulation of photosynthesis. However, reductions in Rubisco activity did not eliminate the seasonal pattern in the relative response of net photosynthetic rates to elevated CO2. These results indicate that seasonal differences in the relative response of net photosynthetic rates to elevated CO2 are likely to occur in natural systems.  相似文献   

12.
Restrictions to photosynthesis can limit plant growth at high temperature in a variety of ways. In addition to increasing photorespiration, moderately high temperatures (35–42 °C) can cause direct injury to the photosynthetic apparatus. Both carbon metabolism and thylakoid reactions have been suggested as the primary site of injury at these temperatures. In the present study this issue was addressed by first characterizing leaf temperature dynamics in Pima cotton (Gossypium barbadense) grown under irrigation in the US desert south‐west. It was found that cotton leaves repeatedly reached temperatures above 40 °C and could fluctuate as much as 8 or 10 °C in a matter of seconds. Laboratory studies revealed a maximum photosynthetic rate at 30–33 °C that declined by 22% at 45 °C. The majority of the inhibition persisted upon return to 30 °C. The mechanism of this limitation was assessed by measuring the response of photosynthesis to CO2 in the laboratory. The first time a cotton leaf (grown at 30 °C) was exposed to 45 °C, photosynthetic electron transport was stimulated (at high CO2) because of an increased flux through the photorespiratory pathway. However, upon cooling back to 30 °C, photosynthetic electron transport was inhibited and fell substantially below the level measured before the heat treatment. In the field, the response of assimilation (A) to various internal levels of CO2 (Ci) revealed that photosynthesis was limited by ribulose‐1,5‐bisphosphate (RuBP) regeneration at normal levels of CO2 (presumably because of limitations in thylakoid reactions needed to support RuBP regeneration). There was no evidence of a ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) limitation at air levels of CO2 and at no point on any of 30 ACi curves measured on leaves at temperatures from 28 to 39 °C was RuBP regeneration capacity measured to be in substantial excess of the capacity of Rubisco to use RuBP. It is therefore concluded that photosynthesis in field‐grown Pima cotton leaves is functionally limited by photosynthetic electron transport and RuBP regeneration capacity, not Rubisco activity.  相似文献   

13.
The photosynthetic behavior of leaves and twigs was compared in Hymenoclea salsola T. and G., a subshrub of the Mohave and Sonoran deserts, in which both leaves and green twigs make substantial contributions to whole-plant carbon gain. Light saturated photosynthesis in twigs was 0.62 times that of leaves (36.9 μmol m-2 s-1) when plants were well watered. Similar ratios were consistently observed in contrasting the photosynthetic responses of the two organ types to light, temperature, and intercellular CO2, regardless of whether rates were compared under saturating or highly limiting conditions of light or intercellular CO2. These scalar differences in photosynthetic rate between leaves and green twigs under a wide range of conditions were correlated with contrasting anatomical features such as chlorenchyma volume per projected area. Under normal ambient CO2 concentrations (350 μl 1-1), twigs on well watered plants operated at lower intercellular CO2 concentrations than the leaves. Possible causes of this difference are discussed with respect to performance under well-watered conditions, organ lifespans, and contrasting anatomical constraints. Twigs require larger investments than do leaves of both carbon and nitrogen per projected area of the respective organs, yet they realize lower photosynthetic rates per intercepted light. Twigs, however, fulfill additional roles besides photosynthesis such as structural support and vascular transport which does not allow them to be as anatomically specialized as leaves for photosynthesis. Twigs also have a longer expected lifespan than leaves with a larger fraction of them surviving the summer drought period. This was correlated with a greater tolerance of twig than leaf photosynthesis to low plant water potentials.  相似文献   

14.
Photosynthetic rate (Pn) and the partitioning of noncyclic photosynthetic electron transport to photorespiration (JO) in seedlings of four subtropical woody plants growing at three light intensities were studied in the summer time by measurements of chlorophyll fluorescence and CO2 exchange. ExceptSchima superba, an upper canopy tree species, the tree speciesCastanopsis fissa and two understory shrubsPsychotria rubra, Ardisia quinquegona had the highestP n at 36% of sunlight intensity. The total photosynthetic electron transport rate (JF) and the ratio ofJ O/JF were elevated in leaves under full sunlight.J O/JF ratio reached 0.5–0.6 and coincided with the increasing of oxygenation rate of Rubisco (VO), the activity of glycolate oxidase and photorespiration rate at full sunlight. It is suggested that an increasing partitioning proportion of photosynthetic electron transport to photorespiration might be one of the protective regulation mechanisms in forest plant under strong summer light and high temperature conditions.  相似文献   

15.
Leaf age-dependent changes in structure, nitrogen content, internal mesophyll diffusion conductance (gm), the capacity for photosynthetic electron transport (Jmax) and the maximum carboxylase activity of Rubisco (Vcmax) were investigated in mature non-senescent leaves of Laurus nobilis L., Olea europea L. and Quercus ilex L. to test the hypothesis that the relative significance of biochemical and diffusion limitations of photosynthesis changes with leaf age. The leaf life-span was up to 3 years in L. nobilis and O. europea and 6 years in Q. ilex. Increases in leaf age resulted in enhanced leaf dry mass per unit area (MA), larger leaf dry to fresh mass ratio, and lower nitrogen contents per dry mass (NM) in all species, and lower nitrogen contents per area (NA) in L. nobilis and Q. ilex. Older leaves had lower gm, Jmax and Vcmax. Due to the age-dependent increase in MA, mass-based gm, Jmax and Vcmax declined more strongly (7- to 10-fold) with age than area-based (5- to 7-fold) characteristics. Diffusion conductance was positively associated with foliage photosynthetic potentials. However, this correlation was curvilinear, leading to lower ratio of chloroplastic to internal CO2 concentration (Cc/Ci) and larger drawdown of CO2 from leaf internal air space to chloroplasts (ΔC) in older leaves with lower gm. Overall the age-dependent decreases in photosynthetic potentials were associated with decreases in NM and in the fraction of N in photosynthetic proteins, whereas decreases in gm were associated with increases in MA and the fraction of cell walls. These age-dependent modifications altered the functional scaling of foliage photosynthetic potentials with MA, NM, and NA. The species primarily differed in the rate of age-dependent modifications in foliage structural and functional characteristics, but also in the degree of age-dependent changes in various variables. Stomatal openness was weakly associated with leaf age, but due to species differences in stomatal openness, the distribution of total diffusion limitation between stomata and mesophyll varied among species. These data collectively demonstrate that in Mediterranean evergreens, structural limitations of photosynthesis strongly interact with biochemical limitations. Age-dependent changes in gm and photosynthetic capacities do not occur in a co-ordinated manner in these species such that mesophyll diffusion constraints curb photosynthesis more in older than in younger leaves.  相似文献   

16.
Leaves deep in canopies can suddenly be exposed to increased irradiances following e.g. gap formation in forests or pruning in crops. Studies on the acclimation of photosynthesis to increased irradiance have mainly focused on the changes in photosynthetic capacity (Amax), although actual irradiance often remains below saturating level. We investigated the effect of changes in irradiance on the photosynthesis irradiance response and on nitrogen allocation in fully grown leaves of Cucumis sativus. Leaves that fully developed under low (50 µmol m?2 s?1) or moderate (200 µmol m?2 s?1) irradiance were subsequently exposed to, respectively, moderate (LM‐leaves) or low (ML‐leaves) irradiance or kept at constant irradiance level (LL‐ and MM‐leaves). Acclimation of photosynthesis occurred within 7 days with final Amax highest in MM‐leaves, lowest in LL‐leaves and intermediate in ML‐ and LM‐leaves, whereas full acclimation of thylakoid processes underlying photosystem II (PSII) efficiency and non‐photochemical quenching occurred in ML‐ and LM‐leaves. Dark respiration correlated with irradiance level, but not with Amax. Light‐limited quantum efficiency was similar in all leaves. The increase in photosynthesis at moderate irradiance in LM‐leaves was primarily driven by nitrogen import, and nitrogen remained allocated in a similar ratio to Rubisco and bioenergetics, while allocation to light harvesting relatively decreased. A contrary response of nitrogen was associated with the decrease in photosynthesis in ML‐leaves. Net assimilation of LM‐leaves under moderate irradiance remained lower than in MM‐leaves, revealing the importance of photosynthetic acclimation during the leaf developmental phase for crop productivity in scenarios with realistic, moderate fluctuations in irradiance that leaves can be exposed to.  相似文献   

17.
Effects of growth light intensity on the temperature dependence of CO2 assimilation rate were studied in tobacco (Nicotiana tabacum) because growth light intensity alters nitrogen allocation between photosynthetic components. Leaf nitrogen, ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) and cytochrome f (cyt f) contents increased with increasing growth light intensity, but the cyt f/Rubisco ratio was unaltered. Mesophyll conductance to CO2 diffusion (gm) measured with carbon isotope discrimination increased with growth light intensity but not with measuring light intensity. The responses of CO2 assimilation rate to chloroplast CO2 concentration (Cc) at different light intensities and temperatures were used to estimate the maximum carboxylation rate of Rubisco (Vcmax) and the chloroplast electron transport rate (J). Maximum electron transport rates were linearly related to cyt f content at any given temperature (e.g. 115 and 179 µmol electrons mol?1 cyt f s?1 at 25 and 40 °C, respectively). The chloroplast CO2 concentration (Ctrans) at which the transition from RuBP carboxylation to RuBP regeneration limitation occurred increased with leaf temperature and was independent of growth light intensity, consistent with the constant ratio of cyt f/Rubisco. In tobacco, CO2 assimilation rate at 380 µmol mol?1 CO2 concentration and high light was limited by RuBP carboxylation above 32 °C and by RuBP regeneration below 32 °C.  相似文献   

18.
The effects of elevated atmospheric CO2 concentration on growth of forest tree species are difficult to predict because practical limitations restrict experiments to much shorter than the average life-span of a tree. Long-term, process-based computer models must be used to extrapolate from shorter-term experiments. A key problem is to ensure a strong flow of information between experiments and models. In this study, meta-analysis techniques were used to summarize a suite of photosynthetic model parameters obtained from 15 field-based elevated [CO2] experiments on European forest tree species. The parameters studied are commonly used in modelling photosynthesis, and include observed light-saturated photosynthetic rates (Amax), the potential electron transport rate (Jmax), the maximum Rubisco activity (Vcmax) and leaf nitrogen concentration on mass (Nm) and area (Na) bases. Across all experiments, light-saturated photosynthesis was strongly stimulated by growth in elevated [CO2]. However, significant down-regulation of photosynthesis was also observed; when measured at the same CO2 concentration, photosynthesis was reduced by 10–20%. The underlying biochemistry of photosynthesis was affected, as shown by a down-regulation of the parameters Jmax and Vcmax of the order of 10%. This reduction in Jmax and Vcmax was linked to the effects of elevated [CO2] on leaf nitrogen concentration. It was concluded that the current model is adequate to model photosynthesis in elevated [CO2]. Tables of model parameter values for different European forest species are given.  相似文献   

19.
A process-based leaf gas exchange model for C3 plants was developed which specifically describes the effects observed along light gradients of shifting nitrogen investment in carboxylation and bioenergetics and modified leaf thickness due to altered stacking of photosynthetic units. The model was parametrized for the late-successional, shade-tolerant deciduous species Acer saccharum Marsh. The specific activity of ribulose-1,5-bisphosphate carboxylase (Rubisco) and the maximum photosynthetic electron transport rate per unit cytochrome f (cyt f) were used as indices that vary proportionally with nitrogen investment in the capacities for carboxylation and electron transport. Rubisco and cyt f per unit leaf area are related in the model to leaf dry mass per area (MA), leaf nitrogen content per unit leaf dry mass (Nm), and partitioning coefficients for leaf nitrogen in Rubisco (PR) and in bioenergetics (PB). These partitioning coefficients are estimated from characteristic response curves of photosynthesis along with information on lear structure and composition. While PR and PB determine the light-saturated value of photosynthesis, the fraction of leaf nitrogen in thylakoid light-harvesting components (PL) and the ratio of leaf chlorophyll to leaf nitrogen invested in light harvesting (CB), which is dependent on thylakoid stoichiometry, determine the initial photosynthetic light utilization efficiency in the model. Carbon loss due to mitochondrial respiration, which also changes along light gradients, was considered to vary in proportion with carboxylation capacity. Key model parameters - Nm, PR, PB, PLCB and stomatal sensitivity with respect to changes in net photosynthesis (Gr) – were examined as a function of MA, which is linearly related to irradiance during growth of the leaves. The results of the analysis applied to A. saccharum indicate that PB and PR increase, and Gf, PL and CB decrease with increasing MA. As a result of these effects of irradiaiice on nitrogen partitioning, the slope of the light-saturated net photosynthesis rate per unit leaf dry mass (Ammax) versus Nm relationship increased with increasing growth irradiance in mid-season. Furthermore, the nitrogen partitioning coefficients as well as the slopes of Ammax versus Nm were independent of season, except during development of the leaf photosynthetic apparatus. Simulations revealed that the acclimation to high light increased Ammax by 40% with respect to the low light regime. However, light-saturated photosynthesis per leaf area (Aamax) varied 3-fold between these habitats, suggesting that the acclimation to high light was dominated by adjustments in leaf anatomy (Aamax=AmmaxMA) rather than in foliar biochemistry. This differed from adaptation to low light, where the alterations in foliar biochemistry were predicted to be at least as important as anatomical modifications. Due to the light-related accumulation of photosynthetic mass per unit area, Aamax depended on MA and leaf nitrogen per unit area (Na). However, Na conceals the variation in both MA and Nm (Na=NmMA), and prevents clear separation of anatomical adjustments in foliage structure and biochemical modifications in foliar composition. Given the large seasonal and site nutrient availability-related variation in Nm, and the influences of growth irradiance on nitrogen partitioning, the relationship between Aamax and Na is universal neither in time nor in space and in natural canopies at mid-season is mostly driven by variability in MA. Thus, we conclude that analyses of the effects of nitrogen investments on potential carbon acquisition should use mass-based rather than area-based expressions.  相似文献   

20.
The possible responses of the terrestrial biosphere to future CO2 increases and associated climatic change are being investigated using dynamic global vegetation models (DG VMs) which include the Farquhar et al. (1980) biochemical model of leaf assimilation as the primary means of carbon capture. This model requires representative values of the maximum rates of Rubisco activity, Vmax, and electron transport, Jmax, for different vegetation types when applied at the global scale. Here, we describe an approach for calculating these values based on measurements of the maximum rate of leaf photosynthesis (Amax) 13C discrimination. The approach is tested and validated by comparison with measurements of Rubisco activity assayed directly on wild-type and transgenic Nicotiana tabacum (tobacco) plants with altered Rubisco activity grown under ambient and elevated CO2 mole fractions with high and low N-supply. Vmax and Jmax values are reported for 18 different vegetation types with global coverage. Both variables were linearly related reinforcing the idea of optimal allocation of resources to photosynthesis (light harvesting vs. Rubisco) at the global scale. The reported figures should be of value to the further development of vegetation and ecosystem models employing mechanistic DGVMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号