首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cysteine-glutamate transaminase (cysteine aminotransferase; EC 2.6.1.3) has been purified 149-fold to an apparent homogeneity giving a specific activity of 2.09 IU per milligram of protein with an overall yield of 15%. The isolation procedures involve the preliminary separation of a crude rat liver homogenate which was submitted sequentially to ammonium sulfate fractionation, TEAE-cellulose column chromatography, ultrafiltration, and isoelectrofocusing. The final product was homogenous when examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). A minimal molecular weight of 83 500 was determined by Sephadex gel chromatography. The molecular weight as estimated by polyacrylamide gel electrophoresis in the presence of SDS was 84 000. The purified enzyme exhibited a pH optimum at 8.2 with cysteine and alpha-ketoglutarate as substrates. The enzyme is inactivated slowly when kept frozen and is completely inactivated if left at room temperature for 1 h. The enzyme does not catalyze the transamination of alpha-methyl-DL-cysteine, which, when present to a final concentration of 10 mM, exhibits a 23.2% inhibition of transamination of 30 mM of cysteine. The mechanism apparently resembles that of aspartate-glutamate transaminase (EC 2.6.1.1) in which the presence of a labile hydrogen on the alpha-carbon in the substrate is one of the strict requirements.  相似文献   

2.
The rat liver soluble catechol-O-methyltransferase (EC 2.1.1.6.) has been purified utilizing a combination of conventional chromatography and HPLC. The purified enzyme has a molecular mass of 25 kDa, a pI of 5.1, and exists in two forms which differ in the nature of their intramolecular disulfide bonds. This difference causes these two protein forms to behave differently in reversed phase chromatography.  相似文献   

3.
UDP-glucuronosyltransferase (EC 2.4.1.17) activity was solubilized from male Wistar rat liver microsomal fraction in Emulgen 911, and six fractions with the transferase activity were separated by chromatofocusing on PBE 94 (pH 9.4 to 6.0). Fraction I was further separated into Isoforms Ia, Ib and Ic by affinity chromatography on UDP-hexanolamine-Sepharose 4B. UDP-glucuronosyltransferase in Fraction III was further purified by rechromatofocusing (pH 8.7 to 7.5). UDP-glucuronosyltransferases in Fractions IV and V were purified by UDP-hexanolamine-Sepharose chromatography. The transferase isoforms in Fractions II, III, IV and V were finally purified by h.p.l.c. on a TSK G 3000 SW column. Purified UDP-glucuronosyltransferase Isoforms Ia (Mr 51,000), Ib (Mr 52,000), Ic (Mr 56,000), II (Mr 52,000), IV (Mr 53,000) and V (Mr 53,000) revealed single Coomassie Blue-stained bands on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Isoform III enzyme showed two bands of Mr 52,000 and 53,000. Comparison of the amino acid compositions by the method of Cornish-Bowden [(1980) Anal. Biochem. 105, 233-238] suggested that all UDP-glucuronosyltransferase isoforms are structurally related. Reverse-phase h.p.l.c. of tryptic peptides of individual isoforms revealed distinct 'maps', indicating differences in primary protein structure. The two bands of Isoform III revealed distinct electrophoretic peptide maps after limited enzymic proteolysis. After reconstitution with phosphatidylcholine liposomes, the purified isoforms exhibited distinct but overlapping substrate specificities. Isoform V was specific for bilirubin glucuronidation, which was not inhibited by other aglycone substrates. Each isoform, except Ia, was identified as a glycoprotein by periodic acid/Schiff staining.  相似文献   

4.
Ceruloplasmin (CP), a circulating glycoprotein, is known for its copper transport. Recently the spectrum of its activity has been increased to include numerous enzymatic functions. CP binds to the liver endothelium and is transported across the cell via a mechanism involving receptor-mediated endocytosis. To isolate CP receptors, we obtained purified preparations of liver endothelium in rats. The membrane was then isolated by ultracentrifugation and solubilized in Triton X-100. Membrane proteins were labeled with 125I and passed through an affinity column in which CP was covalently linked to Sepharose 4B. Most of the radioactivity was eluted with buffer during the first 5 days. When no more radioactivity was eluted with buffer, elution was done either competitively with cold excess CP or 1 M NaCl. By this technique, a sharp single peak of radioactivity was obtained and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions. Under both conditions receptors appeared as a single band with Mr of 35,000 containing 3% carbohydrate and an isoelectric point of 5.2.  相似文献   

5.
Squalene epoxidase (EC 1.14.99.7, squalene 2,3-monooxygenase (epoxidizing) was purified to an apparent homogeneity from rat liver microsomes. The purification was carried out by solubilization of microsomes by Triton X-100, fractionation with ion exchangers, hydroxyapatite, Cibacron Blue Sepharose 4B, and chromatofocusing column chromatography. A total purification of 143-fold over the first DEAE-cellulose fraction was achieved. The purified enzyme gave a single major band on SDS-polyacrylamide gel electrophoresis and the Mr was estimated to be 51 000 as a single polypeptide chain. The enzyme showed no distinct absorption spectrum in the visible regions. The squalene epoxidase activity was reconstituted with the purified enzyme, NADPH-cytochrome P-450 reductase (EC 1.6.2.4), FAD, NADPH and molecular oxygen in the presence of Triton X-100. The apparent Michaelis constants for squalene and FAD were 13 microM and 5 microM, respectively. The Vmax was about 186 nmol per mg protein per 30 min for 2,3-oxidosqualene. The enzyme activity was not inhibited by potent inhibitors of cytochrome P-450. It is suggested that squalene epoxidase is distinct from cytochrome P-450 isozymes.  相似文献   

6.
Gluconolactonase is isolated and purified from beef liver. The molecular weight is estimated at 233,000 and that of its six similar subunits is 39,400. The pH maximum is 7.1 in 50 mm Tris-acetate buffer at 27 °C. Km and Vm values of 9.1 mm and 1.62 mmol/min/ mg, respectively, were obtained at 27 °C in 50 mm Tris-HCl buffer. This enzyme requires a divalent metal for activity, with manganese being preferred over magnesium. A subcellular fractionation study indicates that gluconolactonase is located primarily in the cytosol, and its hepatic concentration is 2.3 μmol/kg of hepatic tissue.  相似文献   

7.
R H Elder  J M Rossignol 《Biochemistry》1990,29(25):6009-6017
The differential ability of mammalian DNA ligases to use oligo(dT).poly(rA) as a substrate has been used to detect, and thereby extensively purify, two immunologically distinct forms of DNA ligase from rat liver. The activity of DNA ligase I, which is unable to use this template, is uniquely increased during liver regeneration, while that of DNA ligase II remains at a low level. Both enzymes require ATP and Mg2+ for activity and form an adenylylated intermediate which is stable and reactive. After SDS-PAGE, such radiolabeled complexes correspond to polypeptides of 130,000 and 80,000 Da for DNA ligase I and to 100,000 Da for DNA ligase II. That these labeled polypeptides do indeed correspond to active polypeptides of two different forms of DNA ligase is shown by the removal of the radiolabeled AMP, only when the intermediate is incubated with an appropriate substrate. In contrast to other eukaryotic DNA ligases, rat liver DNA ligase II has a lower Km for ATP (1.2 X 10(-5) M) than DNA ligase I (6 X 10(-5) M). Also, DNA ligase II can use ATP alpha S as a cofactor in the ligation reaction much more efficiently than DNA ligase I, further discriminating the ATP binding sites of these enzymes. Finally, antibodies raised against the 130,000-Da polypeptide of DNA ligase I specifically recognize this species in an immunoblot and inhibit only the activity of DNA ligase I.  相似文献   

8.
We have isolated and purified iodothyronine 5'-deiodinase from rat liver microsomes to homogeneity as judged by PAGE and analytical HPLC. The enzyme progressively lost activity after solubilization, and specific activity enhancement was a modest 22-fold, but the final preparation still had substantial activity and was used for molecular characterization. The enzyme had an Mr of 56,000 with a single band in SDS-PAGE, suggesting absence of subunit structure. The high Km, and the GSH-responsive low Km, activities were co-purified, but the low Km enzyme lost GSH-responsiveness upon pretreatment with dithiothreitol (DTT) and urea. The enzyme was strongly inhibited by the iron chelator, alpha,alpha'-dipyridyl and showed a broad absorbance band at 410 nm. Spectral analysis with diethylpyrocarbonate (DEPC) revealed 5 histidine residues/mol enzyme, while enzyme activity was inhibited by DEPC in a pseudo-first order process with modification of 1 histidine residue/mol.  相似文献   

9.
1. Rat liver glycosylasparaginase [N4-(beta-N-acetylglucosaminyl)-L-asparaginase, EC 3.5.1.26] was purified to homogeneity by using salt fractionation, CM-cellulose and DEAE-cellulose chromatography, gel filtration on Ultrogel AcA-54, concanavalin A-Sepharose affinity chromatography, heat treatment at 70 degrees C and preparative SDS/polyacrylamide-gel electrophoresis. The purified enzyme had a specific activity of 3.8 mumol of N-acetylglucosamine/min per mg with N4-(beta-N-acetylglucosaminyl)-L-asparagine as substrate. 2. The native enzyme had a molecular mass of 49 kDa and was composed of two non-identical subunits joined by strong non-covalent forces and having molecular masses of 24 and 20 kDa as determined by SDS/polyacrylamide-gel electrophoresis. 3. The 20 kDa subunit contained one high-mannose-type oligosaccharide chain, and the 24 kDa subunit had one high-mannose-type and one complex-type oligosaccharide chain. 4. N-Terminal sequence analysis of each subunit revealed a frayed N-terminus of the 24 kDa subunit and an apparent N-glycosylation of Asn-15 in the same subunit. 5. The enzyme exhibited a broad pH maximum above 7. Two major isoelectric forms were found at pH 6.4 and 6.6. 6. Glycosylasparaginase was stable at 75 degrees C and in 5% (w/v) SDS at pH 7.0.  相似文献   

10.
A deficiency in alpha-N-acetylglucosaminidase is known as mucopolysaccharidosis IIIB or Sanfilippo B syndrome. We purified this enzyme almost 39,000-fold from liver to homogeneity with 3% recovery. Use of concanavalin A (Con A)-Sepharose and heparin-Sepharose resulted in 13.4-fold and 11.6-fold purifications of the enzymatic activity, respectively. The molecular mass was estimated to be 300 kDa by gel filtration and 80 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The isoelectric point was 5.1, optimal pH was 4.5, and the Km for p-nitrophenyl alpha-N-acetylglucosamine was 0.13-0.20 mM. The purified enzyme was stable at 50 degrees C for 1 h and within the pH range of 6.5-8.5. Anti-serum against the purified enzyme raised in BALB/c mice inhibited the activities of alpha-N-acetylglucosaminidase.  相似文献   

11.
The UDP-Glc:glycoprotein glucosyltransferase is a soluble protein of the endoplasmic reticulum that catalyzes the glucosylation of protein-linked, glucose-free, high mannose-type oligosaccharides. In vivo, the newly glucosylated compounds are immediately deglucosylated, presumably by glucosidase II. The glucosyltransferase has been purified to apparent homogeneity from rat liver. The enzyme appears to have a molecular weight of 150,000 and 270,000 under denaturing and native conditions, respectively. The pure enzyme shows an almost absolute requirement for Ca2+ ions and for UDP-Glc as sugar donor. The same as crude preparations, the pure enzyme synthesized Glc1 Man7-9GlcNAc2-protein from Man7-9GlcNAc2-protein. Denatured glycoproteins are glucosylated much more efficiently than native ones by the apparently homogeneous glucosyltransferase. Availability of the pure enzyme will allow testing the possible involvement of transient glucosylation of glycoproteins in the folding of glycoproteins and/or in the mechanism by which cells dispose of malfolded glycoproteins in the endoplasmic reticulum.  相似文献   

12.
Branched-chain alpha-ketoacid dehydrogenase kinase was purified to homogeneity from rat liver and rat heart. The initial step was the purification of rat liver and heart branched-chain alpha-ketoacid dehydrogenase complex with high kinase activity by a modification of a method described previously. Preservation of high kinase activity during purification of the complex required the presence of fresh dithiothreitol throughout the procedure. The kinase was released from the complex by oxidation of dithiothreitol with potassium ferricyanide and purified by high-speed centrifugation, immunoadsorption chromatography, and DEAE-Sephacel chromatography. Both kinase preparations gave only one polypeptide band with a molecular weight of 44,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase complex by the purified kinase was inhibited by alpha-chloroisocaproate and dichloroacetate, established inhibitors of the phosphorylation of the branched-chain alpha-ketoacid dehydrogenase complex. The kinase did not exhibit autophosphorylation and does not correspond to the same protein as pyruvate dehydrogenase kinase. The kinase phosphorylated histone (type II-S), but this reaction was slow relative to the phosphorylation of the branched-chain alpha-ketoacid dehydrogenase complex and was not inhibited by alpha-chloroisocaproate.  相似文献   

13.
A liver UDP glucuronosyltransferase (GT) enzyme from either phenobarbital- or 3-methylcholanthrene-treated C57BL/6N mice was isolated by phenyl-Sepharose, DEAE-ion exchange, and UDP hexanolamine chromatographic steps. This enzyme had a broad substrate specificity and was mainly responsible for the microsomal capacity to glucuronidate testosterone, 1-naphthol, and morphine. This UDP glucuronosyltransferase ( GTM1 ) appeared to be at least 95% homogeneous and had a subunit molecular weight of 51,000 using sodium dodecyl sulfate-polyacrylamide gel and two-dimensional gel electrophoreses. Antibodies prepared against the purified protein developed a single immunoprecipitin line by double-diffusion analysis with purified antigen and with solubilized microsomes from both control and drug-induced C57BL/6N and DBA/2N mice. A precipitin line was also observed with microsomal proteins which isoelectrofocused at approximately pH 6.7, but not with those which isoelectrofocused at approximately pH 8.5. GTM1 was, therefore, designated at low-pI form. Immunopurified antibody preferentially inhibited and immunoprecipitated GT activities toward testosterone, 1-naphthol, and morphine. To a lesser extent, activities toward phenolphthalein, 3-hydroxybenzo[a]pyrene, and estrone were inhibited while activities toward 4-nitrophenol and 4-methylumbelliferone were not affected. All activities, however, were immunoadsorbed in the presence of protein A-Sepharose. This observation can be explained by the following results. Immunoprecipitates from labeled microsomes contained primarily a 51,000-Da protein. When the immune complexes were adsorbed with protein A-Sepharose, a 54,000-Da protein as well as the expected 51,000-Da GTM1 was detected. This 54,000-Da protein was associated with the glucuronidation of 3-hydroxybenzo[a]pyrene and 4-nitrophenol, and was designated GTM2 .  相似文献   

14.
15.
Minoxidil (Mx), a pyrimidine N-oxide, is used therapeutically as an antihypertensive agent and to induce hair growth in patients with male pattern baldness. Mx NO-sulphate has been implicated as the agent active in producing these effects. This paper describes the purification of a unique sulphotransferase (ST) from rat liver cytosol that is capable of catalysing the sulphation of Mx. By using DEAE-Sepharose CL-6B chromatography, hydroxyapatite chromatography and ATP-agarose affinity chromatography, Mx-ST activity was purified 240-fold compared with the activity in cytosol. The purified enzyme was also capable of sulphating p-nitrophenol (PNP) at low concentrations (less than 10 microM). Mx-ST was purified to homogeneity, as evaluated by SDS/PAGE and reverse-phase h.p.l.c. The active form of the enzyme had a molecular mass of 66,000-68,000 Da as estimated by gel exclusion chromatography and a subunit molecular mass of 35,000 Da. The apparent Km values for Mx, 3'-phosphoadenosine 5'-phosphosulphate and PNP were 625 microM, 5.0 microM and 0.5 microM respectively. However, PNP displayed potent substrate inhibition at concentrations above 1.2 microM. Antibodies raised in rabbits to the pure enzyme detected a single band in rat liver cytosol with a subunit molecular mass of 35,000 Da, as determined by immunoblotting. The anti-(rat Mx-ST) antibodies also reacted with the phenol-sulphating form of human liver phenol sulphotransferase, suggesting some structural similarity between these proteins.  相似文献   

16.
Beta-Glucuronidase (EC 3.2.1.31) has been isolated from rat-liver microsomes by a novel chromatographic method employing antibody to rat preputial gland beta-glucuronidase coupled to Sepharose. The purified enzyme, homogeneous by several methods, was purified some 1700-fold. The microsomal beta-glucuronidase has been characterized with respect to catalysis, stability, and molecular weight. The purified enzyme is a tetramer of 290 000 daltons. Comparative studies with lysosomal beta-glucuronidase indicate that while these two enzymes are electrophoretically distinct, they are catalytically and immunologically identical and have indistinguishable molecular dimensions. The results suggest that microsomal and lysosomal beta-glucuronidase are charge isomers.  相似文献   

17.
Nonspecific lipase (also referred to as micelle lipase and secondary ester hydrolase) has been purified to electrophoretic homogeneity starting from acetone powder of rat pancreas. The purified enzyme is found to have a molecular weight (gel filtration) of 64 000 +/- 2000, and an equivalent weight (titration with E-600) of 65 000. Nonspecific lipase is seen to be very sensitive to inhibition by organophosphates but resistant to quinine. Evidence for the presence of sulfhydryl and imidazole groups essential for activity is presented, and some observations on substrate specificity are made. The purified enzyme appears to lack phosphate groups and lipids, and is unstable under conditions of low ionic strength and/or exposure to 2-mercaptoethanol.  相似文献   

18.
1. Transglutaminase (EC 2.3.2.13) was purified from rat liver. 2. The enzyme was stable at 25 degrees C in the pH range of 6.0-9.0, with the optimum at pH 9.0. 3. The enzyme was inactivated after incubation for 20, 4 and 1 min at 44 degrees C, 52 degrees C, and 60 degrees C, respectively. 4. Activation energies were 30.4 kcal/mol for denaturation and 19.9 kcal/mol for substrate conversion to products. 5. The enzyme was inactivated by sulfhydryl modification with hydroxymercuribenzoate (99.1%) and N-ethylmalemide (78.5%). 6. Calcium, required for the activity, was replaced to a lesser extent, by Mg2+, Sr2+, Zn2+ and Mn2+ (31.8, 27.0, 24.6 and 3.5%). 7. Steady-state kinetics showed: Vmax = 10 microM-min-1, Km = 0.05 mM (N-dimethylated casein), kcat = 31.9 min-1 kcat/Km = 560 min-1 mM-1.  相似文献   

19.
Purification and characterization of rat liver glutaminase   总被引:1,自引:0,他引:1  
Phosphate-dependent glutaminase (EC 3.5.1.2) from livers of starved rats was purified about 400-fold to near homogeneity. The specific activity of the final pool was more than 30 U/mg protein. For the rapid quantification of the enzyme activity a simple and sensitive assay, based on the determination of the produced ammonia with an o-phthalaldehyde reagent, was developed which avoids massive dilution of the samples. The enzyme preparation involved extraction of the enzyme from sonified isolated mitochondria after treatment with a brief hypotonic shock followed by ammonium sulphate precipitation, ion-exchange and hydroxyapatite chromatography. A major improvement was the stabilization of the enzyme by chymostatin protecting it from degradation by a protease of presumably lysosomal origin. In the presence of chymostatin or leupeptin the half-life of glutaminase in a crude mitochondrial preparation subsequent to mild treatment with digitonin could be increased to more than 200 h. The relative molecular mass of the protein (Mr 170,500) was estimated by sucrose gradient ultracentrifugation. The molecular mass of the subunits (Mr 57,000) was determined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. These results suggest a protein composed of three subunits of identical molecular mass. The molecular data clearly differentiate liver glutaminase from the phosphate-dependent glutaminase present in kidney.  相似文献   

20.
The microsomal enzyme system from rat liver which catalyzes squalene epoxidation requires a supernatant protein and phospholipids (Tai, H., and Bloch, K. (1972) J. Biol. Chem. 247, 3767). It has now been found that these two cytoplasmic components can be replaced by Triton X-100. The same detergent solubilizes the microsomal squalene epoxidase and the resulting supernatant can be separated into two components, A and B, by DEAE-cellulose chromatography. Neither Fraction A nor B alone has significant squalene epoxidase activity but combining the two affords a reconstituted system 5-fold higher in specific epoxidase activity than that of the original microsomes. FAD and Triton X-100 in addition to molecular oxygen and NADPH are required in the reconstituted system. Subjecting Fraction A to a second DEAE-cellulose chromatography does not change its specific activity but lowers NADH-ferricyanide reductase activity and the protoheme content to 1/25 and 1/4, respectively. When Fraction B was chromatographed on Sephadex G-200, the specific epoxidase activity tested in the presence of Fraction A was increased 3-fold. This procedure also raised the specific activity of NADPH-cytochrome c reductase activity in Fraction B 3-fold. The reconstituted epoxidase system is not inhibited by either carbon monoxide, potassium cyanide, or o-phenanthrolien but Tiron at 1 mM was inhibitory (50%). Erythrocuprein has no effect on epoxidation. No evidence has been found for the participation of hemoproteins (P450 or cytochrome b5) in squalene epoxidation. Component B appears to be identical with the flavoprotein NADPH-cytochrome c reductase. Component A may be a flavoprotein with an easily dissociable prosthetic group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号