首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of heating on the peristence of water repellency, saturated hydraulic conductivity, and water retention characteristics was examined on soils from both forest and meadow sites in southwest Slovakia shortly after a wet spell. The top 5 cm of meadow soils had an initial water drop penetration time WDPT at 20°C of 457 s, whereas WDPT in the pine forest was 315 s for the top 5 cm and 982 s if only the top 1 cm was measured. Heating soils at selected temperatures of 50, 100, 150, 200, 250 and 300°C caused a marked drop in water drop penetration time WDPT from the initial value at 20°C. However, samples collected in different years and following an imposed cycle of wetting and drying showed much different trends, with WDPT sometimes initially increasing with temperature, followed by a drop after 200–300°C. The impact of heating temperature on the saturated hydraulic conductivity of soil was small. It was found for both the drying and wetting branches of soil water retention curves that an increase in soil water repellency resulted in a drop in soil water content at the same matric potential. The persistence of soil water repellency was strongly influenced by both the sampling site and time of sampling, as it was characterized by the results of WDPT tests.  相似文献   

2.
Soil water repellency in golf putting greens may induce preferential “finger flow”, leading to enhanced leaching of surface applied agrochemicals such as fungicides and nitrate. We examined the effects of root zone composition and the use of the non-ionic surfactant Revolution on soil water repellency, soil water content distributions, infiltration rates, turf quality, and fungicide and nitrate leaching from April 2007 to April 2008. The study was made on 4-year-old experimental green seeded with creeping bentgrass (Agrostis stolonifera L.) ‘Penn A-4’ at Landvik in southeast Norway. Eight lysimeters with two different root zone materials: (i) straight sand (1% gravel, 96% sand, 3% silt and clay, and 4 g kg−1 organic matter) (SS) and (ii) straight sand mixed with Sphagnum peat to an organic matter content of 25 g kg−1 (SP) were used in this study. Surfactant treatment reduced the spatial variability of water contents, increased infiltration rates and reduced water drop penetration times (WDPTs) by on average 99% in and just below the thatch layer. These effects were most evident for SS lysimeters. Surfactant treatment resulted on average in an 80% reduction of total fungicide leaching, presumably due to reduced preferential finger flow facilitated by decreased soil water repellency. Peat amendment reduced fungicide leaching by 90%, probably due to increased sorption of the fungicides to organic matter. Nitrate leaching was also smaller from surfactant-treated straight-sand root zones, but this effect was not significant. The use of trade names in this paper does not imply endorsement of a product.  相似文献   

3.
土壤结皮是一种常见的自然现象,但由于结皮形成机制的不同,会产生不同的亲水性和斥水性,从而影响土壤的水力学特征与水文循环。本研究利用水滴穿透时间法测定了野外不同植被下物理结皮和生物结皮的斥水特征,利用扫描电镜观测了结皮的表面形态,并用微型入渗装置测定了结皮及其对照土壤的入渗特征。结果表明: 1)物理结皮的平均水滴穿透时间(WDPT)为3.3 s,对照为0.9 s,表现为亲水性;生物结皮的平均WDPT介于20.9~140.9 s,是无结皮的2.8~19倍,其中君迁子和刺槐林下的生物结皮平均WDPT分别为134.5和140.9 s。2)与对照相比,物理结皮累积入渗量、平均入渗速率和吸湿力分别降低了0~4.3%、3.5%~5.1%和27.2%~90.1%,生物结皮分别降低了0~25%、1.4%~28.2%和36.0%~84.9%。3)无论是否存在结皮,利用Philip模型拟合处理入渗数据均存在“曲棍球状”曲线;曲线上斥水性停止时间(WRCT)之前,点源微入渗以水平方向上的扩散为主,WRCT点以后以垂直方向上的入渗为主,土壤结皮的形成延长了该转折点的形成时间。综上,物理结皮是无机矿质颗粒堵塞了表层土壤,不影响斥水性的变化;生物结皮表现为斥水性有机物对土壤结构的影响,增强了其斥水性。物理结皮和生物结皮均会降低土壤的累积入渗量和平均入渗速率,但物理结皮主要影响土壤的吸湿力,对稳定入渗速率影响不大;生物结皮不仅降低了土壤吸湿力,还增加了稳定入渗速率。  相似文献   

4.

Background and aims

Soil mechanical properties are crucial for plant growth, soil erosion, tillage and traffic. The soil mechanical properties and stability of an Ultisol were determined in a 13-year fertilization experiment in subtropical China. The effect of organic matter on soil structure was also evaluated.

Methods

The treatments include: unfertilized, mineral fertilized, mineral mixed with straw, and animal manure. Bulk soil strengths (shear strength and penetration resistance) were tested in field. Aggregate strengths (penetration resistance and tensile strength), water stability, organic carbon (OC), hot-water-extractable carbohydrate (HWEC) and some related factors were determined in laboratory.

Results

Fertilizer increases aggregate penetration resistance, tensile strength, water stability and organic matter content in cultivated horizon (0–15 cm depth), especially at the 0–5 cm layer. OC and HWEC showed significantly regression relationships with aggregate water stability, porosity and water repellency for the whole soil profile (0–40 cm). Aggregate strengths also increased with OC and HWEC in cultivated horizon.

Conclusions

Animal manure is most effective in improving soil structure while aggregate water stability is the most sensitive index of fertilizer management. Soil organic matter is a strong determinant of soil structure. Both OC and HWEC are good indicators of surface aggregate strengths and stability, and thus, soil quality in this region.  相似文献   

5.
Thoss  V.  Shevtsova  A.  Nilsson  M.-C. 《Plant and Soil》2004,265(1-2):355-365
Low soil organic matter content and limited soil water holding are the major natural constraint of dryland cropping on sandy soils in the Quebec boreal regions. We conducted a 3-yr (1994–1996) study in a boreal sandy soil, Ferro-Humic Podzol (Spodosols), to determine the potential of Sphagnum peat for improving soil organic matter (SOM), water holding capacity, bulk density (BD), plant leaf nutrient status, and potato and barley yields. The cropping was a rotation of 2-yr potato (Solanum tuberosum L. Superior) and 1-yr barley (Hordeum vulgare L. Chapais). The treatments consisted of Sphagnum peat at rates of 0, 29, 48, and 68 Mg ha–1 3-yr–1 on a dry weight basis, and granular N-P-K fertilizers (12-7.5-7) at rates of 1.4, 1.6, and 1.8 Mg ha–1 yr–1, respectively, arranged in a split-block design. The peat-amended soils were higher in water content (SWC), SOM and total porosity but lower in BD and N than neighboring non-peat soils (P < 0.05). Effects of peat and fertilizer treatments and their interaction were significant on potato leaf N, Ca, Mg, and P, tuber yield, dry weight, harvested N and tuber specific gravity (P < 0.05), depending on year. Potato tuber yield and N increased simultaneously up to 30% (compared to the control), and were significantly correlated with SWC, SOM, BD, and NO3-N (–0.52 r 0.80). In the 3rd year, the linear effect of peat treatments was significant on barley grain yield. In 1995 there was a decline of 4.5–7.3% of SOM of the previous year level. It is suggested that Sphagnum peat at a rate of 48 Mg ha–1 had the potential for improving sandy soil productivity. A longer-term investigation of soil water, N, SOM pool and crop yield changes is necessary to better understand the physical, chemical and biological processes of peat in cropping systems and to maximize the benefits of peat applications.  相似文献   

6.
The muck soils of the north shore of Lake Apopka, near Orlando, Florida, USA are high in organic matter, inorganic nutrients, and water content. Ideally suited for agriculture, these soils have been exposed to a wide variety of agrochemicals. Some of the more recalcitrant organochlorine pesticides, such as DDT and its degradation products DDD and DDE, have persisted in the soil for over 30 years. Using the extracellular enzymes from wood rot fungi, it was demonstrated that it is possible to substantially reduce the amount of the o,p′ and p,p′ isomers of DDT, DDD, and DDE in this soil by more than 60% in 3 weeks. A fungal species with 99% DNA homology to Nectria mariannaeae was isolated from this muck soil and identified by nucleotide sequencing. When grown under nitrogen-limited conditions, this Nectria sp. has been shown to be comparable to Phanerochaete chrysosporium (ATCC 24725) in producing extracellular factors (or agents) that are capable of degrading these recalcitrant chlorinated chemicals.  相似文献   

7.
Despite the fact that phosphorus (P) is critical for plant biomass production in many ecosystems, the implications of soil organic carbon (OC) sequestration for the P cycle have hardly been discussed yet. Thus, the aims of this study are, first, to synthesize results about the relationship between C and P in soil organic matter (SOM) and organic matter inputs to soils, second, to review processes that affect the C:P ratio of SOM, and third, to discuss implications of OC storage in terrestrial ecosystems for P sequestration. The study shows that the storage of OC in mineral soils leads to the sequestration of large amounts of organic phosphorus (OP) since SOM in mineral soils is very rich in P. The reasons for the strong enrichment of OP with respect to OC in soils are the mineralization of OC and the formation of microbial necromass that is P‐rich as well as the strong sorption of OP to mineral surfaces that prevents OP mineralization. In particular, the formation of mineral‐associated SOM that is favorable for storing OC in soil over decadal to centennial timescales sequesters large amounts of OP. Storage of 1,000 kg C in the clay size fraction in the topsoils of croplands sequesters 13.1 kg P. In contrast, the OC:OP ratios of wood and of peatlands are much larger than the ones in cropland soils. Thus, storage of C in wood in peatlands sequesters much less P than the storage of OC in mineral soils. In order to increase the C stocks in terrestrial ecosystems and to lock up as little P as possible, it would be more reasonable to protect and restore peatlands and to produce and preserve wood than to store OC in mineral soils.  相似文献   

8.
Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250–2000 μm), rather than within the microaggregates (53–250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions.  相似文献   

9.
Decomposition of organic matter from 36 soils in a long-term pot experiment   总被引:5,自引:0,他引:5  
Wadman  W.P.  de Haan  S. 《Plant and Soil》1997,189(2):289-301
The organic matter contents of thirty-six soils were measured annually for twenty years in a pot experiment. The soils originated mainly from arable land and varied in initial organic matter content, texture and pH. The soils were stored at an average air temperature of around 13 °C and every year each soil was mixed thoroughly. Throughout the experiment, soil moisture was kept between 50-70% of its water holding capacity. No organic matter was added during the experiment, so that gross soil organic matter decomposition could be assessed. Relative decomposition rates of soil organic matter decreased as time proceeded. Despite the wide range of soils studied, it was found that during the initial decades, the pattern of soil organic matter degradation was strongly correlated with the organic matter content of the soils at the start of the experiment. This means that during this period the time course of the organic matter content of the soils in our experiment can be estimated from the initial soil organic matter content alone.  相似文献   

10.
王亦尘  李毅  肖珍珍 《生态学杂志》2016,27(12):3769-3776
土壤斥水性(SWR)阻碍入渗及再分布过程.虽然斥水土壤在世界广泛存在,但其产生机理并不明确.本文采用滴水穿透时间(WDPT)法、酒精摩尔浓度(MED)法和接触角(θ)法测定了新疆玛纳斯河流域典型土壤的SWR指标,其中θ的测定采用高度法和质量法.对WDPT是否受烘干及不同容重的影响进行对比,探讨各SWR指标之间的联系,并分析了SWR的关键理化性质影响因子,探讨土壤斥水的机理和原因.结果表明: 高容重土壤的WDPT值更大,烘干土壤的WDPT值比风干土壤大;3种SWR指标(WDPT、MED及θ)之间有一定的相关关系,但MED与θ的相关性并不明显,表明各SWR指标之间虽有一定联系,但表征方面具有差异性;采用高度法和质量法测量水与土壤的θ值时,高度法的θ值大于质量法,高度法之间重复差异小于质量法;使用正辛烷作为参比溶液测量水与土壤的θ值时,其重复的差异较小,低于无水乙醇;在多种理化性质中,黏粒含量比其他土壤属性更显著地影响WDPT和θ;[K+]、[Na+]均与θ呈正相关;蒙脱石含量与WDPT、MED呈负相关.综上,土壤SWR的测定方法中,WDPT法操作简单但易受影响;MED法缩短了入渗时间但试验过程耗时;接触角法操作复杂,结果相对精确,采用正辛烷作为参比溶液的高度法更可靠.建议采用多种指标综合表征土壤斥水性.  相似文献   

11.
Chepkwony  C.K.  Haynes  R.J.  Swift  R.S.  Harrison  R. 《Plant and Soil》2001,234(1):83-90
This study assessed the effects of different farming systems, namely woodlot (WL), alley farming (AL), conventional tillage (CT) and natural fallow (NF) on the variability of organic carbon (OC) content and mean weight diameter (MWD) of a degraded Ferric Acrisol in the sub-humid zone of Ghana. The soils under woodlot accumulated the highest amount of organic carbon (18.6 g kg–1) with the least spatial variability apparently due to the greater additions of litter and minimum tillage. The conventionally tilled soil had the least OC content (13.1 g kg–1). Similar to the OC content, the woodlot soils also had the highest aggregate stability (MWD = 1.78 mm) and the least spatial variability. The stability of soil aggregates under the farming systems was greatly influenced by OC content; there was a good correlation between OC and MWD (r > 0.62**). Correlograms showed that OC and MWD are space dependent. The correlation length for OC under the different farming systems followed the order WL > NF > AL > CT, indicating that WL ensured a greater uniform distribution soil organic matter. The spatial distribution in MWD followed the same trend observed for OC. The MWD in the other farming systems was poorly related from point to point with shorter k-values, suggesting lack of uniformity due to low accumulation of OC. Generally, the woodlot system appeared to be a better, low-input restorer of soil productivity.  相似文献   

12.
Grazing exclusion (GE) has been deemed as an important approach to enhance the soil carbon storage of semiarid grasslands in China; however, it remains unclear how different organic carbon (OC) components in soils vary with the duration of GE. Here, we observed the changing trends of different OC components in soils with increased GE duration in five grassland succession series plots, ranging from free grazing to 31-year GE. Specifically, we measured microbial biomass carbon (MBC), easily oxidizable OC (EOC), water-soluble OC (WSOC), and OC in water stable aggregates (macroaggregates [250–2000 μm], microaggregates [53–250 μm], and mineral fraction [< 53 μm]) at 0–20 cm soil depths. The results showed that GE significantly enhanced EOC and WSOC contents in soils, but caused a decline of MBC at the three decade scale. Macroaggregate content (F = 425.8, P < 0.001), OC stored in macroaggregates (F = 84.1, P < 0.001), and the mean weight diameter (MWD) of soil aggregates (F = 371.3, P < 0.001) increased linearly with increasing GE duration. These findings indicate that OC stored in soil increases under three-decade GE with soil organic matter (SOM) stability improving to some extent. Long-term GE practices enhance the formation of soil aggregates through higher SOM input and an exclusion of animal trampling. Therefore, the practice of GE may be further encouraged to realize the soil carbon sequestration potential of semi-arid grasslands, China.  相似文献   

13.
Small headwater fens at high elevations exist in the dry climatic regime of western Colorado, despite increasing demands for water development since the 1800’s. Fens on Grand Mesa have accumulated plant material as peat for thousands of years due to cold temperatures and consistently saturated soils. The peatlands maintain unique plant communities, wildlife habitat, biodiversity, and carbon storage. We located and differentiated 88 fens from 15 wet meadows and 2 marshes on Grand Mesa. Field work included determining vegetation, soils, moisture regimes, and impacts from human activities. All fens were groundwater-supported systems that occurred in depressions and slopes within sedimentary landslide and volcanic glacial till landscapes. Fens occupied 400 ha or less than 1 % of the 46,845 ha research area and ranged in size from 1 to 46 ha. Peat water pH in undisturbed sites ranged from 4.3 to 7.1. Most fens had plant communities dominated by sedges (Carex) with an understory of brown mosses. Variation in vegetation was controlled by stand wetness, water table level, organic C, conductivity (EC), and temperature °C. Fen soils ranged from 13.6 to 44.1 % organic C with a mean of 30.3 %. Species diversity in fens was restricted by cold short growing seasons, stressful anaerobic conditions, and disturbance. Multivariate analysis was used to analyze relationships between vegetation, environmental, and impact variables. Stand wetness, water table level, OC, electrical conductivity (EC), and temperature were used to analyze vegetation variance in undisturbed fens, wet meadows, and marshes. Vegetation composition in impacted fens was influenced by flooding, sedimentation, stand wetness, water table level, OC, EC, and temperature. Hydrologically modified fens supported 58 plant species compared to 101 species in undisturbed fens. Analysis of historical 1936–2007 aerial photographs and condition scalars helped quantify impacts of human activities in fens as well as vegetation changes. Fourteen fens had evidence of peat subsidence, from organic soil collapse, blocks of peat in the margins, soil instability, and differences in surface peat height between the fen soil surface and the annually flooded soil surface. Of 374 ha of fens in the Grand Mesa study area, 294 ha (79 %) have been impacted by human activities such as ditching, drainage, flooding, or vehicular rutting. Many fens had little restoration potential due to severe hydrological and peat mass impacts, water rights, or the cost of restoration.  相似文献   

14.
Recent warming at high-latitudes has accelerated permafrost thaw in northern peatlands, and thaw can have profound effects on local hydrology and ecosystem carbon balance. To assess the impact of permafrost thaw on soil organic carbon (OC) dynamics, we measured soil hydrologic and thermal dynamics and soil OC stocks across a collapse-scar bog chronosequence in interior Alaska. We observed dramatic changes in the distribution of soil water associated with thawing of ice-rich frozen peat. The impoundment of warm water in collapse-scar bogs initiated talik formation and the lateral expansion of bogs over time. On average, Permafrost Plateaus stored 137 ± 37 kg C m−2, whereas OC storage in Young Bogs and Old Bogs averaged 84 ± 13 kg C m−2. Based on our reconstructions, the accumulation of OC in near-surface bog peat continued for nearly 1,000 years following permafrost thaw, at which point accumulation rates slowed. Rapid decomposition of thawed forest peat reduced deep OC stocks by nearly half during the first 100 years following thaw. Using a simple mass-balance model, we show that accumulation rates at the bog surface were not sufficient to balance deep OC losses, resulting in a net loss of OC from the entire peat column. An uncertainty analysis also revealed that the magnitude and timing of soil OC loss from thawed forest peat depends substantially on variation in OC input rates to bog peat and variation in decay constants for shallow and deep OC stocks. These findings suggest that permafrost thaw and the subsequent release of OC from thawed peat will likely reduce the strength of northern permafrost-affected peatlands as a carbon dioxide sink, and consequently, will likely accelerate rates of atmospheric warming.  相似文献   

15.
The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 μ was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.  相似文献   

16.
Water repellency is a widespread characteristic of soils that can modify soil moisture content and distribution and is implicated in important processes such as aggregation and carbon sequestration. Repellency arises as a consequence of organic matter inputs; as elevated atmospheric CO2 is known to modify such inputs, we tested the repellency of a grassland soil after 5 years of exposure to elevated CO2 in a free air carbon dioxide enrichment experiment. Using a water droplet penetration time test, we found a significant reduction in repellency at elevated CO2 in samples at field moisture content. As many of the processes potentially influenced by repellency have been shown to be modified at elevated CO2 (e.g. soil aggregation, C sequestration, recruitment from seed), we suggest that further exploration of this phenomenon could enhance our understanding of CO2 effects on ecosystem function. The mechanism responsible for the change in repellency has not been identified.  相似文献   

17.
Coastal wetlands are a significant carbon (C) sink since they store carbon in anoxic soils. This ecosystem service is impacted by hydrologic alteration and management of these coastal habitats. Efforts to restore tidal flow to former salt marshes have increased in recent decades and are generally associated with alteration of water inundation levels and salinity. This study examined the effect of water level and salinity changes on soil organic matter decomposition during a 60‐day incubation period. Intact soil cores from impounded fresh water marsh and salt marsh were incubated after addition of either sea water or fresh water under flooded and drained water levels. Elevating fresh water marsh salinity to 6 to 9 ppt enhanced CO2 emission by 50%?80% and most typically decreased CH4 emissions, whereas, decreasing the salinity from 26 ppt to 19 ppt in salt marsh soils had no effect on CO2 or CH4 fluxes. The effect from altering water levels was more pronounced with drained soil cores emitting ~10‐fold more CO2 than the flooded treatment in both marsh sediments. Draining soil cores also increased dissolved organic carbon (DOC) concentrations. Stable carbon isotope analysis of CO2 generated during the incubations of fresh water marsh cores in drained soils demonstrates that relict peat OC that accumulated when the marsh was saline was preferentially oxidized when sea water was introduced. This study suggests that restoration of tidal flow that raises the water level from drained conditions would decrease aerobic decomposition and enhance C sequestration. It is also possible that the restoration would increase soil C decomposition of deeper deposits by anaerobic oxidation, however this impact would be minimal compared to lower emissions expected due to the return of flooding conditions.  相似文献   

18.
Summary Determinations were made by an iodometric method and by gas-liquid chromatography (g.l.c.) of inorganic bromide and total bromine in two soils of widely differing organic matter content, and in eight types of peat. The volumetric method is responsive to both bromide and iodide and gave a combined value. The g.l.c. method is halogen specific and gave individual values for bromide and iodide. Inorganic bromide represented only a small fraction (1.1% and 8%) of the total bromine in the soils, and was an even smaller fraction (0–1%) in the peats. The highly organic soil contained 141 μg total Br/g dry wt compared with 14 μg/g in the other soil. Total Br in the peats ranged from 11–116 μg/g. The organic soil contained an appreciable amount of total I (46 μg/g), while the total I content of the peats ranged from 3–18 μg/g. The possibility is considered that during the decomposition of peat added to soil, organic Br is released which might act as a potential source of inorganic bromide available to plants, so contributing to bromide residues in edible crops.  相似文献   

19.
Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral‐organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF‐OC), clay‐size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal‐to‐HF‐OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14C signature in CO2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils.  相似文献   

20.
Organically bound phosphorus (P) is a mobile form of phosphorus in many soils and thus its dynamics relevant for the leaching and cycling of this element. Despite its importance, little is known about the chemical composition of dissolved organic P. We studied the concentrations, fluxes, and chemical composition of organic P in forest floor leachates and soil solutions in a Rendzic Leptosol under a 90-year-old European beech (Fagus sylvatica L.) forest over a 27-month period (1997–1999). The chemical composition of organic P was analysed using XAD-8 fractionation and 31P-nuclear magnetic resonance (NMR) spectroscopy. Organic P was the dominant P form in forest floor leachates as well as in porewaters of the mineral soil. The largest concentrations of organic P were observed during summer and peaked (330–400 g dissolved organic P l–1) after rain storms following short dry periods, concurrently with the concentrations of organic carbon (OC). Because of high rainfall, fluxes of organic P (and C) were greatest in autumn although concentrations of organic C and P were lower than in summer. In forest floor leachates, the hydrophilic fraction of dissolved organic matter contained 83 ± 13% of the bulk organic P. In soil solutions from 90 cm depth, organic P was almost exclusively in the hydrophilic fraction. Because of the low retention of the hydrophilic fraction of dissolved organic matter in the mineral soils, concentrations of organic P in soil water remained almost constant with depth. Consequently, organic P contributed > 95% of the total P leached into deeper subsoils. The overall retention of organic P in the weakly developed mineral soils was little and so the average annual fluxes of organic P in subsoils at 90 cm depth (38 mg m–2) comprised 67% of those from the forest floors (57 mg m–2) during the study period. Hence, organic P proved to be mobile in the studied soil. 31P-NMR spectroscopy confirmed the dominance of organic P species in soil water. Signals due to inorganic P occurred only in spectra of samples collected in winter and spring months. Spectra of samples from summer and autumn revealed traces of condensed phosphates. Due to low P contents, identification of organic P species in samples from winter and spring was not always possible. In summer and autumn, monoester and diester phosphates were the dominant organic species and varied little in their relative distributions. The distribution of organic species changed little from forest floor leachates to the subsoil solutions indicating that the composition of P-containing compounds was not influenced by sorptive interactions or biological transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号