首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments have been carried out to determine the mechanisms involved in the formation of osteoclast-like cells from spleen cells in mice. Osteoclasts were defined as tartrate-resistant acid phosphatase-positive multinucleated cells (TRACP-positive MNCs) in which specific calcitonin receptors were identified by autoradiography with labeled salmon calcitonin. Furthermore, cultures rich in these cells produced resorption pits when grown on dentine slices. Several clonal cell lines were obtained from fetal mouse calvariae and screened for their ability to induce TRACP-positive MNCs in response to 1 alpha, 25-dihydroxyvitamin D3 [1 alpha, 25(OH)2D3] in co-cultures with spleen cells. A cell line, KS-4, was identified with the greatest potency in inducing osteoclast-like cell formation in co-culture with spleen cells. The capacity of KS-4 cells to produce this effect was much greater than that of two bone marrow-derived stromal cell lines (MC3T3-G2/PA6 and ST2 cells), which we have previously shown to be effective in this system but to require treatment with dexamethasone in addition to 1 alpha, 25(OH)2D3 (Udagawa et al.: Endocrinology 125:1805-1813, 1989). Parathyroid hormone (PTH) increased cAMP production in KS-4 cells, and PTH and interleukin-1 alpha also induced TRACP-positive MNCs in co-cultures with spleen cells. Contact between living KS-4 and spleen cells was necessary for osteoclast formation to take place, since this did not occur when the two populations were separated by a membrane filter, or when the KS-4 cells were killed by fixation. Separate cultures of either spleen cells or KS-4 cells formed no TRACP-positive MNCs. KS-4 cells synthesized predominantly type I collagen, formed bone nodules without added of beta-glycerophosphate in a long-term culture, and expressed increasing alkaline phosphatase activity after confluence in culture. These results indicate that the KS-4 cells have properties consistent with progression toward the osteoblast phenotype and represent a single cell line with the ability to promote osteoclast formation by a contact-requiring process.  相似文献   

2.
Osteoclast progenitors differentiate into mature osteoclasts in the presence of receptor activator of NF-kappaB (RANK) ligand on stromal or osteoblastic cells and monocyte macrophage colony-stimulating factor (M-CSF). The soluble RANK ligand induces the same differentiation in vitro without stromal cells. Tumor necrosis factor-alpha (TNF-alpha), a potent cytokine involved in the regulation of osteoclast activity, promotes bone resorption via a primary effect on osteoblasts; however, it remains unclear whether TNF-alpha can also directly induce the differentiation of osteoclast progenitors into mature osteoclasts. This study revealed that TNF-alpha directly induced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), which produced resorption pits on bone in vitro in the presence of M-CSF. The bone resorption activity of TNF-alpha-induced MNCs was lower than that of soluble RANK ligand-induced MNCs; however, interleukin-1beta stimulated this activity of TNF-alpha-induced MNCs without an increase in the number of MNCs. In this case, interleukin-1beta did not induce TRAP-positive MNC formation. The osteoclast progenitors expressed TNF receptors, p55 and p75; and the induction of TRAP-positive MNCs by TNF-alpha was inhibited completely by an anti-p55 antibody and partially by an anti-p75 antibody. Our findings presented here are the first to indicate that TNF-alpha is a crucial differentiation factor for osteoclasts. Our results suggest that TNF-alpha and M-CSF play an important role in local osteolysis in chronic inflammatory diseases.  相似文献   

3.
Osteopetrosis, a metabolic bone disease characterized by a generalized sclerosis of the skeleton, is inherited as an autosomal recessive in a number of mammalian species. The pathogenesis of congenital osteopetrosis is mediated by a reduction in bone resorption as a result of decreased osteoclast function. This hypothesis is based on both functional and structural evidence of reduced bone resorption in all mutations examined to date. The present study examined the histology of cartilage and bone, the ultrastructure of osteoclasts, and the morphology of mineralized bone surfaces in a lethal osteopetrotic mutation, the osteosclerotic (oc) mouse. Histologically, epiphyseal cartilage growth plates, especially the hypertrophic zone, are markedly thickened in oc mice and metaphyses contain excessive osteoid, features characteristic of rickets. Transmission electron microscopy revealed that less than one-quarter of osteoclasts in oc mice demonstrated evidence of ruffled border formation compared with three-quarters of the osteoclasts in normal littermates. In mutants, ruffled borders were less elaborate and cytoplasmic processes penetrated into bone surfaces, suggesting that bone may be removed by mechanical rather than by enzymatic means. There was little morphological evidence of cartilage degradation and broad laminae limitantes persisted in mutants. Mineralized surfaces that undergo resorption in normal mice showed no evidence of bone resorption by scanning EM in mutants. The presence of a rachitic condition, the observations of reduced bone resorption, and the possible contribution of undermineralized matrices to decreased bone resorption are characteristics of the osteosclerotic mutation which suggest that it is a unique osteopetrotic mutant in which to study both the development and regulation of skeletal metabolism.  相似文献   

4.
The medullary bone serves as a source of labile calcium mobilized during calcification of the egg shell in birds. Quantitative histological methods demonstrate that the numbers of medullary bone osteoclasts and nuclei per osteoclast remain unchanged during the egg cycle in the Japanese quail (Coturnix). Therefore, cyclic changes in bone resorption cannot be explained by modulations of osteoclasts from and into other bone cells, a mechanism previously suggested for certain species of birds. Rather, dramatic changes in osteoclast cell-surface features occur during the egg cycle, which might account for cyclic variations in resorptive activity. During egg shell calcification, osteoclasts with ruffled borders are closely apposed to bone surfaces; the cytoplasm is rich in vacuoles that contain mineral crystals and seem to derive from the ruffled border. At the completion of egg shell calcification, the ruffled borders and vacuoles move away from the bone surface, although the osteoclast remains attached to the bone along the filamentous or "clear" zone. Associated with the disappearance of the ruffled borders is the appearance of extensive interdigitated cell processes along the peripheral surface of the osteoclast away from the bone. These unusual structures, which may serve as a reservoir of membrane, largely disappear when ruffled borders and associated structures reappear. Therefore, in these hens, the osteoclasts modulate their cell surface rather than their population during the egg cycle.  相似文献   

5.
Osteopontin (OPN) was expressed in murine wild-type osteoclasts, localized to the basolateral, clear zone, and ruffled border membranes, and deposited in the resorption pits during bone resorption. The lack of OPN secretion into the resorption bay of avian osteoclasts may be a component of their functional resorption deficiency in vitro. Osteoclasts deficient in OPN were hypomotile and exhibited decreased capacity for bone resorption in vitro. OPN stimulated CD44 expression on the osteoclast surface, and CD44 was shown to be required for osteoclast motility and bone resorption. Exogenous addition of OPN to OPN-/- osteoclasts increased the surface expression of CD44, and it rescued osteoclast motility due to activation of the alpha(v)beta(3) integrin. Exogenous OPN only partially restored bone resorption because addition of OPN failed to produce OPN secretion into resorption bays as seen in wild-type osteoclasts. As expected with these in vitro findings of osteoclast dysfunction, a bone phenotype, heretofore unappreciated, was characterized in OPN-deficient mice. Delayed bone resorption in metaphyseal trabeculae and diminished eroded perimeters despite an increase in osteoclast number were observed in histomorphometric measurements of tibiae isolated from OPN-deficient mice. The histomorphometric findings correlated with an increase in bone rigidity and moment of inertia revealed by load-to-failure testing of femurs. These findings demonstrate the role of OPN in osteoclast function and the requirement for OPN as an osteoclast autocrine factor during bone remodeling.  相似文献   

6.
A role for osteocalcin in osteoclast differentiation   总被引:9,自引:0,他引:9  
Specific cellular interactions with components of the extracellular matrix can influence cellular differentiation and development of many tissues. The extracellular matrix of bone is composed of organic constituents and a solid phase of calcium and inorganic phosphate (apatite). When implanted subcutaneously in rats, particles of bone matrix (BPs) recruit progenitors that differentiate into multinucleated cells with osteoclastic features. Because BPs deficient in osteocalcin, a bone matrix protein, were less efficient at promoting osteoclast formation than were normal BPs, we directly examined the influence of osteocalcin on osteoclast differentiation. We evaluated tissue responses to particles of synthetic crystalline apatite alone (Ap), having many of the features of native apatite of mature bone, or to apatite prepared with osteocalcin (Ap/OC), bovine serum albumin (Ap/BSA) or rat bone collagen (Ap/Col). Twelve days after subcutaneous implantation in normal rats, Ap, Ap/BSA, and Ap/Col particles generated a mild foreign body reaction with multinucleated cells in direct contact with the particles; these cells were negative for tartrate-resistant acid phosphatase (TRAP) activity and lacked ruffled borders. In contrast, Ap particles containing approximately 0.1% osteocalcin were partially resorbed and they generated more multinucleated cells that were TRAP-positive, were immunoreactive with an antibody against tartrate-resistant purple acid phosphatase, and displayed ultrastructural features of active osteoclasts including ruffled borders and clear zones. These data support the hypothesis that osteocalcin may function as a matrix signal in the recruitment and differentiation of bone-resorbing cells.  相似文献   

7.
Fusion and activation of osteoclasts are the final two events in osteoclastic bone resorption. To investigate the regulatory mechanism of these events, mononuclear osteoclasts (preosteoclasts, pOCs) were isolated from co-cultures of mouse osteoblastic cells and bone marrow cells. Most of the pOCs cultured without any additives died within 12 h. Survival of pOCs was supported by addition of either osteoblastic cells or macrophage-colony-stimulating factor (M-CSF). pOCs began to fuse with each other after culture for 12 h in the presence of osteoblastic cells or M-CSF. However, the properties of multinucleated osteoclast-like cells (OCLs) induced by osteoblastic cells were considerably different from those induced by M-CSF. Fusion of pOCs induced by osteoblastic cells was retarded after culture for 24 h. In contrast, M-CSF-induced fusion of pOCs continued throughout the 48-h culture period, which was not inhibited by addition of calcitonin. When pOCs together with osteoblastic cells were cultured for 48 h on dentine slices, many resorption pits were formed on the slices. Calcitonin completely inhibited the fusion and pit-forming activity of pOCs treated with osteoblastic cells. Resorption pits were hardly detected on dentine slices in pOC cultures treated with M-CSF. Osteoblastic cells prepared from osteopetrotic (op/op) mice, which cannot produce functional M-CSF, stimulated the fusion and pit-forming activity of pOCs. Recombinant RANKL (receptor activator of NF-kappaB ligand), a cytokine which is produced by osteoblastic cells and is responsible for osteoclast differentiation, induced the fusion and pit-forming activity of pOCs. These results suggested that osteoblastic cells are involved in fusion and activation of osteoclasts through a mechanism independent of M-CSF production. RANKL appears to be responsible for fusion and activation of osteoclasts induced by osteoblastic cells.  相似文献   

8.
Osteoclasts are cells that dynamically alternate resorption and migration on bone surfaces, and have the special structure called ruffled borders and clear zones by transmission electron microscopy (TEM). However, TEM features, especially the distribution of the clear zone of osteoclasts during migration, remains unclear. This study aimed to examine osteoclasts cultured on dentin slices by TEM and clarify the features of migrating osteoclasts, especially the three-dimensional distribution of clear zones. Osteoclasts obtained from mice were cultured with dentin slices for 72 h, and then cells were fixed and the tartrate-resistant acid phosphatase (TRAP) activity was detected. Specimens were embedded in Epon, then TRAP-positive cells were serially sectioned by alternating semithin and ultrathin sections. The cells were examined by TEM and the three-dimensional structures were reconstructed by computer. By TEM, most TRAP-positive cells were resorbing osteoclasts with ruffled borders and a clear zone. There were osteoclasts without ruffled borders, and these cells had clear zone-like structures and lamellipodia. The three-dimensional reconstruction showed that resorbing osteoclasts had rounded contours and ring-shaped clear zones encircling ruffled borders, and that osteoclasts without ruffled borders had irregular and flat shapes; the clear zone-like structures showed a dot or patch-like distribution. The presence of lamellipodia of the osteoclasts without ruffled borders shows that the cells are migrating osteoclasts. These results suggest that dot or patch-like distribution is the feature of the clear zone of osteoclasts during migration, and that these structures play the role of focal contacts and adhesion to the dentin surfaces during cell migration.  相似文献   

9.
Heat Shock Proteins (HSP) are molecular chaperones activated upon cellular stress/stimuli. HSP gene expression is regulated by Heat Shock Factors (HSF). We have recently demonstrated a functional role for heat shock factor-2 (HSF-2) in fibroblast growth factor-2 (FGF-2)-induced RANK ligand (RANKL), a critical osteoclastogenic factor expression on stromal/preosteoblast cells. In the present study, we show that FGF-2 treatment did not induce RANKL expression in HSF-2-/-stromal/preosteoblast cells. Interestingly, HSF-2 deficiency resulted in rapid induction of alkaline phosphatase (ALP) activity and osteocalcin mRNA expression in these cells. Furthermore, FGF-2 did not induce osteoclast formation in co-culture of normal mouse spleen cells and HSF-2-/-stromal/preosteoblast cells. Electron microscopy analysis demonstrated that osteoclasts from HSF-2-/-mice have poorly developed ruffled borders. These data further confirm that HSF-2 plays an important role in FGF-2-induced RANKL expression in stromal/preosteoblast cells. HSF-2 deficiency has pleotropic effects on gene expression during osteoblast differentiation and osteoclastogenesis in the bone microenvironment. Novel therapeutic agents that modulate HSF-2 activation may have therapeutic utility against increased levels of FGF-2 and bone destruction associated with pathologic conditions.  相似文献   

10.
To date, little is known about bone resorption during skeletal development in teleostean fish with acellular bone. We report here about bone resorption with regard to growth in the tilapia Oreochromis niloticus. Nine skeletal elements obtained from growing juveniles were examined using histological and histochemical methods, and transmission electron microscopy (TEM). Tartrate-resistant acid phosphatase (TRAP) served as a marker for bone resorbing cells (osteoclasts), alkaline phosphatase (ALP) was used to identify osteoblasts, and alizarin staining indicated sites of bone formation. TRAP-activity was located at those skeletal elements where growth requires bone resorption, and at sites of cartilage degeneration. No TRAP-activity was found at those skeletal elements where resorption was not required for growth. The examination of the praeopercular shaft leads to a model of bone enlargement, including bone resorption by TRAP-positive cells located at the endosteal bone surface and bone formation by ALP-positive cells located at the periosteal bone surface. TRAP-positive cells were mononucleated and lacked a ruffled border. They appeared either as cell aggregates (resembling the shape of multinucleated giant cells) or as flat cells (resembling bone lining cells). Problems of osteoclast identification in bony fish are discussed.  相似文献   

11.
Osteoclasts are bone‐resorbing multinucleated cells differentiated from monocyte/macrophage lineage precursors. A novel osteoclast precursor cell line, 4B12 was established from Mac‐1+c‐Fms+RANK+ cells from calvaria of 14‐day‐old mouse embryos using immunofluorescence and cell‐sorting methods. Like M‐CSF‐dependent bone marrow macrophages (M‐BMMs), M‐CSF is required for 4B12 cells to differentiate into TRAP‐positive multinucleated cells [TRAP(+) MNCs] in the presence of RANKL. Bone‐resorbing osteoclasts differentiated from 4B12 cells on dentine slices possess both a clear zone and ruffled borders and express osteoclast‐specific genes. Bone‐resorbing activity, but not TRAP, was enhanced in the presence of IL‐1α. The number of TRAP(+) MNCs and the number of pits formed from 4B12 cells on dentine slices was fourfold higher than that from M‐BMMs. 4B12 cells were identified as macrophages with Mac‐1 and F4/80, yet lost these markers upon differentiation into osteoclasts as determined by confocal laser scanning microscopy. The 4B12 cells do not have the potential to differentiate into dendritic cells indicating commitment to the osteoclast lineage. 4B12 cells are readily transfectable with siRNA transfection before and after differentiation. These data show that 4B12 cells faithfully replicate the properties of primary cells and are a useful and powerful model for analyzing the molecular and cellular regulatory mechanisms of osteoclastogenesis and osteoclast function. J. Cell. Physiol. 221: 40–53, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

12.
CELLULAR BIOLOGY OF BONE RESORPTION   总被引:2,自引:0,他引:2  
Past knowledge and the recent developments on the formation, activation and mode of action of osteoclasts, with particular reference to the regulation of each individual step, have been reviewed. The following conclusions of consensus have emerged.
1. The resorption of bone is the result of successive steps that can be regulated individually.
2. Osteoclast progenitors are formed in bone marrow. This is followed by their vascular dissemination and the generation of resting preosteoclasts and osteoclasts in bone.
3. The exact pathways of differentiation of the osteoclast progenators to mature osteoclasts are debatable, but there is clear evidence that stromal cells support osteoclast generation.
4. Osteoclasts are activated following contact with mineralized bone. This appears to be controlled by osteoblasts that expose mineral to osteoclasts and/or release a factor that activates these cells.
5. Activated osteoclasts dissolve the bone mineral and digest the organic matter of bone by the action of agents secreted in the segregated microcompartments underlying their ruffled borders. The mineral is solubilized by protons generated from CO, by carbonic anhydrase and secreted by an ATP-driven vacuolar H+-K+-ATPase located at the ruffled border. The organic matrix of the bone is removed by acid proteinases, particularly cysteine-proteinases that are secreted together with other lysosomal enzymes in the acid environment of the resorption zone.
6. Osteoclastic bone resorption is directly regulated by a polypeptide hormone, calcitonin (CT), and locally, by ionized calcium (Ca2+) generated as a result of osteoclastic bone resorption.
7. There is new evidence that osteoclast activity may also be influenced by the endothelial cells via generation of products including PG, NO and endothelin.  相似文献   

13.
Osteosarcoma is usually associated with a disturbed bone metabolism. The aim of this work was to characterize the reciprocal interactions between MG63 osteosarcoma cells and osteoclasts, in a co-culture system. Co-cultures were characterized throughout 21 days for the osteoclastogenic response and the expression of osteoblastic markers. Monocultures of MG63 cells and peripheral blood mononuclear cell (PBMC) and co-cultures of PBMC + human bone marrow cells (hBMC) were also performed. Compared to PBMC cultures, co-cultures yielded significantly increased gene expression of osteoclast-related markers, tartarate-acid resistant phosphatase (TRAP) activity, TRAP-positive multinucleated cells, cells with actin rings and vitronectin receptors (VNR) and calcitonin receptors (CTR) and calcium phosphate resorbing ability. Results showed that the development of functional osteoclasts required a very low number of MG63 cells, suggesting a high osteoclastogenic-triggering capacity of this cell line. Subjacent mechanisms involved the pathways MEK and NF-kB, although with a lower relevance than that observed on PBMC monocultures or co-cultures of hBMC + PBMC; PGE2 production also had a contribution. Compared to MG63 cell monocultures, the co-culture expressed lower levels of COL1 and ALP, and higher levels of BMP-2, suggesting that PBMC also modulated the osteoblastic behavior. While M-CSF appeared to be involved in the osteoclastogenic response on the MG63 + PBMC co-cultures, RANKL does not seem to be a key player in the process. On the other hand, sphingosine-1-phosphate production might contribute to the modulation of the osteoblastic behavior. Results suggest that the reciprocal modulation between osteosarcoma and osteoclastic cells might contribute to the disturbed bone metabolism associated with bone tumors.  相似文献   

14.
Bacterial lipopolysaccharide (LPS) is a potent stimulator of bone resorption in periodontitis. Co-culture systems of mouse calvaria-derived osteoblasts and bone marrow-derived preosteoclasts were used as an in vitro osteoclast differentiation. This study revealed that co-cultures using ddY or ICR mouse strain responded differently to LPS while responded equally to 1alpha,25(OH)2D3. Thus, the different response to LPS indicates dissimilarity of two mouse stains in their capacity for generating osteoclasts while the two mouse strains share the similarity in response to 1alpha,25(OH)2D3. To identify which cells between osteoblasts and preosteoclasts in the co-culture are responsible for the dissimilarity, the reciprocal co-cultures were performed between ddY and ICR mouse strains. The treatment of 1,25(OH)2D3 to ddY/ICR (osteoblasts from ddY/preosteoclasts from ICR) and ICR/ddY reciprocal co-cultures also showed the similarity. In case of LPS treatment, the results of ddY/ICR were similar to ddY/ddY and the results of the other reciprocal co-culture, ICR/ddY combination, were consistent with those of ICR/ICR. It suggests that the dissimilarity between the two mouse strains may resident in osteoblasts but not in preosteoclasts. Therefore, the osteoblast is responsible for mouse strain-dependent osteoclastogenesis in response to LPS. Although mouse models will continue to provide insights into molecular mechanisms of osteoclastogenesis, caution should be exercised when using different mouse strains, especially ddY and ICR strains as models for osteoclast differentiation.  相似文献   

15.
B-cell development is dependent on the interactions between B-cell precursors and bone marrow stromal cells, but the role of osteoclasts (OCLs) in this process remains unknown. B lymphocytopenia is a characteristic of osteopetrosis, suggesting a modulation of B lymphopoiesis by OCL activity. To address this question, we first rescued OCL function in osteopetrotic oc/oc mice by dendritic cell transfer, leading to a restoration of both bone phenotype and B-cell development. To further explore the link between OCL activity and B lymphopoiesis, we induced osteopetrosis in normal mice by injections of zoledronic acid (ZA), an inhibitor of bone resorption. B-cell number decreased specifically in the bone marrow of ZA-treated mice. ZA did not directly affect B-cell differentiation, proliferation and apoptosis, but induced a decrease in the expression of CXCL12 and IL-7 by stromal cells, associated with reduced osteoblastic engagement. Equivalent low osteoblastic engagement in oc/oc mice confirmed that it resulted from the reduced OCL activity rather than from a direct effect of ZA on osteoblasts. These dramatic alterations of the bone microenvironment were disadvantageous for B lymphopoiesis, leading to retention of B-cell progenitors outside of their bone marrow niches in the ZA-induced osteopetrotic model. Altogether, our data revealed that OCLs modulate B-cell development in the bone marrow by controlling the bone microenvironment and the fate of osteoblasts. They provide novel basis for the regulation of the retention of B cells in their niche by OCL activity.  相似文献   

16.
Osteopetrosis caused by defective acid secretion by the osteoclast, is characterized by defective bone resorption, increased osteoclast numbers, while bone formation is normal or increased. In contrast the bones are of poor quality, despite this uncoupling of formation from resorption.To shed light on the effect of uncoupling in adult mice with respect to bone strength, we transplanted irradiated three-month old normal mice with hematopoietic stem cells from control or oc/oc mice, which have defective acid secretion, and followed them for 12 to 28 weeks.Engraftment levels were assessed by flow cytometry of peripheral blood. Serum samples were collected every six weeks for measurement of bone turnover markers. At termination bones were collected for μCT and mechanical testing. An engraftment level of 98% was obtained. From week 6 until termination bone resorption was significantly reduced, while the osteoclast number was increased when comparing oc/oc to controls. Bone formation was elevated at week 6, normalized at week 12, and reduced onwards. μCT and mechanical analyses of femurs and vertebrae showed increased bone volume and bone strength of cortical and trabecular bone.In conclusion, these data show that attenuation of acid secretion in adult mice leads to uncoupling and improves bone strength.  相似文献   

17.
Osteoclasts are multinucleated cells that derive from hematopoietic progenitors in the bone marrow which also give rise to monocytes in peripheral blood, and to the various types of tissue macrophages. Osteoclasts are formed by the fusion of precursor cells. They function in bone resorption and are therefore critical for normal skeletal development (growth and modeling), for the maintenance of its integrity throughout life, and for calcium metabolism (remodeling). To resorb bone, the osteoclasts attach to the bone matrix, their cytoskeleton reorganizes, and they assume polarized morphology and form ruffled borders to secrete acid and collagenolytic enzymes and a sealing zone to isolate the resorption site. Identification of the osteoclastogenesis inducer, the receptor activator of nuclear factor-kappaB ligand (RANKL), its cognate receptor RANK, and its decoy receptor osteoprotegerin (OPG), has contributed enormously to the dramatic advance in our understanding of the molecular mechanisms involved in osteoclast differentiation and activity. This explosion in osteoclast biology is reflected by the large number of reviews which appeared during the last decade. Here I will summarize the "classical" issues (origin, differentiation, and activity) in a general manner, and will discuss an untouched issue (multinucleation) and a relatively novel aspect of osteoclast biology (osteoimmunology).  相似文献   

18.
After ia (osteopetrotic) rats receive whole body radiation and an injection of spleen cells from a normal littermate, the dense, sclerotic skeleton characteristic of osteopetrosis is rapidly remodeled and becomes normal in appearance radiographically and histologically within three weeks. The mechanism of this skeletal transformation has been explored in cured ia rats by light and electron microscopic examination of osteoclasts. In ia rats less than 25 days of age, osteoclasts viewed by electron microscopy lack a ruffled border - the extensive elaboration of plasma membrane next to the bone surface. Cured ia rats have osteoclasts with ruffled borders indistinguishable from those of normal littermates. In ia rats that receive only 600 rads whole body radiation, osteoclasts are still present three weeks later, but appear abnormal by light microscopy, with dense nuclei and lacking cytoplasmic vacuoles next to the bone surface. Cured ia rats have two types of osteoclasts, one type indistinguishable from osteoclasts of normal littermates by light microscopy, the other resembling osteoclasts of ia rats that received radiation only. These data indicate that the mechanism of the spleen cell cure for osteopetrosis in ia rats is rapid remodeling of the skeleton produced by osteoclasts with ruffled borders. Whether normal spleen cells produce these osteoclasts directly by cell division or indirectly by elaboration of some unknown local factor required for formations of ruffled borders by ia osteoclasts is not known.  相似文献   

19.
The cellular distribution of osteoclast integrin subunits alpha(v) and beta(3), the tissue distribution, and level of the apparent ligand osteopontin (OPN) as well as of the putative regulatory enzyme tartrate-resistant acid phosphatase (TRAP) were studied along with the intracellular distribution of the activation marker c-src in osteopetrotic ia/ia (incisors-absent) mutant rats and their normal littermates. In ia/ia rats, the osteoclasts are incapable of bone matrix resorption. Ultrastructurally the cells exhibit extended clear zones at the expense of ordinary ruffled borders. A secretory dysfunction in the mutant is strongly suggested by the absence of detectable extracellular TRAP, concomitant with an accumulation of the enzyme in abundant small cytoplasmic vesicles. Moreover, TRAP mRNA, protein content, as well as enzymatic activity were elevated. Furthermore, increased levels of integrin subunits alpha(v) and beta(3) were detected at the clear zone of mutant osteoclasts. OPN mRNA levels were elevated in long bones from mutants. In ia/ia rats, immunolabeling for OPN was homogeneously distributed at the surface facing osteoclasts, while in normal littermates it was concentrated at the clear zone area and barely detectable at ruffled borders. The absence of OPN labeling in the abundant, putative intracellular secretory vesicles in mutant osteoclasts suggests that these cells do not produce OPN. The osteoclasts of ia/ia rats appeared to produce and translocate the c-src protein to the cell membrane. In ia/ia a defect ruffled border-formation is observed along with extensive clear zone formation and decreased secretory function. The lesion may be due to a signaling defect, but in that case the defect seems to be located downstream to or not involving the c-src pathway. Our results illustrate the close relationship between secretory function and ruffled border formation in osteoclasts, a relationship that appears to be necessary for proper resorptive function.  相似文献   

20.
We studied the effect of low molecular weight chitosan (LMWC) on the formation of osteoclast-like multinucleated cells (OCLs) in the co-culture of mouse osteoblastic cells and bone marrow cells in the presence of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. LMWC at 440 microg/ml inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive OCLs induced by 1alpha,25(OH)2D3. We prepared OCLs in the co-culture of osteoblastic cells and bone marrow cells. The effect of LMWC on pit formation by OCLs was examined using dentin slices, and LMWC inhibited pit formation at 440 microg/ml. Oral administration of the LMWC to ovariectomized rats prevented a decrease in bone mineral density (BMD) of the lumbar vertebra without affecting the body and uterus weights. These results suggested that LMWC prevented a decrease in BMD in vivo by inhibiting osteoclastic bone resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号