首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In haploid strains of Saccharomyces cerevisiae, glucose depletion causes invasive growth, a foraging response that requires a change in budding pattern from axial to unipolar-distal. To begin to address how glucose influences budding pattern in the haploid cell, we examined the roles of bud-site-selection proteins in invasive growth. We found that proteins required for bipolar budding in diploid cells were required for haploid invasive growth. In particular, the Bud8p protein, which marks and directs bud emergence to the distal pole of diploid cells, was localized to the distal pole of haploid cells. In response to glucose limitation, Bud8p was required for the localization of the incipient bud site marker Bud2p to the distal pole. Three of the four known proteins required for axial budding, Bud3p, Bud4p, and Axl2p, were expressed and localized appropriately in glucose-limiting conditions. However, a fourth axial budding determinant, Axl1p, was absent in filamentous cells, and its abundance was controlled by glucose availability and the protein kinase Snf1p. In the bud8 mutant in glucose-limiting conditions, apical growth and bud site selection were uncoupled processes. Finally, we report that diploid cells starved for glucose also initiate the filamentous growth response.  相似文献   

2.
We have used comprehensive synthetic lethal screens and biochemical assays to examine the biological role of the yeast amphiphysin homologues Rvs161p and Rvs167p, two proteins that play a role in regulation of the actin cytoskeleton, endocytosis, and sporulation. We found that unlike some forms of amphiphysin, Rvs161p-Rvs167p acts as an obligate heterodimer during vegetative growth and neither Rvs161p nor Rvs167p forms a homodimer in vivo. RVS161 and RVS167 have an identical set of 49 synthetic lethal interactions, revealing functions for the Rvs proteins in cell polarity, cell wall synthesis, and vesicle trafficking as well as a shared role in mating. Consistent with these roles, we show that the Rvs167p-Rvs161p heterodimer, like its amphiphysin homologues, can bind to phospholipid membranes in vitro, suggesting a role in vesicle formation and/or fusion. Our genetic screens also reveal that the interaction between Abp1p and the Rvs167p Src homology 3 (SH3) domain may be important under certain conditions, providing the first genetic evidence for a role for the SH3 domain of Rvs167p. Our studies implicate heterodimerization of amphiphysin family proteins in various functions related to cell polarity, cell integrity, and vesicle trafficking during vegetative growth and the mating response.  相似文献   

3.
K Colwill  D Field  L Moore  J Friesen  B Andrews 《Genetics》1999,152(3):881-893
Morphological changes during cell division in the yeast Saccharomyces cerevisiae are controlled by cell-cycle regulators. The Pcl-Pho85p kinase complex has been implicated in the regulation of the actin cytoskeleton at least in part through Rvs167p. Rvs167p consists of three domains called BAR, GPA, and SH3. Using a two-hybrid assay, we demonstrated that each region of Rvs167p participates in protein-protein interactions: the BAR domain bound the BAR domain of another Rvs167p protein and that of Rvs161p, the GPA region bound Pcl2p, and the SH3 domain bound Abp1p. We identified Rvs167p as a Las17p/Bee1p-interacting protein in a two-hybrid screen and showed that Las17p/Bee1p bound the SH3 domain of Rvs167p. We tested the extent to which the Rvs167p protein domains rescued phenotypes associated with deletion of RVS167: salt sensitivity, random budding, and endocytosis and sporulation defects. The BAR domain was sufficient for full or partial rescue of all rvs167 mutant phenotypes tested but not required for the sporulation defect for which the SH3 domain was also sufficient. Overexpression of Rvs167p inhibits cell growth. The BAR domain was essential for this inhibition and the SH3 domain had only a minor effect. Rvs167p may link the cell cycle regulator Pcl-Pho85p kinase and the actin cytoskeleton. We propose that Rvs167p is activated by phosphorylation in its GPA region by the Pcl-Pho85p kinase. Upon activation, Rvs167p enters a multiprotein complex, making critical contacts in its BAR domain and redundant or minor contacts with its SH3 domain.  相似文献   

4.
M. J. Blacketer  P. Madaule    A. M. Myers 《Genetics》1995,140(4):1259-1275
A genetic analysis was undertaken to investigate the mechanisms controlling cellular morphogenesis in Saccharomyces cerevisiae. Sixty mutant strains exhibiting abnormally elongated cell morphology were isolated. The cell elongation phenotype in at least 26 of the strains resulted from a single recessive mutation. These mutations, designated generically elm (elongated morphology), defined 14 genes; two of these corresponded to the previously described genes GRR1 and CDC12. Genetic interactions between mutant alleles suggest that several ELM genes play roles in the same physiological process. The cell and colony morphology and growth properties of many elm mutant strains are similar to those of wild-type yeast strains after differentiation in response to nitrogen limitation into the pseudohyphal form. Each elm mutation resulted in multiple characteristics of pseudohyphal cells, including elongated cell shape, delay in cell separation, simultaneous budding of mother and daughter cells, a unipolar budding pattern, and/or the ability to grow invasively beneath the agar surface. Mutations in 11 of the 14 ELM gene loci potentiated pseudohyphal differentiation in nitrogen-limited medium. Thus, a subset of the ELM genes are likely to affect control or execution of a defined morphologic differentiation pathway in S. cerevisiae.  相似文献   

5.
The actin cytoskeleton cells is altered in rvs161 mutant yeast, with the defect becoming more pronounced under unfavorable growth conditions, as described for the rvs167 mutant. The cytoskeletal alteration has no apparent effect on invertase secretion and polarized growth. Mutations in RTVS161, just as in RI/S167, lead to a random budding pattern in a/α diploid cells. This behavior is not observed in a/a diploid cells homozygous for the rvs161-1 or rvs167-1 mutations. In addition, sequence comparisons revealed that amphiphysin, a protein first found in synaptic vesicles of chicken and shown to be the autoantigen of Stiff Man syndrome, presents similarity with both Rvs proteins. Furthermore, limited similarities with myosin heavy chain and tropomyosin alpha chain from higher eukaryotic cells allow for the definition of a possible consensus sequence. The finding of related sequences suggests the existence of a function for these proteins that is conserved among eukaryotic organisms.  相似文献   

6.
Four mutants defective in endocytosis were isolated by screening a collection of temperature-sensitive yeast mutants. Three mutations define new END genes: end5-1, end6-1, and end7-1. The fourth mutation is in END4, a gene identified previously. The end5-1, end6-1, and end7-1 mutations do not affect vacuolar protein localization, indicating that the defect in each mutant is specific for internalization at the plasma membrane. Interestingly, localization of actin patches on the plasma membrane is affected in each of the mutants. end5-1, end6-1, and end7-1 are allelic to VRP1, RVS161, and ACT1, respectively. VRP1 and RVS161 are required for correct actin localization and ACT1 encodes actin. To our surprise, the end6-1 mutation fails to complement the act1-1 mutation. Disruption of the RVS167 gene, which is homologous to END6/RVS161 and which is also required for correct actin localization, also blocks endocytosis. The end7-1 mutant allele has a glycine 48 to aspartic acid substitution in the DNase I-binding loop of actin. We propose that Vrp1p, Rvs161p, and Rvs167p are components of a cytoskeletal structure that contains actin and fimbrin and that is required for formation of endocytic vesicles at the plasma membrane.  相似文献   

7.
The BAR proteins are a well-conserved family of proteins including Rvsp in yeast, amphiphysins and Bin proteins in mammals. In yeast, as in mammals, BAR proteins are known to be implicated in vesicular traffic. The Gyp5p (Ypl249p) and Ymr192p proteins interact in two-hybrid tests with both Rvs161p and Rvs167p. Gyp5p is a Ypt/Rab-specific GAP and Ymr192p is highly similar to Gyp5p. To specify the interaction between Rvsp and Gyp5p, we used two-hybrid tests to determine the domains necessary for these interactions. The specific SH3 domain of Rvs167p interacted with the N-terminal domain of Gyp5p. Moreover, Gyp5p could form a homodimer. Fus2 protein is a specific partner of Rvs161p in two-hybrid tests. To characterize the functional relationships between these five proteins, we have studied cellular phenotypes in single, double and triple mutant strains for which rvs mutants present defects, such as polarity, cell fusion and meiosis. Phenotypic analysis showed that Gyp5p, Ymr192p and Fus2p were involved in bipolar budding pattern and in meiosis. Specific epistasis or suppressive phenomena were found between the five mutations. Finally, The Gyp5p-GFP fusion protein was localized at the bud tip during apical growth and at the mother-bud neck during cytokinesis. Moreover, Rvs167p and Rvs161p were shown to be essential for the correct localization of Gyp5p. Altogether, these data support the hypothesis that both Rvsp proteins act in vesicular traffic through physical and functional interactions with Ypt/Rab regulators.  相似文献   

8.
The actin cytoskeleton cells is altered in rvs161 mutant yeast, with the defect becoming more pronounced under unfavorable growth conditions, as described for the rvs167 mutant. The cytoskeletal alteration has no apparent effect on invertase secretion and polarized growth. Mutations in RTVS161, just as in RI/S167, lead to a random budding pattern in a/ diploid cells. This behavior is not observed in a/a diploid cells homozygous for the rvs161-1 or rvs167-1 mutations. In addition, sequence comparisons revealed that amphiphysin, a protein first found in synaptic vesicles of chicken and shown to be the autoantigen of Stiff Man syndrome, presents similarity with both Rvs proteins. Furthermore, limited similarities with myosin heavy chain and tropomyosin alpha chain from higher eukaryotic cells allow for the definition of a possible consensus sequence. The finding of related sequences suggests the existence of a function for these proteins that is conserved among eukaryotic organisms.  相似文献   

9.
In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains with CAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in the cap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles of CAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficient cap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis.  相似文献   

10.
Three strains of plant growth promoting fluorescent Pseudomonads (HPR6, RRLJ008 and RRLJ134) were studied for their effect on growth and yield of French bean (Phaseolus vulgaris L.) under field conditions. The effect of these strains on nature of root development and leaf palisade tube length were also examined. The strains induced positive response on growth and physiological parameters resulting in higher yield in P. vulgaris. Strain HPR6 produced the most promising results in thickening of leaf palisade layer, spreading of lateral roots and production of root hairs. The increase in specific leaf weight (SLW), net assimilation rate (NAR) and relative growth rate (RGR) by these strains were 68%, 152% and 167%, respectively. The growth and yield parameters were also significantly improved compared to the uninoculated control. Antibiotic resistant mutant strains demonstrated that these bacteria effectively colonized the rhizosphere of French bean. The results suggest that the strains could be developed for field application on a large scale.  相似文献   

11.
The BAR adaptor proteins encoded by the RVS167 and RVS161 genes from Saccharomyces cerevisiae form a complex that regulates actin, endocytosis, and viability following starvation or osmotic stress. In this study, we identified a human homolog of RVS161, termed BIN3 (bridging integrator-3), and a Schizosaccharomyces pombe homolog of RVS161, termed hob3+ (homolog of Bin3). In human tissues, the BIN3 gene was expressed ubiquitously except for brain. S. pombe cells lacking Hob3p were often multinucleate and characterized by increased amounts of calcofluor-stained material and mislocalized F-actin. For example, while wild-type cells localized F-actin to cell ends during interphase, hob3Delta mutants had F-actin patches distributed randomly around the cell. In addition, medial F-actin rings were rarely found in hob3Delta mutants. Notably, in contrast to S. cerevisiae rvs161Delta mutants, hob3Delta mutants showed no measurable defects in endocytosis or response to osmotic stress, yet hob3+ complemented the osmosensitivity of a rvs161Delta mutant. BIN3 failed to rescue the osmosensitivity of rvs161Delta, but the actin localization defects of hob3Delta mutants were completely rescued by BIN3 and partially rescued by RVS161. These findings suggest that hob3+ and BIN3 regulate F-actin localization, like RVS161, but that other roles for this gene have diverged somewhat during evolution.  相似文献   

12.
Temperature-sensitive yeast mutants defective in gene CDC24 continued to grow (i.e., increase in cell mass and cell volume) at restrictive temperature (36 degrees C) but were unable to form buds. Staining with the fluorescent dye Calcofluor showed that the mutants were also unable to form normal bud scars (the discrete chitin rings formed in the cell wall at budding sites) at 36 degrees C; instead, large amounts of chitin were deposited randomly over the surfaces of the growing unbudded cells. Labeling of cell-wall mannan with fluorescein isothiocyanate-conjugated concanavalin A suggested that mannan incorporation was also delocalized in mutant cells grown at 36 degrees C. Although the mutants have well-defined execution points just before bud emergence, inactivation of the CDC24 gene product in budded cells led both to selective growth of mother cells rather than of buds and to delocalized chitin deposition, indicating that the CDC24 gene product functions in the normal localization of growth in budded as well as in unbudded cells. Growth of the mutant strains at temperatures less than 36 degrees C revealed allele-specific differences in behavior. Two strains produced buds of abnormal shape during growth at 33 degrees C. Moreover, these same strains displayed abnormal localization of budding sites when growth at 24 degrees C (the normal permissive temperature for the mutants); in each case, the abnormal pattern of budding sites segregated with the temperature sensitivity in crosses. Thus, the CDC24 gene product seems to be involved in selection of the budding site, formation of the chitin ring at that site, the subsequent localization of new cell wall growth to the budding site and the growing bud, and the balance between tip growth and uniform growth of the bud that leads to the normal cell shape.  相似文献   

13.
In a variety of organisms, a number of proteins associated with the cortical actin cytoskeleton contain SH3 domains, suggesting that these domains may provide the physical basis for functional interactions among structural and regulatory proteins in the actin cytoskeleton. We present evidence that SH3 domains mediate at least two independent functions of the Saccharomyces cerevisiae actin-binding protein Abp1p in vivo. Abp1p contains a single SH3 domain that has recently been shown to bind in vitro to the adenylyl cyclase-associated protein Srv2p. Immunofluorescence analysis of Srv2p subcellular localization in strains carrying mutations in either ABP1 or SRV2 reveals that the Abp1p SH3 domain mediates the normal association of Srv2p with the cortical actin cytoskeleton. We also show that a site in Abp1p itself is specifically bound by the SH3 domain of the actin-associated protein Rvs167p. Genetic analysis provides evidence that Abp1p and Rvs167p have functions that are closely interrelated. Abp1 null mutations, like rvs167 mutations, result in defects in sporulation and reduced viability under certain suboptimal growth conditions. In addition, mutations in ABP1 and RVS167 yield similar profiles of genetic "synthetic lethal" interactions when combined with mutations in genes encoding other cytoskeletal components. Mutations which specifically disrupt the SH3 domain-mediated interaction between Abp1p and Srv2p, however, show none of the shared phenotypes of abp1 and rvs167 mutations. We conclude that the Abp1p SH3 domain mediates the association of Srv2p with the cortical actin cytoskeleton, and that Abp1p performs a distinct function that is likely to involve binding by the Rvs167p SH3 domain. Overall, work presented here illustrates how SH3 domains can integrate the activities of multiple actin cytoskeleton proteins in response to varying environmental conditions.  相似文献   

14.
C J Gimeno  P O Ljungdahl  C A Styles  G R Fink 《Cell》1992,68(6):1077-1090
Diploid S. cerevisiae strains undergo a dimorphic transition that involves changes in cell shape and the pattern of cell division and results in invasive filamentous growth in response to starvation for nitrogen. Cells become long and thin and form pseudohyphae that grow away from the colony and invade the agar medium. Pseudohyphal growth allows yeast cells to forage for nutrients. Pseudohyphal growth requires the polar budding pattern of a/alpha diploid cells; haploid axially budding cells of identical genotype cannot undergo this dimorphic transition. Constitutive activation of RAS2 or mutation of SHR3, a gene required for amino acid uptake, enhance the pseudohyphal phenotype; a dominant mutation in RSR1/BUD1 that causes random budding suppresses pseudohyphal growth.  相似文献   

15.
The Hof1 protein (Homologue of Fifteen) regulates formation of the primary septum during cytokinesis in the budding yeast Saccharomyces cerevisiae, whereas the orthologous Cdc15 protein in fission yeast regulates the actomyosin ring by using its F-BAR domain to recruit actin nucleators to the cleavage site. Here we show that budding yeast Hof1 also contributes to actin ring assembly in parallel with the Rvs167 protein. Simultaneous deletion of the HOF1 and RVS167 genes is lethal, and cells fail to assemble the actomyosin ring as they progress through mitosis. Although Hof1 and Rvs167 are not orthologues, they both share an analogous structure, with an F-BAR or BAR domain at the amino terminus, capable of inducing membrane curvature, and SH3 domains at the carboxyl terminus that bind to specific proline-rich targets. The SH3 domain of Rvs167 becomes essential for assembly of the actomyosin ring in cells lacking Hof1, suggesting that it helps to recruit a regulator of the actin cytoskeleton. This new function of Rvs167 appears to be independent of its known role as a regulator of the Arp2/3 actin nucleator, as actin ring assembly is not abolished by the simultaneous inactivation of Hof1 and Arp2/3. Instead we find that recruitment to the bud-neck of the Iqg1 actin regulator is defective in cells lacking Hof1 and Rvs167, though future studies will be needed to determine if this reflects a direct interaction between these factors. The redundant role of Hof1 in actin ring assembly suggests that the mechanism of actin ring assembly has been conserved to a greater extent across evolution than anticipated previously.  相似文献   

16.
Mutations in RVS161 and RVS167, the two yeast amphiphysin homologs, cause very similar growth phenotypes, a depolarized actin cytoskeleton, and a defect in the internalization step of endocytosis. Rvs161p and Rvs167p have been shown to interact in the two-hybrid system, but their localization in the cell may be different thus raising the question whether the interaction is physiologically relevant. Here we demonstrate that the two proteins function together in vivo. We find that the steady state level of Rvs167p is strongly reduced in an rvs161Delta strain. Similarly, the level of Rvs161p is strongly reduced in an rvs167Delta strain. We demonstrate that these reduced protein levels at steady state are due to a decreased stability of either Rvs protein in the absence of the other protein. Furthermore, we find that the amount and ratio of Rvs161p and Rvs167p are critical parameters for receptor-mediated endocytosis. In addition, by using the two-hybrid system we show that the interaction of Rvs167p with actin is not abolished in an abp1Delta strain suggesting that Abp1p is not essential for this interaction.  相似文献   

17.
The srb1-1 mutation of Saccharomyces cerevisiae is an ochre allele which renders the yeast dependent on an osmotic stabilizer for growth and gives the cells the ability to lyse on transfer to hypotonic conditions. A DNA fragment which complements both of these phenotypic effects has been cloned. This clone contains a functional gene which is transcribed into a 2.3-kb polyadenylated mRNA molecule. Transformation of yeast strains carrying defined suppressible alleles demonstrated that the cloned fragment does not contain a nonsense suppressor. Integrative transformation and gene disruption experiments, when combined with classical genetic analysis, confirmed that the cloned fragment contained the wild-type SRB1 gene. The integrated marker was used to map SRB1 to chromosome XV by Southern hybridization and pulsed-field gel electrophoresis. A disruption mutant created by the insertion of a TRP1 marker into SRB1 displayed only the lysis ability phenotype and was not dependent on an osmotic stabilizer for growth. Lysis ability was acquired by growth in (or transfer to) an osmotically stabilized environment, but only under conditions which permitted budding. It is inferred that budding cells lyse with a higher probability and that weak points in the wall at the site of budding are involved in the process. The biotechnological potential of the cloned gene and the disruption mutant is discussed.  相似文献   

18.
Mutant cells of Spirulina platensis isolated after chemical mutagenesis (NTG treatment) exhibited approximately three-fold higher tolerance to metronidazole and DCMU (3,4-dichlorophenyl-1, 1-dimethylurea) as compared with wild-type cells. At the same time, mutant cells exhibited a several-fold higher tolerance to supra-high irradiance (38 W/m2) than the wild-type, a further response involving Hill reaction activity in the mutant towards the supra-high irradiance mechanism which enabled the mutant cells to withstand the high light intensities. The metronidazole and DCMU tolerance in the mutant cells could not be obviously attributed to lower rates of growth and photosynthesis as suggested previously. A typical coiling pattern in the mutant cells might result in a reduction of exposed surface area, thereby restricting entry of the above toxins. The mutant strains exhibiting tolerance to multiple stresses are potentially useful for application under field conditions.  相似文献   

19.
Select strains of Candida albicans switch reversibly and at extremely high frequency between a white and an opaque colony-forming phenotype, which has been referred to as the white-opaque transition. Cells in the white phase exhibit a cellular phenotype indistinguishable from that of most standard strains of C. albicans, but cells in the opaque phase exhibit an unusually large, elongate cellular shape. In comparing the white and opaque cellular phenotypes, the following findings are demonstrated. (i) The surface of the cell wall of maturing opaque cells when viewed by scanning electron microscopy exhibits a unique pimpled, or punctate, pattern not observed in white cells or standard strains of C. albicans. (ii) The dynamics of actin localization which accompanies opaque-cell growth first follows the pattern of budding cells during early opaque-bud growth and then the pattern of hypha-forming cells during late opaque-bud growth. (iii) A hypha-specific cell surface antigen is also expressed on the surface of opaque budding cells. (iv) An opaque-specific surface antigen is distributed in a punctate pattern.  相似文献   

20.
Recent studies with myosin heavy chain mutants in the slime mold Dictyostelium discoideum and the yeast Saccharomyces cerevisiae indicate that the myosin heavy chain gene is not essential for cell survival under laboratory growth conditions. However, cells lacking a normal myosin heavy chain gene demonstrate substantial alterations in growth and cell division. In this study, we report that a disruption mutant in the rod portion of the yeast myosin heavy chain gene, MYO1, produces abnormal chitin distribution and cell wall organization at the mother-bud neck in a high proportion of dividing cells. It is suggested that this phenotype is the cause of the cell division defect and the osmotic sensitivity of yeast MYO1 mutants. In the absence of a normal MYO1 polypeptide, yeast cells alter their cell type specific budding pattern. It is concluded that an intact myosin heavy chain gene is required to maintain the cell type specific budding pattern and the correct localization and deposition of chitin and cell wall components during cell growth and division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号