共查询到20条相似文献,搜索用时 0 毫秒
1.
Osteopetrosis, a metabolic bone disease characterized by a generalized sclerosis of the skeleton, is inherited as an autosomal recessive in a number of mammalian species. The pathogenesis of congenital osteopetrosis is mediated by a reduction in bone resorption as a result of decreased osteoclast function. This hypothesis is based on both functional and structural evidence of reduced bone resorption in all mutations examined to date. The present study examined the histology of cartilage and bone, the ultrastructure of osteoclasts, and the morphology of mineralized bone surfaces in a lethal osteopetrotic mutation, the osteosclerotic (oc) mouse. Histologically, epiphyseal cartilage growth plates, especially the hypertrophic zone, are markedly thickened in oc mice and metaphyses contain excessive osteoid, features characteristic of rickets. Transmission electron microscopy revealed that less than one-quarter of osteoclasts in oc mice demonstrated evidence of ruffled border formation compared with three-quarters of the osteoclasts in normal littermates. In mutants, ruffled borders were less elaborate and cytoplasmic processes penetrated into bone surfaces, suggesting that bone may be removed by mechanical rather than by enzymatic means. There was little morphological evidence of cartilage degradation and broad laminae limitantes persisted in mutants. Mineralized surfaces that undergo resorption in normal mice showed no evidence of bone resorption by scanning EM in mutants. The presence of a rachitic condition, the observations of reduced bone resorption, and the possible contribution of undermineralized matrices to decreased bone resorption are characteristics of the osteosclerotic mutation which suggest that it is a unique osteopetrotic mutant in which to study both the development and regulation of skeletal metabolism. 相似文献
2.
Nephropathic cystinosis is an autosomal recessive disorder caused by mutations in the CTNS gene [1], which encodes for a transporter (cystinosin) responsible for cystine efflux from lysosomes. In cystinotic renal proximal tubules (RPTs), the defect in cystinosin function results in reduced reabsorption of solutes by apical Na+/solute cotransport systems, including the Na+/phosphate (Pi) cotransport system [2]. However the underlying molecular mechanisms are unknown, given the lack of an appropriate cellular model. To obtain such a model system, we have knocked down cystinosin with siRNA in primary RPT cell cultures. An 80% reduction in cystinosin strongly inhibited Na+ dependent Pi uptake (70%). Although this finding could be explained by a direct effect on transporters as well as by altered energetics (the ATP level dropped by 52%), our results demonstrate a lack of involvement of Na, K-ATPase, and a reduction in the number of NaPi2a transporters. 相似文献
3.
4.
NZB mice which were already producing anti-erythrocyte autoantibodies were not able to respond to their own liver F antigen, thus providing evidence that their autoimmunity is not caused by a generalized breakdown in self-tolerance mechanisms. The specificity of autoantibodies produced in the spontaneous hemolytic anemia was different from that of antierythrocyte antibodies induced in normal mice and in young NZB mice by injections of rat erythrocytes. This indicates that the B-cell clones which can be triggered by heterologous antigen are different from those responsible for the NZB disease; the latter clones may not exist in normal mice. 相似文献
5.
We examined the changes in the appearance of osteoclasts in the femora of ovariectomized (OVX) or orchiectomized (ORX) op/op mice. Osteoclasts on the trabecular bone surface of the OVX or ORX op/op mice significantly increased in number seven or eight times in comparison with sham-operated op/op mice. Furthermore, TRAP-positive cells increased about four times in 100-week-old females and males, compared with sham-operated groups. These results have indicated that a sex hormone reduction due to OVX or ORX induces prominent recruitment of osteoclasts in op/op mice. 相似文献
6.
D Primi L Hammarstr?m C I Smith 《Journal of immunology (Baltimore, Md. : 1950)》1978,121(6):2241-2243
Con A-activated cells from old NZB mice were found capable of inhibiting the polyclonal response of cells from young NZB and BALB/c animals. Furthermore, Con A-preactivated spleen cells from young NZB and BALB/c mice did not significantly affect the response of spleen cells from old NZB mice. These results suggest that the defective suppressive activity in old NZB mice may be traced to a defect at the B cell level. 相似文献
7.
Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. 总被引:7,自引:0,他引:7
E M Gardiner P A Baldock G P Thomas N A Sims N K Henderson B Hollis C P White K L Sunn N A Morrison W R Walsh J A Eisman 《FASEB journal》2000,14(13):1908-1916
The microarchitecture of bone is regulated by complex interactions between the bone-forming and resorbing cells, and several compounds regulate both actions. For example, vitamin D, which is required for bone mineralization, also stimulates bone resorption. Transgenic mice overexpressing the vitamin D receptor solely in mature cells of the osteoblastic bone-forming lineage were generated to test the potential therapeutic value of shifting the balance of vitamin D activity in favor of bone formation. Cortical bone was 5% wider and 15% stronger in these mice due to a doubling of periosteal mineral apposition rate without altered body weight or calcium homeostatic hormone levels. A 20% increase in trabecular bone volume in transgenic vertebrae was also observed, unexpectedly associated with a 30% reduction in resorption surface rather than greater bone formation. These findings indicate anabolic vitamin D activity in bone and identify a previously unknown pathway from mature osteoblastic cells to inhibit osteoclastic bone resorption, counterbalancing the known stimulatory action through immature osteoblastic cells. A therapeutic approach that both stimulates cortical anabolic and inhibits trabecular resorptive pathways would be ideal for treatment of osteoporosis and other osteopenic disorders. 相似文献
8.
Rapid repair kinetics of pyrimidine(6-4)pyrimidone photoproducts in human cells are due to excision rather than conformational change. 总被引:5,自引:1,他引:5
下载免费PDF全文

UV-induced pyrimidine(6-4)pyrimidone photoproducts in DNA of mammalian cells are apparently repaired much more rapidly than cyclobutane dimers. Since only immunological assays for (6-4) photoproducts have been sensitive enough for repair measurements, it was possible that these apparently rapid repair kinetics reflected a change in physical conformation of antibody-binding sites, resulting in epitope loss rather than excision. To discriminate between these possibilities, we developed a procedure to photochemically convert (6-4) photoproducts to single-strand breaks in UV-irradiated DNA with a background low enough to permit repair measurements. Analysis of a specific DNA sequence indicated that photoinduced alkali-labile sites (PALS) were induced with the same site-specificity as (6-4) photoproducts. Normal human and xeroderma pigmentosum (XP) variant cells rapidly excised (6-4) photoproducts measured as PALS, but little repair was seen in cells from XP complementation group A. These repair kinetics corresponded to those determined in the same samples by radioimmunoassay of (6-4) photoproducts. Thus we conclude that the rapid repair of (6-4) photoproducts observed in UV-irradiated human cells is not the result of a conformational change resulting in epitope loss, but reflects excision of this photoproduct from DNA. 相似文献
9.
T Kawata C Tokimasa N Nowroozi T Fujita M Kaku S Kawasoko H Sugiyama S Ozawa J H Zernik K Tanne 《Journal of craniofacial genetics and developmental biology》1999,19(2):113-117
Osteopetrosis is an inherited metabolic disease characterized by an excessive accumulation of bone. This is associated with an osteoclast deficiency. Osteopetrosis is always accompanied by the failure and/or delay of tooth eruption. The present study was conducted to examine in detail the morphological and histological changes of growth of the third molars in the osteopetrosis (op/op) mouse. At the age of 10 days, normal and op/op mice showed no detectable difference in the shape of the third molar follicles. However, the third molars in the op/op mouse became obscured by the proliferation of neighboring bone trabeculae. Moreover, no tartrate-resistant acid phosphatase-positive cells were detected on the bone surfaces of 10-day-old op/op mice. Ankylosis between the root dentin and proliferating bone trabeculae was a common feature in the 20- and 30-day-old op/op mice. The third molars erupted into the oral cavity before the age of 30 days in normal mice, and the crowns, roots, and periodontal ligaments appeared well developed. Throughout the experiment, it seemed that the primary cause of the microdontia and ankylosis of the developing root in the mutant mouse was a deficiency of osteoclasts, with attendant lack of bone remodeling. 相似文献
10.
The osteopetrotic (os) rabbit is a lethal mutation of autosomal recessive inheritance characterized by hypocalcemia, hypophosphatemia, fibrosis of marrow spaces, and ultrastructural abnormalities in both osteoclasts and osteoblasts. Procedures involving the transplantation of cells from normal hemopoietic tissues, which are sources of osteoclast precursors, are known to cure osteopetrosis in several mutations including some children. We tested the ability of transplanted bone marrow and/or spleen from normal littermates to reverse the skeletal sclerosis in os rabbits. Treatment of 15 neonatal mutants consisted of immunosuppression by whole-body irradiation followed by transplantation of normal bone marrow and/or spleen cell suspensions. This treatment failed to prolong life span or to cure osteopetrosis judged radiographically and histologically for up to 3 weeks posttreatment, the longest time of survival. These data indicate that transplantation of stem cells from multiple hemopoietic tissues, procedures known to cure osteopetrosis in other mutations, is not effective in the os rabbit. These results support the hypothesis that the skeletal microenvironment is not capable of supporting the development and function of normal osteoclasts in this mutation. 相似文献
11.
Witonsky SG Gogal RM Duncan RB Norton H Ward D Lindsay DS 《International journal for parasitology》2005,35(1):113-123
Immunodeficient CD8 knockout mice were infected with Sarcocystis neurona merozoites, in order to determine the role of CD8 cells in protective immunity. Using a direct agglutination test, all infected mice seroconverted by selected time points. Infected mice developed splenomegaly and bilateral lymphadenopathy. Histological changes included marked follicular development in the spleen, endothelitis and moderate perivascular inflammation in the liver, and meningoencephalitis in the brain. Infected brains were positive for S. neurona by polymerase chain reaction. Corresponding to histopathological changes, there were decreased numbers of B-cells in the spleen. The mice did not have significant memory (CD44hi/CD4) or effector (CD45RBhi/CD4) populations present at the time of euthanasia. Flow cytometry confirmed the lack of CD8 cells. Taken together, these data support previous studies suggesting a critical role for CD8 cells in the prevention of menigoencephalitis in S. neurona-infected mice. 相似文献
12.
The parturition defect in steroid 5alpha-reductase type 1 knockout mice is due to impaired cervical ripening. 总被引:2,自引:0,他引:2
M S Mahendroo A Porter D W Russell R A Word 《Molecular endocrinology (Baltimore, Md.)》1999,13(6):981-992
Successful delivery of the fetus (parturition) depends on coordinate interactions between the uterus and cervix. A majority (70%) of mice deficient in the type 1 isozyme of steroid 5alpha-reductase fail to deliver their young at term and thus manifest a parturition defect. Using in vitro and in vivo measurements we show here that rhythmic contractions of the uterus occur normally in these mutant mice at the end of gestation. In contrast, the cervix of the mutant animal fails to ripen at term as judged by biomechanical, histological, and endocrinological assays. Impaired metabolism of progesterone in the cervix of the mutant mice in late gestation leads to an accumulation of this steroid in the tissue. We conclude that a failure of cervical ripening underlies the parturition defect in mice lacking steroid 5alpha-reductase type 1 and that this enzyme normally plays an essential role in cervical progesterone catabolism at the end of pregnancy. 相似文献
13.
Peters T Sindrilaru A Hinz B Hinrichs R Menke A Al-Azzeh EA Holzwarth K Oreshkova T Wang H Kess D Walzog B Sulyok S Sunderkötter C Friedrich W Wlaschek M Krieg T Scharffetter-Kochanek K 《The EMBO journal》2005,24(19):3400-3410
We studied the mechanisms underlying the severely impaired wound healing associated with human leukocyte-adhesion deficiency syndrome-1 (LAD1) using a murine disease model. In CD18(-/-) mice, healing of full-thickness wounds was severely delayed during granulation-tissue contraction, a phase where myofibroblasts play a major role. Interestingly, expression levels of myofibroblast markers alpha-smooth muscle actin and ED-A fibronectin were substantially reduced in wounds of CD18(-/-) mice, suggesting an impaired myofibroblast differentiation. TGF-beta signalling was clearly involved since TGF-beta1 and TGF-beta receptor type-II protein levels were decreased, while TGF-beta(1) injections into wound margins fully re-established wound closure. Since, in CD18(-/-) mice, defective migration leads to a severe reduction of neutrophils in wounds, infiltrating macrophages might not phagocytose apoptotic CD18(-/-) neutrophils. Macrophages would thus be lacking their main stimulus to secrete TGF-beta1. Indeed, in neutrophil-macrophage cocultures, lack of CD18 on either cell type leads to dramatically reduced TGF-beta1 release by macrophages due to defective adhesion to, and subsequent impaired phagocytic clearance of, neutrophils. Our data demonstrates that the paracrine secretion of growth factors is essential for cellular differentiation in wound healing. 相似文献
14.
Uchida M Shima M Shimoaka T Fujieda A Obara K Suzuki H Nagai Y Ikeda T Yamato H Kawaguchi H 《Journal of cellular physiology》2000,185(2):207-214
In addition to their stimulating function on osteoclastic bone resorption, bone resorptive factors may regulate proteinases and related factors in osteoblastic cells to degrade bone matrix proteins. This study investigated the regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) by bone resorptive factors in the cultures of mouse osteoblastic MC3T3-E1 cells, mouse primary osteoblastic (POB) cells, and neonatal mouse calvariae. Expression of either MMP-2, -3, -9, -11, -13, and -14 or TIMP-1, -2, and -3 was detected in MC3T3-E1 cells and POB cells. When the bone resorptive factors parathyroid hormone, 1,25-dihydroxyvitamin D(3), prostaglandin E(2), interleukin-1beta (IL-1beta), and tumor necrosis factor-alpha (TNF-alpha) were added to the cell cultures, MMP-13 mRNA levels were found predominantly to increase by all resorptive factors in the three cultures. mRNA levels of either MMP-3 and -9 or TIMP-1 and -3 were found to increase mainly by the cytokines IL-1beta and TNF-alpha. BB94, a nonselective MMP inhibitor, neutralized the (45)Ca release stimulated by these resorptive factors to an extent similar to that of calcitonin, strongly suggesting that bone resorptive factors function at least partly through MMP formation. We propose that MMP-13 mRNA expression in osteoblastic cells may play an important role in stimulating matrix degradation by both systemic and local resorptive factors, whereas either MMP-3 and -9 or TIMP-1 and -3 might modulate matrix degradation by local cytokines only. 相似文献
15.
E S Medlock I Goldschneider D L Greiner L Shultz 《Journal of immunology (Baltimore, Md. : 1950)》1987,138(11):3590-3597
We have presented evidence in a previous paper that the development of prothymocytes, pre-B cells, and TdT+ lymphoid precursor cells in the bone marrow of motheaten (me/me) and viable motheaten (mev/mev) mice is defective. In the present study, we have used a selective culture system that supports the generation of rat- and mouse-origin TdT+ bone marrow lymphoid cells in vitro to further investigate the early stages of lymphopoiesis in me/me and mev/mev mice. The results demonstrate that bone marrow stromal cell feeder layers derived from me/me and mev/mev mice do not support the growth of rat TdT+ cells in vitro, whereas stromal cell feeder layers from heterozygous (+/-) littermates and wild type (+/+) control mice do. Moreover, composite feeder layers formed by mixing as few as one part me/me and mev/mev bone marrow cells with 7 to 9 parts +/- littermate bone marrow cells also fail to effectively support the generation of TdT+ cells in vitro. In contrast to me/me and mev/mev mice, other mutant mouse models of autoimmune (NZB, NZB/W), immunodeficient (nu/nu), and hemopoietic (W/Wv, Sl/Sld) disorders form feeder layers that support normal to elevated levels of TdT+ cell growth in vitro. Thus, to date, only the me/me and mev/mev mutant mice have been found to lack the appropriate microenvironment for the generation of TdT+ bone marrow cells. Histologic analysis of the stromal cell feeder layers that are formed in our culture system shows that multilayered cellular patches, which normally are the most active sites of TdT+ cell development in vitro, are absent in feeder layers of me/me and mev/mev cells. Moreover, feeder layers from mev/mev mice contain a population of MAC 1+, basophilic, nonvacuolated, macrophage-like cells; whereas feeder layers from control mice contain MAC 1+, eosinophilic, vacuolated macrophage-like cells. Stromal cell feeder layers formed by mixtures of me/me or mev/mev and control mouse bone marrow cells contain numerous multilayered cellular patches and vacuolated mononuclear cells, but also contain large numbers of basophilic mononuclear cells. These composite feeder layers have a disproportionately reduced capacity to support the generation of TdT+ cells in vitro. Although the stromal microenvironment of me/me and mev/mev bone marrow does not support the growth of TdT+ cells in vivo or in vitro, the bone marrow from these mutant mice contains detectable numbers of pre-TdT+ cells. Thus, when cultured on normal mouse feeder layers, mutant mouse bone marrow rapidly generates TdT+ cells in vitro, albeit at significantly reduced levels as compared to +/- littermate controls.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
16.
Natural killer cells, bone, and the bone marrow: studies in estrogen-treated mice and in congenitally osteopetrotic (mi/mi) mice. 总被引:10,自引:0,他引:10
W E Seaman T D Gindhart J S Greenspan M A Blackman N Talal 《Journal of immunology (Baltimore, Md. : 1950)》1979,122(6):2541-2547
Mice lose natural killer cells after 6 weeks of treatment with 17 beta-estradiol. We here demonstrate that the same protocol leads to loss of genetic resistance to bone marrow transplantation and to significant osteoproliferation with loss of bone marrow. We also show that mice with reduced marrow because of congenital osteopetrosis are deficient in natural killing. These findings are consistent with previous evidence that natural killing and genetic resistance to bone marrow transplantation are dependent upon the marrow. Temporal studies of bone histology and radiology during and after treatment with estrogen reveal that alterations in natural killing proceed more rapidly than changes in bone marrow volume. These studies also demonstrate that estrogens induce osteoproliferation only at endosteal surfaces that are adjacent to hematopoietic marrow. From these observations, we conclude that estrogens do not reduce natural killer cells simply by reducing the volume of bone marrow. Estrogens may instead have an effect on bone marrow. Estrogens may instead have an effect on bone marrow cells that leads both to osteoproliferation and to a deficiency of marrow-dependent cells. 相似文献
17.
18.
Gruber R Nothegger G Ho GM Willheim M Peterlik M 《Biochemical and biophysical research communications》2000,270(3):1080-1085
Formation of osteoclast-like cells in mouse bone marrow cultures induced by either 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)), parathyroid hormone (PTH) or prostaglandin E(2) (PGE(2)), respectively, shows partial dependence on interleukin-6 receptor (IL-6R) activation. This suggests that locally produced IL-6 could be relevant for osteoclast formation. Therefore, we evaluated the effects of 1,25-(OH)(2)D(3), PTH, and PGE(2) on IL-6 production in stromal/osteoblastic cell lines. It appeared that these bone resorptive factors differed widely in their ability to modulate IL-6 mRNA expression and, consequently, protein synthesis in each of the cell lines studied. While 1,25-(OH)(2)D(3) was marginally effective only in ST2 cells, and PTH caused a 2- to 20-fold increase in IL-6 levels MC3T3-E1 and UMR-106 cells, PGE(2) enhanced IL-6 production in the ST2 and MC3T3-E1 cell line by two to three orders of magnitude, respectively, and also induced IL-6 in fibroblastic L929 cells. PGE(2)-stimulated IL-6 release from mesenchymal cells seems to be important for autocrine/paracrine control of osteoclast formation in health and disease. 相似文献
19.
20.
An osteoblastic, established cell line UMR-106 was shown to synthesize high levels of the bone-specific, bone sialoprotein (BSP). BSP could be radiolabelled to high specific activity by adding 3H-glucosamine and 35S-sulfate to the UMR-106 cultures and was isolated to high purity using ion-exchange and affinity chromatography on immobilized serotonin. The radiolabelled BSP, partially purified by ion-exchange chromatography, was injected intravenously into a rat in order to study its tissue distribution and urinary clearance. About 43% of the total recovered radioactivity was excreted in the urine within 75 h and the remainder was widely distributed, with the liver, kidney, heart and pelt showing the highest concentrations. The use of established cell lines for the synthesis of radiolabelled glycoconjugates, in conjunction with rapid purification on affinity matrix, provides a useful approach for studying the metabolism of glycoconjugates in whole animals. 相似文献