首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism of resistance to chloramphenicol was studied in four strains of Bacillus clausii included in a probiotic mixture, which is administered to humans for prevention of gastrointestinal side effects due to oral antibiotic therapy. By cloning experiments, a chloramphenicol acetyltransferase (CAT) gene, cat Bcl , coding for a putative 228-amino acid CAT protein was identified in B. clausii SIN. The deduced amino acid sequence displayed from 31% to 85% identity with 56 CAT proteins from other Gram-positive bacterial strains. The cat Bcl gene was also detected by PCR in the three other B. clausii strains resistant to chloramphenicol, whereas it was absent in the three control strains susceptible to chloramphenicol. Pulse-field gel electrophoresis of total DNA digested by I-CeuI followed by hybridization with a cat -specific probe as well as unsuccessful repeated attempts of in vitro transfer of chloramphenicol resistance to various recipient cells indicated that cat Bcl was chromosomally located in all four resistant B. clausii strains.  相似文献   

2.
The mechanism of resistance to macrolides, lincosamides, and streptogramins B was studied in four Bacillus clausii strains that are mixed in a probiotic administered to humans for prevention of gastrointestinal side effects due to oral antibiotic chemotherapy and in three reference strains of B. clausii, DSM8716, ATCC 21536, and ATCC 21537. An 846-bp gene called erm(34), which is related to the erm genes conferring resistance to these antibiotics by ribosomal methylation, was cloned from total DNA of B. clausii DSM8716 into Escherichia coli. The deduced amino acid sequence presented 61% identity with that of Erm(D) from B. licheniformis, B. halodurans, and B. anthracis. Pulsed-field gel electrophoresis of total DNA digested by I-CeuI, followed by hybridization with an erm(34)-specific probe, indicated a chromosomal location of the gene in all B. clausii strains. Repeated attempts to transfer resistance to macrolides by conjugation from B. clausii strains to Enterococcus faecalis JH2-2, E. faecium HM1070, and B. subtilis UCN19 were unsuccessful.  相似文献   

3.
《Gene》1998,212(2):179-188
A new Bacillus subtilis sporulation-specific gene, yhcN, has been identified, the expression of which is dependent on the forespore-specific sigma factor σG and to a much lesser extent on σF. A translational yhcN-lacZ fusion is expressed at a very high level in the forespore, and the protein encoded by yhcN was detected in the inner spore membrane. A yhcN mutant sporulates normally and yhcN spores have identical resistance properties to wild-type spores. However, the outgrowth of yhcN spores is slower than that of wild-type spores.  相似文献   

4.
A substantial number of Bacillus species have been marketed for use in oral bacteriotherapy because of their purported ability to prevent or treat various gastrointestinal disorders. Recently, some of the Bacillus strains in Enterogermina, which is made up of aqueous suspensions of viable Bacillus spores, have been partially characterized and aligned with members of the Bacillus alcalophilus subgroup rather than with Bacillus subtilis, as previously reported. With a view toward verifying the original taxonomic position of the Enterogermina strains, we catalogued both phenotypic and genotypic traits exhibited by the four Bacillus strains isolated from the spore mixtures found in original commercial preparations dated 1975 and 1984 and commercial preparations now being propagated industrially. Analyses of physiological and biochemical traits, complete 16S rRNA gene sequences, DNA-DNA reassociation, tRNA intergenic spacer length polymorphism, single-strand conformation polymorphism of PCR-amplified spacer regions of tRNA genes, and randomly amplified polymorphic DNA led to the finding that all of the Enterogermina strains belong to a unique genospecies, which is unequivocally identified as the alkalitolerant species Bacillus clausii. Moreover, we provide evidence that in contrast to several reference strains of B. clausii, the strains constituting Enterogermina are characterized by a notable low level of intraspecific genome diversity and that each strain has remained the same for the last 25 years.  相似文献   

5.
A comparative proteomic approach, using two dimensional gel electrophoresis and mass spectrometry, has been developed to compare and elucidate the differences among the cellular proteomes of four closely related isogenic O/C, SIN, N/R and T, B. clausii strains during both exponential and stationary phases of growth. Image analysis of the electropherograms reveals a high degree of concordance among the four proteomes, some proteins result, however, differently expressed. The proteins spots exhibiting high different expression level were identified, by mass-spectrometry analysis, as alcohol dehydrogenase (ADHA, EC1.2.1.3; ABC0046 isoform) aldehyde dehydrogenase (DHAS, EC 1.2.1.3; ABC0047 isoform) and flagellin-protein of B. clausii KSM-k16. The different expression levels of the two dehydrogenases were confirmed by quantitative RT-PCR and dehydrogenases enzymatic activity. The different patterns of protein expression can be considered as cell proteome signatures of the different strains.  相似文献   

6.
Probiotics represent a potential strategy to influence the host’s immune system thereby modulating immune response. Lipoteichoic Acid (LTA) is a major immune-stimulating component of Gram-positive cell envelopes. This amphiphilic polymer, anchored in the cytoplasmic membrane by means of its glycolipid component, typically consists of a poly (glycerol-phosphate) chain with d-alanine and/or glycosyl substitutions. LTA is known to stimulate macrophages in vitro, leading to secretion of inflammatory mediators such as Nitric Oxide (NO). This study investigates the structure–activity relationship of purified LTA from three probiotic Bacillus strains (Bacillus cereus CH, Bacillus subtilis CU1 and Bacillus clausii O/C). LTAs were extracted from bacterial cultures and purified. Chemical modification by means of hydrolysis at pH 8.5 was performed to remove d-alanine. The molecular structure of native and modified LTAs was determined by 1H NMR and GC–MS, and their inflammatory potential investigated by measuring NO production by RAW 264.7 macrophages. Structural analysis revealed several differences between the newly characterized LTAs, mainly relating to their d-alanylation rates and poly (glycerol-phosphate) chain length. We observed induction of NO production by LTAs from B. subtilis and B. clausii, whereas weaker NO production was observed with B. cereus. LTA dealanylation abrogated NO production independently of the glycolipid component, suggesting that immunomodulatory potential depends on d-alanine substitutions. d-alanine may control the spatial configuration of LTAs and their recognition by cell receptors. Knowledge of molecular mechanisms behind the immunomodulatory abilities of probiotics is essential to optimize their use.  相似文献   

7.
The ermC gene of plasmid pE194 specifies resistance to the macrolidelincosamide-streptogramin B antibiotics. This resistance, as well as synthesis of the 29,000 dalton protein product of ermC, has been shown to be induced by erythromycin. Weisblum and his colleagues have established that macrolide resistance is associated with a specific dimethylation of adenine in 23 S rRNA. We show that pE194 specifies an RNA methylase that can utilize either 50 S ribosomes or 23 S rRNA as substrates. Synthesis of this methylase is induced by low concentrations of erythromycin, and the enzyme is produced in elevated amounts by strains carrying a high copy number mutant of pE194. The methylase comigrates with the 29K ermC product on polyacrylamide gels. The purification and some properties of this methylase are described.  相似文献   

8.
Bioactivity-guided isolation for the new/novel metabolites from the EtOAc extract obtained from the culture broth of a marine Bacillus sp. 09ID194 followed by chromatographic fractionations and subsequently HPLC purifications led to the isolation of two known macrolides, macrolactins A (1) and Q (2), together with a new glycosylated marcrolide, macrolactin W (3). The chemical structures of compounds 1-3 were assigned based on extensive MS and NMR spectral data analysis and literature review. Compound 3 showed potent antibacterial activity against both Gram-positive and Gram-negative pathogenic bacteria.  相似文献   

9.
两株对虾育苗用益生芽孢杆菌的筛选和鉴定   总被引:6,自引:2,他引:6  
从土壤和虾池中分离到22株具有不同特征的芽孢杆菌,分别将各菌株对数期约5×10^8个细胞添加到500mL预先加有凡纳滨对虾(Litopenaeus vannamei)无节Ⅲ期幼体的水体中,各菌株在初始水体中含量均约为106个细胞/mL,根据各菌株对无节Ⅲ期到蚤状Ⅱ期幼体变态成活率的影响,从中初步筛选出10株对幼体变态成活有极显著(p〈0.01)效果的芽孢杆菌。进一步又从初筛到的10个菌株中复筛到2株对幼体变态成活最为明显的芽孢杆菌,菌株zou4和zou8。两菌株与复筛的其他8株芽孢杆菌相比,均显著(p〈0.05)促进幼体变态存活率。根据形态和生理生化特征,菌株zou4和zou8分别初步鉴定为坚强芽孢杆菌(Bacillus firmus)和蜡状芽孢杆菌(B.cereus)。为进一步确定zou4和zou8的分类地位,测定了两菌株的16S rRNA基因序列,分析了相关细菌16S rDNA序列的同源性,构建了系统发育树。结果表明菌株zou4和zou8分别与坚强芽孢杆菌和蜡状芽孢杆菌的同源性最高,相似值均为99%以上。系统发育树上zou4和zou8也分别与坚强芽孢杆菌和蜡状芽孢杆菌聚为一类。综合上述结果,芽孢杆菌zou4和zou8菌株分别被鉴定为坚强芽孢杆菌和蜡状芽孢杆菌。  相似文献   

10.
11.
12.
13.
A total of twenty aerobic endospore-forming bacilli, isolated from marine invertebrates and sea water of different areas of the Pacific Ocean, were taxonomically characterized. Most of the bacilli (11 strains) of marine origin belonged to the species Bacillus subtilis, according to their phenotypic characteristics, antibiotic susceptibility profiles, and fatty acids patterns. A group of four alkaliphilic strains formed a separate cluster that was tentatively classified as B. horti. One isolate, KMM 1717, associated with a sponge from the Coral Sea was identified as B. pumilus. Two strains, Bacillus KMM 1916 and KMM 1918, showed antibiotic sensitivity profiles similar to B. licheniformis, but they had a distinct fatty acid composition and peculiar phenotypic traits. The taxonomic affiliation of KMM 1810 and KMM 1763 remained unclear since their fatty acid composition and antibiotic sensitivity patterns were not resembled with none of these obtained for Bacillus strains.  相似文献   

14.
AIMS: Further characterization and comparison of spore appendages from Bacillus cereus strains. METHODS AND RESULTS: Appendages were isolated from 10 B. cereus strains from the food industry and food-borne outbreaks. The appendage proteins were dissolved in sample buffer containing 2% SDS and 5% mercaptoethanol at 100 degrees C, and subjected to SDS-PAGE. None of the appendages showed identical protein patterns. Western blots, using antibodies raised against a 3.5 kDa appendage protein, showed that the majority of the appendage proteins reacted with the antibody. Removal of the appendages by sonic treatment of the spores did not alter their heat resistance. The appendages were digested by proteinase K, pepsin, and the enzymes in the detergent Paradigm 10, but not by trypsin or chymotrypsin. Spore adhesion to stainless steel was scarcely affected by removal of the appendages. Digestion of adhered intact spores (with appendages) with Paradigm 10 showed a high degree of variation. CONCLUSIONS: Spore appendages from B. cereus are complex proteinaceous structures that differ among strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Information about spore appendages and their involvement in spore adhesion is crucial for improving cleaning methods used for control of bacterial spores in the food industry.  相似文献   

15.
Three Bacillus anthracis strains, formerly used as anti-anthrax vaccine strains in Argentina, were characterized from genetic and pathogenic perspectives. Southern blotting and PCR with pXO1 and pXO2 probes and primers, as well as pathogenicity and protection tests in guinea pigs and mice, were performed. Two of the B. anthracis strains contained both pXO1 and pXO2 plasmids, as did the fully virulent strains, while the third was a Sterne-type strain (pXO1+, pXO2-). The three strains were, however, markedly less pathogenic than a wild-type virulent strain. The methodology applied here may be used to characterize other B. anthracis strains.  相似文献   

16.
A strain of Staphylococcus epidermidis was transduced to erythromycin resistance, and all of the transductants exhibited the macrolide, lincosamide, streptogramin B resistance phenotype. Curing and antibiotic disk studies also indicated that these resistances were controlled by a single plasmid determinant and were constitutive. Agarose gel electrophoresis of plasmid deoxyribonucleic acid (DNA) from donor, cured, and transduced strains showed that a single plasmid was responsible. This plasmid, designated pNE131, was examined for sequence homology to two other plasmids, pE194 and p1258, from Staphylococcus aureus, which also code for erythromycin resistance. DNA from plasmids pNE131 and pE194 hybridized with one another, but no extensive homology to pI258 with either pNE131 or pE194 was found. Restriction endonuclease digests of pNE131 and pE194 showed no common fragments. However, sequence homology was localized to the nucleotides in pE194 that code for the 29,000-dalton protein responsible for erythromycin resistance. pNE131 was calculated to have 2,220 base pairs and is the smallest naturally occurring plasmid with a known function yet reported in S. epidermidis.  相似文献   

17.
Characterization of a new sporulation factor in Bacillus subtilis.   总被引:3,自引:0,他引:3       下载免费PDF全文
We report the existence and partial purification of sporulation factor, which stimulates sporulation of Bacillus subtilis at low cell density. Proline or arginine is required for stimulation under the conditions of our assay. Sporulation factor is a small heat-stable substance produced by the cells during exponential growth phase. It is required in small amounts and is resistant to various proteolytic agents. Several spo mutants were tested for the ability to produce functional sporulation factor. All of these mutants produce factor and do not sporulate in the presence of factor from wild-type cells. Sporulation factor is not involved in the induction of alpha-amylase synthesis at the initiation of sporulation.  相似文献   

18.
Previously selected bacterial probiotic strains Enterococcus faecium L3, Lactobacillus plantarum L4 and Lactobacillus acidophilus M92 have shown their potential as functional starter cultures in silage, white cabbage and milk fermentation. Therefore, the phenotypic and genotypic characteristics important for their application in food industry were investigated. Pulsed-field gel electrophoresis (PFGE) of NotI digested genomic DNA, in combination with physiological traits determined by API tests, made a useful tool for identification of these probiotic strains and differentiation among them. Lyophilized probiotic cells remained viable during 75 days of storage at −20, +4 and +15°C, while fresh concentrated cells remained viable only at −20°C with addition of glycerol as cryoprotectant. After the lyophilization with addition of skim milk as lyoprotectant, the viability of L. acidophilus M92, L. plantarum L4 and E. faecium L3 was reduced by only 0.37, 0.44 and 0.50 log, respectively. Furthermore, probiotic strains L. acidophilus M92, L. plantarum L4, and E. faecium L3, demonstrated anti-Salmonella activity, and L. acidophilus M92 having also antilisterial activity demonstrated by in vitro competition test. Overnight cultures and cell-free supernatants of the three probiotic strains exerted also an antagonistic effect against the Gram-positive and Gram-negative test microorganisms examined, demonstrated by the agar-well diffusion test. The inhibition of Listeria monocytogenes, Salmonella typhimurium, Yersinia enterocolitica, and Acinetobacter calcoaceticus obtained, achieved by the neutralized, 5-fold concentrated supernatant of L. plantarum L4, may be the result of its bacteriocinogenic activity. On the basis of these results, the application of the three examined probiotic strains may become a point of great importance in respect of food safety.  相似文献   

19.
An extracellular serine alkaline protease of Bacillus clausii GMBAE 42 was produced in protein-rich medium in shake-flask cultures for 3 days at pH 10.5 and 37°C. Highest alkaline protease activity was observed in the late stationary phase of cell cultivation. The enzyme was purified 16-fold from culture filtrate by DEAE-cellulose chromatography followed by (NH4)2SO4 precipitation, with a yield of 58%. SDS-PAGE analysis revealed the molecular weight of the enzyme to be 26.50 kDa. The optimum temperature for enzyme activity was 60°C; however, it is shifted to 70°C after addition of 5 mM Ca2+ ions. The enzyme was stable between 30 and 40°C for 2 h at pH 10.5; only 14% activity loss was observed at 50°C. The optimal pH of the enzyme was 11.3. The enzyme was also stable in the pH 9.0–12.2 range for 24 h at 30°C; however, activity losses of 38% and 76% were observed at pH values of 12.7 and 13.0, respectively. The activation energy of Hammarsten casein hydrolysis by the purified enzyme was 10.59 kcal mol−1 (44.30 kJ mol−1). The enzyme was stable in the presence of the 1% (w/v) Tween-20, Tween-40,Tween-60, Tween-80, and 0.2% (w/v) SDS for 1 h at 30°C and pH 10.5. Only 10% activity loss was observed with 1% sodium perborate under the same conditions. The enzyme was not inhibited by iodoacetate, ethylacetimidate, phenylglyoxal, iodoacetimidate, n-ethylmaleimidate, n-bromosuccinimide, diethylpyrocarbonate or n-ethyl-5-phenyl-iso-xazolium-3′-sulfonate. Its complete inhibition by phenylmethanesulfonylfluoride and relatively high k cat value for N-Suc-Ala-Ala-Pro-Phe-pNA hydrolysis indicates that the enzyme is a chymotrypsin-like serine protease. K m and k cat values were estimated at 0.655 μM N-Suc-Ala-Ala-Pro-Phe-pNA and 4.21×103 min−1, respectively.  相似文献   

20.
AIMS: To characterize the facultative anaerobic intestinal microbiota of healthy rabbits, especially enterococci, for the selection of potential probiotic strains. METHODS AND RESULTS: Phenotypic and molecular methods were used to identify enterococcal isolates. Results obtained indicated that enterococcal microbiota widely varied among individuals both in size and in composition. Antibacterial and haemolytic activities, and resistance to acid and bile salts were determined. A small group of strains produced bacteriocins active against listeriae and indigenous clostridia and therefore they were selected as potential probiotics. One such strain, 8G, was assayed for colonization capacity. Results obtained suggested that the fate of the introduced strain depended on the composition of the enterococcal indigenous microbiota. CONCLUSIONS: Enterococcus faecalis and Ent. faecium are the predominant enterococcal species in the gut of rabbits. Other species of lactic acid bacteria were not recovered. SIGNIFICANCE AND IMPACT OF THE STUDY: The enterococcal intestinal microbiota of healthy rabbits has been characterized in detail. Monitoring the fate of an introduced probiotic in vivo is required in order to evaluate potential probiotic strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号