首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 70-kilodalton heat shock protein family is composed of both environmentally inducible (Hsp) and constitutively expressed (Hsc) family members. While the role of the constitutively expressed stress proteins in thermotolerance is largely unknown, de novo expression stress proteins in response to elevated temperatures has been associated with increased thermotolerance in many cell lines, developing embryos and adult organisms. Distinct, hemiclonal hybrids between the livebearing fish species Poeciliopsis monacha and P. lucida varied in their abilities to survive temperature stress, with survival being greatest when rates of temperature increase to 40°C were slowest and when P. monacha genomes were combined with a sympatric P. lucida genome. Quantification of Hsp70 under heat shock conditions and Hsc70 under normal physiological conditions indicated that variation in survival among hemiclones was best explained by the combined effects of these two proteins. Similar complex interactions between maternal and paternal genomes and rate of temperature increase were found to underline patterns of survival, Hsp70 accumulation and Hsc70 abundance. These data suggest that the relationship between Hsps and thermotolerance is more intricate than previously thought and that Hsps contribute to thermal adaptation in these fishes through genetic interactions specific to particular environments.  相似文献   

2.
Many cells and organisms are rendered transiently resistant to lethal heat shock by short exposure to sublethal temperatures. This induced thermotolerance is thought to be related to increased amounts of heat shock proteins (HSPs) which, as molecular chaperones, protect cells from stress-induced damage. As part of a study on bivalve stress and thermotolerance, work was undertaken to examine the effects of sublethal heat shock on stress tolerance of juveniles of the northern bay scallop, Argopecten irradians irradians, in association with changes in the levels of cytoplasmic HSP70 and 40. Juvenile bay scallops heat-shocked at a sublethal temperature of 32 °C survived an otherwise lethal heat treatment at 35 °C for at least 7 days. As determined by ELISA, acquisition of induced thermotolerance closely paralleled HSP70 accumulation, whereas HSP40 accrual appeared less closely associated with thermotolerance. Quantification of scallop HSPs following lethal heat treatment, with or without conditioning, suggested a causal role for HSP70 in stress tolerance, with HSP40 contributing to a lesser, but significant extent. Overall, this study demonstrated that sublethal heat shock promotes survival of A. irradians irradians juveniles upon thermal stress and the results support the hypothesis that HSPs have a role in this induced thermotolerance. Exploitation of the induced thermotolerance response shows promise as a means to improve survival of bay scallops in commercial culture.  相似文献   

3.
Sung DY  Guy CL 《Plant physiology》2003,132(2):979-987
Hsp70s function as molecular chaperones. The protective chaperone activities of hsp70 help to confer tolerance to heat, glucose deprivation, and drought. Overexpression of hsp70s in many organisms correlates with enhanced thermotolerance, altered growth, and development. To better understand the roles of hsp70 proteins in Arabidopsis, the molecular and physiological consequences of altered expression of the major heat shock cognate, Hsc70-1, were analyzed. Extensive efforts to achieve underexpression of Hsc70-1 mRNA using a full-length antisense cDNA resulted in no viable transgenic plants, suggesting that reduced expression is lethal. Constitutive overexpression of Hsc70-1 also appeared to be deleterious to viability, growth, and development because fewer transformants were recovered, and most were dwarfed with altered root systems. Despite being dwarfed, the overexpression plants progressed normally through four selected developmental stages. Heat treatment revealed that Hsc70-1 overexpression plants were more tolerant to heat shock (44 degrees C for 10 min). The elevated basal levels of HSC70-1 in transgenic plants led to delayed heat shock response of several heat shock genes. The data in this study suggest that tight regulation of Hsc70-1 expression is critical for the viability of Arabidopsis and that the functions of HSC70-1 contribute to optimum growth, development, thermotolerance, and regulation of the heat shock response.  相似文献   

4.
The effect of heat shock on the thermotolerance of etiolated mung bean seedlings ( Vigna radiata L. cv. Wilczek) and the effects of gibberellic acid (GA) were studied. The potentially lethal temperature of etiolated mung bean seedlings was 45°C. But, when seedlings were pretreated with a heat-shock period at 40°C for 1 h before incubation at 45°C, they become thermotolerant and survived the 45°C treatment. The addition of actinomycin D or cycloheximide during the heat-shock period decreased the subsequent thermotolerance of the seedlings. Depending upon the time of its application, GA appeared to have multiple effects: (1) when applied during the 40°C heat-shock period, GA enhanced the heat-shock effect; (2) when applied during the 45°C potentially lethal temperature period, GA enhanced the subsequent growth of hypocotyls. This suggests that GA makes the seedlings tolerant to the potentially lethal temperature; (3) when GA was applied during a following 25°C growth period to seedlings which had been exposed first to 40°C and then 45°C, it promoted growth, suggesting that GA enhanced the restoration of the seedlings from high temperature damage. The role of GA and heat shock in the acquisition of thermotolerance in etiolated mung bean seedlings are discussed.  相似文献   

5.
6.
In the fungus Blastocladiella emersonii the synthesis of heat-shock proteins is developmentally regulated; particular subsets of heat-shock proteins are induced by heat shock during sporulation, germination and growth and some heat shock-related proteins are spontaneously expressed during sporulation (Bonato et al., 1987, Eur. J. Biochem., in press). Nevertheless, acquisition of thermotolerance can be induced at any stage of the life cycle. The development of thermotolerance is correlated with the enhanced synthesis of some heat-shock proteins: hsp 82a, hsp 82b, hsp 76, hsp 70, hsp 60, hsp 25, hsp 17b. Other hsps are not specifically involved in thermotolerance.  相似文献   

7.
8.
Survival, oxygen consumption (     ), total plasma cortisol and glucose levels and gill heat-shock protein 70 (hsp70) expression were measured in 10 and 50 g juvenile Atlantic cod Gadus morhua during an acute temperature increase (2° C h−1) to their critical thermal maximum. Ninety three per cent of the fish in both size classes survived to 24° C; however, mortality was 100% within 15 min of reaching this temperature. The     for both size classes increased significantly with temperature, reaching peak values at 22° C that were c. 2·8-fold those of control (10° C) fish. Resting plasma cortisol and glucose levels were lower in 10 g as compared to 50 g fish. Plasma glucose levels were highly variable in both size classes, and significant increases were only seen at >22° C for the 10 g fish. In contrast, plasma cortisol showed an exponential increase with temperature starting at 16° C in both size classes, and reached maximum levels at 22° C that were 19-fold (10 g fish) and 35-fold (50 g fish) higher than their respective control groups. Both the constitutive (73 kDa) and inducible (72 kDa) isoforms of hsp70 were detected in both size classes using the widely utilized mouse monoclonal antibody. Expression of these isoforms, however, did not change when Atlantic cod were exposed to elevated temperature, and the 72 kDa isoform was not detected using salmonid-specific antibodies. These results indicate that juvenile Atlantic cod are very sensitive to acute increases in water temperature. In addition, they (1) show that     and plasma cortisol, but not plasma glucose or gill hsp 70 levels, are sensitive indicators of thermal stress in Atlantic cod and (2) support previous reports that the upper critical temperature for this species is 16° C.  相似文献   

9.
Heat shock proteins (HSPs) refold damaged proteins and are an essential component of the heat shock response. Previously, the 70 kDa heat shock protein (HSP70) has been reported to translocate into the nucleus in a heat-dependent manner in many organisms. In humans, the heat-induced translocation of HSP70 requires the nuclear carrier protein Hikeshi. In the Arabidopsis genome, only one gene encodes a protein with high homology to Hikeshi, and we named this homolog Hikeshi-like (HKL) protein. In this study, we show that two Arabidopsis HSP70 isoforms accumulate in the nucleus in response to heat shock and that HKL interacts with these HSP70s. Our histochemical analysis revealed that HKL is predominantly expressed in meristematic tissues, suggesting the potential importance of HKL during cell division in Arabidopsis. In addition, we show that HKL regulates HSP70 localization, and HKL overexpression conferred thermotolerance to transgenic Arabidopsis plants. Our results suggest that HKL plays a positive role in the thermotolerance of Arabidopsis plants and cooperatively interacts with HSP70.  相似文献   

10.
The objectives of this study were to determine the ability of trophectoderm from preimplantation ovine embryos to synthesize hsp70 in response to heat shock and to identify conditions which induce translational thermotolerance in this tissue. Day 15 embryos were collected, and proteins synthesized in 1.5-mm sections of trophectoderm were radioactively labeled with (35)S-methionine. One-dimensional SDS-PAGE gels, two-dimensional gel electrophoresis and Western blots were utilized to characterize the heat shock response and to examine the induction of translational thermotolerance. Increased synthesis of the 70 kDa heat shock proteins and a protein with an approximate molecular weight of 15 to 20 kDa was observed with heat shock (> or = 42 degrees C). Total protein synthesis decreased (P < 0.05) with increased intensity of heat shock. At 45 degrees C, protein synthesis was suppressed with little or no synthesis of all proteins including hsp70. Recovery of protein synthesis following a severe heat shock (45 degrees C for 20 min) occurred faster (P < 0.05) in trophectoderm pretreated with a mild heat shock (42 degrees C for 30 min) than trophectoderm not pretreated with mild heat. In summary, trophoblastic tissue obtained from ovine embryos exhibit the characteristic "heatshock" response similar to that described for other mammalian systems. In addition, a sublethal heat shock induced the ability of the tissue to resume protein synthesis following severe heat stress. Since maintaining protein synthesis is crucial to embryonic survival, manipulation of the heat-shock response may provide a method to enhance embryonic survival.  相似文献   

11.
The thermotolerance of a species or of an ecotype is important for determining its habitat range and vigour, and considerable research has focused on identifying underlying physiological, biochemical and genetic bases of thermotolerance traits. Rates of protein synthesis in tissues when organisms experience a sudden heat stress as occurs on rare hot days may be important to avoid heat-induced paralysis and to survive. While natural variation in Drosophila melanogaster thermotolerance has been associated with heat-shock gene expression, little attention has been given to examining the thermo-protective role of protein synthesis generally. Using two independently derived sets of single-pair mating lines, we characterised variation in rates of protein synthesis in dissected ovarian tissues, both before and after a heat shock applied at different severities in the two sets. In both sets of lines heat-shocked protein synthesis rates were negatively associated with the increase in heat knockdown tolerance after hardening. These associations occurred in a different sex in each set. Variation in rates of Hsp70 synthesis failed to associate with levels of heat tolerance or general protein synthesis. Our results suggest heritable variation in the rate of protein synthesis following heat stress, independently of Hsp70 variation, contributes to heat tolerance variation in this species.  相似文献   

12.
Heat shock (25° C) of 10° C-acclimated rainbow trout Oncorhynchus mykiss led to increases in heat shock protein 70 (hsp70) mRNA in blood, brain, heart, liver, red and white muscle, with levels in blood being amongst the highest. Hsp30 mRNA also increased with heat shock in all tissues with the exception of blood. When rainbow trout blood was heat shocked in vitro , both hsp70 and hsp30 mRNA increased significantly. In addition, these in vitro experiments demonstrated that blood from fish acclimated to 17° C water had a lower hsp70 mRNA heat shock induction temperature than did 5° C acclimated fish (20 v. 25° C). The hsp30 mRNA induction temperature (25° C), however, was unaffected by thermal acclimation. While increases in hsp70 mRNA levels in blood may serve as an early indicator of temperature stress in fish, tissue type, thermal history and the particular family of hsp must be considered when evaluating stress by these molecular means.  相似文献   

13.
1. Inducible heat-shock proteins are synthesized when temperatures are increased to levels substantially above normal. The functional role of these proteins is well known at the cellular level. Today increasing interest has been directed towards the importance of heat-shock proteins for resistance of whole organisms to high-temperature stress and other environmental stressors.
2. Here the functional relationship between the heat-shock protein, Hsp70, and thermal resistance in adult Drosophila melanogaster was examined by comparing thermal resistance, i.e. survival at 39 °C for 85 min, and levels of Hsp70 at various times elapsed (2, 4, 8, 16, 32 and 64 h) after thermotolerance was induced by short-term acclimation/heat hardening at 37 °C for 55 min.
3. Levels of Hsp70 in both males and females were highest 2 h after heat hardening and declined with longer times elapsed. The rate of decrease initially was very fast but diminished with increasing time. After 32 h the level of Hsp70 approached the level in flies that were not hardened. Levels of Hsp70 in males exceeded that of females during the entire period.
4. Survival of both sexes increased with increasing time after heat hardening and reached an optimum between 8 and 32 h. Thereafter resistance decreased with longer times elapsed. Survival of females generally exceeded that of males except after 16 and 64 h.
5. Regression analysis applied to the data on Hsp70 levels revealed that the model describing these data could not explain the data for survival. Also, higher levels of Hsp70 in males compared with females were not associated with greater survival in males. However, statistical analysis on paired measurements of Hsp70 and survival revealed a positive association between Hsp70 level and survival at each time elapsed after induction of thermotolerance.  相似文献   

14.
Salmon lice (Lepeophtheirus salmonis) are parasitic copepods, living mainly on Atlantic salmon and leading to large economical losses in aquaculture every year. Due to the emergence of resistances to several drugs, alternative treatments are developed, including treatment with hydrogen peroxide, freshwater or thermal treatment. The present study gives a first overview of the thermotolerance and stress response of salmon lice. Sea lice nauplii acclimated to 10 °C can survive heat shocks up to 30 °C and are capable of hardening by a sublethal heat shock. We searched in the genome for heat shock protein (HSP) encoding genes and tested their inducibility after heat shock, changes in salinity and treatment with hydrogen peroxide, employing microfluidic qPCRs. We assessed 38 candidate genes, belonging to the small HSP, HSP40, HSP70 and HSP90 families. Nine of these genes showed strong induction after a non-lethal heat shock. In contrast, only three and two of these genes were induced after changes in salinity and incubation in hydrogen peroxide, respectively. This work provides the basis for further work on the stress response on the economically important parasite L. salmonis.  相似文献   

15.
Diploid and triploid coho salmon Oncorhynchus kisutch transgenic for growth hormone (GH) and control coho salmon were compared for differences in disease resistance and stress response. Resistance to the bacterial pathogen Vibrio anguillarum was not affected in transgenic fish relative to their non‐transgenic counterparts when they were infected at the fry stage, but was lower in transgenic fish when infected near smolting. Vaccination against vibriosis provided equal protection to both transgenic and non‐transgenic fish. Triploid fish showed a lower resistance to vibriosis than their diploid counterparts. Diploid transgenic fish and non‐transgenic fish appeared to show similar physiological and cellular stress responses to a heat shock. These studies provide information useful for both performance and ecological risk assessments of growth‐accelerated coho salmon.  相似文献   

16.
To test the role of the heat shock protein hsp70 in induced thermotolerance and in the regulation of the heat-shock response, we established cell lines with altered expression of the Hsp70 gene. Underexpressing cells were created by transformation with antisense Hsp70 genes, and overexpressing cells by transformation with extra copies of the wild-type gene. Expression at normal temperatures was achieved by placing Hsp70 coding sequences under the control of the metallothionein promoter. Cells that expressed mutant hsp70s were created by transforming cells with deletion and frameshift mutations. The results indicate that hsp70 plays a major role in both thermotolerance and regulation. Surprisingly, they also indicate that these functions can be separated. Overexpression affected thermotolerance more than regulation; underexpression affected regulation more than thermotolerance. A carboxyl-terminal deletion of Hsp70 had a severe dominant-negative effect on thermotolerance but only a minor effect on regulation; an amino-terminal deletion strongly affected regulation but not thermotolerance. A model that explains these observations is presented.  相似文献   

17.
In the yeast, Saccharomyces cerevisiae, the disaccharide trehalose is a stress-related metabolite that accumulates upon exposure of cells to heat shock or a variety of non-heat inducers of the stress response. Here, we describe the influence of mutations in individual heat-shock-protein genes on trehalose metabolism. A strain mutated in three proteins of the SSA subfamily of 70-kDa heat-shock proteins (hsp70) overproduced trehalose during heat shock at 37 degrees C or 40 degrees C and showed abnormally slow degradation of trehalose upon temperature decrease from 40 degrees C to 27 degrees C. The mutant cells were unimpaired in the induction of thermotolerance; however, the decay of thermotolerance during recovery at 27 degrees C was abnormally slow. Since both a high content of trehalose and induced thermotolerance are associated with the heat-stressed state of cells, the abnormally slow decline of trehalose levels and thermotolerance in the mutant cells indicated a defect in recovery from the heat-stressed state. A similar albeit minor defect, as judged from measurements of trehalose degradation during recovery, was detected in a delta hsp104 mutant, but not in a strain deleted in the polyubiquitin gene, UB14. In all our experiments, trehalose levels were closely correlated with thermotolerance, suggesting a thermoprotective function of trehalose. In contrast, heat-shock proteins, in particular hsp70, appear to be involved in recovery from the heat-stressed state rather than in the acquisition of thermotolerance. Cells partially depleted of hsp70 displayed an abnormally low activity of neutral trehalase when shifted to 27 degrees C after heat shock at 40 degrees C. Trehalase activity is known to be under positive control by cAMP-dependent protein kinases, suggesting that hsp70 directly or indirectly stimulate these protein-kinase activities. Alternatively, hsp70 may physically interact with neutral trehalase, thereby protecting the enzyme from thermal denaturation.  相似文献   

18.
Abstract.  Levels of HSP70 protein of fifth-instar codling moth [ Cydia pomonella (L.) (Lepidoptera: Tortricidae)] are determined after conditioning at 35 °C for different times and also after recovery at 22 °C. Protein samples from larvae conditioned for different times are separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis electrophoresis. Sub-lethal thermal conditioning at 35 °C for 40 min, 2, 6 and 18 h induces new protein bands in the extracts from treated codling moth larvae. Immunodetection with an antibody to a heat-inducible HSP70 indicates a stronger reaction after 35 °C for 2, 6 and 18 h than after 35 °C for 40 min or control and, during the recovery period at 22 °C, the level of heat shock protein decreases. Conditioning of fifth-instar codling moths at 35 °C also induces thermotolerance in the insects and necessitates longer times at a lethal temperature to ensure mortality. Thermotolerance is correlated with the accumulation of heat inducible HSP70 protein.  相似文献   

19.
Abstract: The combined effect of hydrostatic pressure and heat shock on thermotolerance was examined in the deep-sea hyperthermophilic archaeon Pyrococcus strain ES4. Pressure equivalent to the depth of isolation (22 MPa) enhanced ES4's survival at super-optimal temperatures (101–108°C) relative to low pressure (3 MPa). Pressure also raised the temperature at which a putative heat-shock protein (98 kDa) accumulated. ES4 grown at 95°C and 3 MPa displayed immediate enhanced thermotolerance to 105°C after being shifted to 22 MPa. Cultures grown at 95°C and 22 MPa and then heat shocked at 105°C and 3 MPa retained enhanced thermotolerance after decompression. These results suggest that this deep-sea hyperthermophile has developed pressure-induced responses that include increased survival to hyperthermal conditions.  相似文献   

20.
Pacific oysters, Crassostrea gigas, living at a range of tidal heights, routinely encounter large seasonal fluctuations in temperature. We demonstrate that the thermal limits of oysters are relatively plastic, and that these limits are correlated with changes in the expression of one family of heat-shock proteins (HSP70). Oysters were cultured in the intertidal zone, at two tidal heights, and monitored for changes in expression of cognate (HSC) and inducible (HSP) heat-shock proteins during the progression from spring through winter. We found that the "control" levels (i.e., prior to laboratory heat shock) of HSC77 and HSC72 are positively correlated with increases in ambient temperature and were significantly higher in August than in January. The elevated level of HSCs during the summer was associated with moderate, 2-3 degrees C, increases in the upper thermal limits for survival. We measured concomitant increases in the threshold temperatures (T(on)) required for induction of HSP70. Total hsp70 mRNA expression reflected the seasonal changes in the expression of inducible but not cognate members of the HSP70 family of proteins. A potential cost of increased T(on) in the summer is that there was no extension of the upper thermal limits for survival (i.e., induction of thermotolerance) after sublethal heat shock at temperatures that were sufficient to induce thermotolerance during the winter months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号